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We prove that the double inequality (π/2)(arthr/r)3/4+α
∗r < K(r) < (π/2)(arthr/r)3/4+β

∗r holds
for all r ∈ (0, 1) with the best possible constants α∗ = 0 and β∗ = 1/4, which answer to an open
problem proposed by Alzer and Qiu. Here, K(r) is the complete elliptic integrals of the first kind,
and arth is the inverse hyperbolic tangent function.

1. Introduction

For r ∈ [0, 1], Lengedre’s complete elliptic integrals of the first and second kind [1] are de-
fined by

K = K(r) =
∫π/2

0
(1 − r2sin2θ)

−1/2
dθ,

K′ = K′(r) = K(
r ′
)
,

K(0) =
π

2
, K(1) = ∞,

E = E(r) =
∫π/2

0
(1 − r2sin2θ)

1/2
dθ,

E′ = E′(r) = E(r ′),
E(0) = π

2
, E(1) = 1,

(1.1)
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respectively. Here and in what follows, we set r ′ =
√
1 − r2. These integrals are special cases

of Guassian hypergeometric function

F2(a, b; c;x) = F1(a, b; c;x) =
∞∑
n=0

(a, n)(b, n)
(c, n)

xn

n!
(−1 < x < 1), (1.2)

where (a, n) =
∏n−1

k=0(a + k). Indeed, we have

K(r) =
π

2
F

(
1
2
,
1
2
; 1; r2

)
, E(r) = π

2
F

(
−1
2
,
1
2
; 1; r2

)
. (1.3)

It is well known that the complete elliptic integrals have many important applications
in physics, engineering, geometric function theory, quasiconformal analysis, theory of mean
values, number theory, and other related fields [2–13].

Recently, the complete elliptic integrals have been the subject of intensive research. In
particular, many remarkable properties and inequalities can be found in the literature [3, 10–
18].

In 1992, Anderson et al. [15] discovered that K can be approximated by the inverse
hyperbolic tangent function, arth, and proved that

π

2

(
arth r
r

)1/2

< K(r) <
π

2

(
arth r
r

)
, (1.4)

for r ∈ (0, 1).
In [16], Alzer and Qiu proved that the double inequality

π

2

(
arth r
r

)α

< K(r) <
π

2

(
arth r
r

)β

, (1.5)

holds for all r ∈ (0, 1) with the best possible constants α = 3/4 and β = 1 and proposed an
open problem as follows.

Open Problem #

The double inequality

π

2

(
arth r
r

)3/4+α∗r

< K(r) <
π

2

(
arth r
r

)3/4+β∗r
, (1.6)

holds for all r ∈ (0, 1) with the best possible constants α∗ = 0 and β∗ = 1/4.
It is the aim of this paper to give a positive answer to the open problem #.

2. Lemmas and Theorem

In order to establish ourmain result, we need several formulas and lemmas, whichwe present
in this section.
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For 0 < r < 1, the following derivative formulas were presented in [4, Appendix E,
pages 474-475]:

dK
dr

=
E − r

′2K
rr ′2

,
dE
dr

=
E −K

r
,

d
(
E − r

′2K
)

dr
= rK,

d(K− E)
dr

=
rE
r ′2

.

(2.1)

Lemma 2.1 (see [4, Theorem 1.25]). For −∞ < a < b < ∞, let f, g : [a, b] → R be continuous on
[a, b] and be differentiable on (a, b), let g ′(x)/= 0 be on (a, b). If f ′(x)/g ′(x) is increasing (decreasing)
on (a, b), then so are

f(x) − f(a)
g(x) − g(a)

,
f(x) − f(b)
g(x) − g(b)

. (2.2)

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

The following Lemma 2.2 can be found in [9, Lemma 3(1)] and [4, Theorem 3.21(1)
and Exercise 3.43(30) and (46)].

Lemma 2.2. (1) [(r ′)c arth r]/r is strictly decreasing in (0, 1) if and only if c ≥ 2/3;
(2) (E − r

′2K)/r2 is strictly increasing from (0, 1) onto (π/4, 1);
(3) (E − r

′2K)/(r2K) is strictly decreasing from (0, 1) onto (0, 1/2);
(4) rK/ arth r is strictly decreasing from (0, 1) onto (1, π/2).

Lemma 2.3. (1) f1(r) = [r − r
′2 arth r]/r3 is strictly increasing from (0, 1) onto (2/3, 1);

(2) f2(r) = (log[arth(r)/r])/r2 is strictly increasing from (0, 1) onto (1/3,∞);
(3) f3(r) = [E arth r − r

′2K arth(r)/4 − 3rK/4]/r5 is strictly increasing from (0, 1) onto
(π/480,∞);

(4) f4(r) = (3/4+r/4)(r −r ′2 arth r)K− (E−r ′2K) arth r is positive and strictly increasing
in (

√
2/2, 1);
(5) f5(r) = (3/4 + r2) log[arth(r)/r] − log(2K/π) is positive and strictly increasing on

(0, 1/4).

Proof. For part (1), let h1(r) = r − r
′2 arth r and h2(r) = r3. Then f1(r) = h1(r)/h2(r), h1(0) =

h2(0) = 0 and

h′
1(r)

h′
2(r)

=
2
3
arth r
r

. (2.3)

It is well known that the function r 	→ arth(r)/r is strictly increasing from (0, 1) onto
(1,∞). Therefore, from (2.3) and Lemma 2.1 together with l’Hôpital’s rule, we know that
f1(r) is strictly increasing in (0, 1), f1(0+) = 2/3 and f1(1−) = 1.
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For part (2), clearly f2(1−) = +∞. Let h3(r) = log[arth(r)/r] and h4(r) = r2, then
f2(r) = h3(r)/h4(r), h3(0) = h4(0) = 0, and

h′
3(r)

h′
4(r)

=
r − r

′2 arth r
2r2r ′2 arth r

=
1
2
r − r

′2 arth r
r3

r

r ′2 arth r
. (2.4)

It follows from Lemma 2.1, Lemma 2.2(1), part (1), (2.4), and l’Hôpital’s rule that f2(r)
is strictly increasing in (0, 1) and f2(0+) = 1/3.

For part (3), from Lemma 2.2(4), we clearly see that f3(1−) = +∞. Let h5(r) = E arth r −
r
′2K arth(r)/4−3rK(r)/4, h6(r) = r5, h7(r) = (E−r ′2K)/(4r

′2)−rK arth(r)/2+3 arth(r)(E−
r
′2K)/(4r), and h8(r) = r4, then f3(r) = h5(r)/h6(r), h5(0) = h6(0) = h7(0) = h8(0) = 0,

h′
5(r)

h′
6(r)

=
1
5
h7(r)
h8(r)

,

h′
7(r)

h′
8(r)

=
1

4r ′4

r − r
′2 arth r
r3

[
3
4
E(r) − r

′2K(r)
r2

− 1
4
E(r)

]
.

(2.5)

FromLemma 2.2(2) and part (1), we clearly see that h′
7(r)/h

′
8(r) is strictly increasing in

(0, 1). Thus, the monotonicity of f3(r) can be obtained from (2.5) and Lemma 2.1. Moreover,
making use of l’Hôpital’s rule, we have f3(0+) = π/480.

For part (4), let h9(r) = 2(1 + r) − E/(rK) − 3(E − r
′2K)/(r2K). Then, Lemma 2.2(3)

leads to the conclusion that h9(r) is strictly increasing in (0, 1). Note that

h9

(√
2
2

)
= 1.013 · · · > 0 , (2.6)

f4

(√
2
2

)
= 0.084 · · · > 0, (2.7)

f ′
4(r) =

(K− E) + rK(r)
4(1 + r)

+
rK arth r

4
h9(r) >

rK arth r
4

h9

(√
2
2

)
> 0 (2.8)

for r ∈ (
√
2/2, 1).

Therefore, part (4) follows from (2.7) and (2.8).
For part (5), simple computations lead to

lim
r→ 0+

f5(r) = 0, (2.9)

f ′
5(r) = 2r log

(
arth r
r

)
+
(
3
4
+ r2

)
r − r

′2 arth r
rr ′2 arth r

− E − r
′2K

rr ′2K . (2.10)
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Making use of parts (1)–(4), one has

r
′2K arth r

r4
f ′
5(r) =

2r
′2K arth r

r
f2(r) +Kf1(r) − f3(r)

> Kf1(r) − f3(r) >
π

3
− f3

(
1
4

)
= 1.040 · · · > 0

(2.11)

for r ∈ (0, 1/4).
Therefore, part (5) follows from (2.9) and (2.11).

Lemma 2.4. Let

gc(r) =
(
3
4
+ cr

)
log

[
arth(r)

r

]
− log

(
2K
π

)
(c ∈ R), (2.12)

then the following statements are true:
(1) gc(r) > 0 for all r ∈ (0, 1) if and only if c ∈ [1/4,∞);
(2) gc(r) < 0 for all r ∈ (0, 1) if and only if c ∈ (−∞, 0].

Proof. Firstly, we prove that gc(r) > 0 for c ∈ [1/4,∞). Since gc(r) is continuous and strictly
increasing with respect to c ∈ R for fixed r ∈ (0, 1), it suffices to prove that g1/4(r) > 0 for all
r ∈ (0, 1). Note that

lim
r→ 0+

g1/4(r) = 0, (2.13)

g ′
1/4(r) =

1
4
log

(
arth r
r

)
+
(
3
4
+
1
4
r

)
r − r

′2 arth r
rr ′2 arth r

− E − r
′2K

rr ′2K . (2.14)

We divide the proof into two cases.

Case 1 (r ∈ (0,
√
2/2]). Then, making use of Lemma 2.3(1)–(3) and (2.14), we have

r
′2K arth r

r3
g ′
1/4(r) =

r
′2K arth r

4r
f2(r) +

1
4
K(r)f1(r) − rf3(r)

>
1
4
K(r)f1(r) − rf3(r) >

π

12
−
√
2
2

f3

(√
2
2

)

= 0.250 · · · > 0.

(2.15)

Case 2 (r ∈ (
√
2/2, 1)). Then, making use of Lemma 2.3(4) and (2.14), we get

g ′
1/4(r)

log[arth(r)/r]
=

1
4
+

f4(r)
rr ′2K arth r log[arth(r)/r]

> 0. (2.16)

Inequalities (2.15) and (2.16) imply that g1/4(r) is strictly increasing in (0, 1). Therefore,
g1/4(r) > 0 follows from (2.13) and the monotonicity of g1/4(r).
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On the other hand, inequality (1.5) leads to the conclusion that gc(r) < 0 for all r ∈
(0, 1) and c ∈ (−∞, 0].

Next, we prove that the parameters 1/4 and 0 are the best possible parameters in
Lemma 2.4(1) and (2), respectively.

If c ∈ (0, 1/4), then gc(c) = f5(c) > 0 follows from Lemma 2.3(5). Moreover, let

F(r) =
gc(r)

log[arth(r)/r]
=

3
4
+ cr − log(2K/π)

log[arth(r)/r]
, (2.17)

then, using l’Hôpital’s rule and Lemma 2.2(4), we get

lim
r→ 1+

F(r) = c − 1
4
< 0. (2.18)

Inequality (2.18) implies that there exists δ = δ(c) > 0 such that F(r) < 0 for all
r ∈ (1 − δ, 1). Therefore, gc(r) < 0 for r ∈ (1 − δ, 1) follows from (2.17).

From Lemma 2.4, we clearly see that the following Theorem 2.5 holds, which give a
positive answer to the open problem #.

Theorem 2.5. The double inequality

π

2

(
arth r
r

)3/4+α∗r

< K(r) <
π

2

(
arth r
r

)3/4+β∗r
(2.19)

holds for all r ∈ (0, 1) with the best possible constants α∗ = 0 and β∗ = 1/4.
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