Research Article

Algebraic Properties of Toeplitz Operators on the Polydisk

Bo Zhang, ${ }^{1}$ Yanyue Shi, ${ }^{2}$ and Yufeng Lu ${ }^{1}$
${ }^{1}$ School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
${ }^{2}$ School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China
Correspondence should be addressed to Bo Zhang, zhangdlut@yahoo.cn

Received 3 August 2011; Revised 29 September 2011; Accepted 2 October 2011
Academic Editor: Alberto d'Onofrio
Copyright © 2011 Bo Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We discuss some algebraic properties of Toeplitz operators on the Bergman space of the polydisk \mathbb{D}^{n}. Firstly, we introduce Toeplitz operators with quasihomogeneous symbols and property (P). Secondly, we study commutativity of certain quasihomogeneous Toeplitz operators and commutators of diagonal Toeplitz operators. Thirdly, we discuss finite rank semicommutators and commutators of Toeplitz operators with quasihomogeneous symbols. Finally, we solve the finite rank product problem for Toeplitz operators on the polydisk.

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and its boundary the unit circle \mathbb{T}. For a fixed positive integer n, the unit polydisk \mathbb{D}^{n} and the torus \mathbb{T}^{n} are the subsets of \mathbb{C}^{n} which are Cartesian products of n copies \mathbb{D} and \mathbb{T}, respectively. Let $d V(z)=d V_{n}(z)$ denote the Lebesgue volume measure on the polydisk \mathbb{D}^{n}, normalized so that the measure of \mathbb{D}^{n} equals 1. Let $L^{p}=L^{p}\left(\mathbb{D}^{n}\right)$ denote the usual Lebesgue space. The Bergman space $A^{2}=A^{2}\left(\mathbb{D}^{n}\right)$ is the Hilbert space consisting of holomorphic functions on \mathbb{D}^{n} that are also in $L^{2}\left(\mathbb{D}^{n}, d V(z)\right)$. Since every point evaluation is a bounded linear functional on A^{2}, there corresponds to every $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{D}^{n}$ a unique function $K_{z} \in A^{2}$ which has the following reproducing property:

$$
\begin{equation*}
f(z)=\left\langle f, K_{z}\right\rangle, \quad f \in A^{2} \tag{1.1}
\end{equation*}
$$

where the notation $\langle\cdot, \cdot\rangle$ denotes the inner product in L^{2}. The function K_{z} is the well-known Bergman kernel and its explicit formula is given by

$$
\begin{equation*}
K_{z}(w)=\prod_{j=1}^{n} \frac{1}{\left(1-w_{j} \overline{z_{j}}\right)^{2}}, \quad w \in \mathbb{D}^{n} \tag{1.2}
\end{equation*}
$$

Here and elsewhere z_{j} denotes the j th component of z. The Bergman projection P is defined for the Hilbert space orthogonal projection from L^{2} onto A^{2}. Given a function $\varphi \in L^{\infty}\left(\mathbb{D}^{n}, d V\right)$, the Toeplitz operator $T_{\varphi}: A^{2} \rightarrow A^{2}$ is defined by the formula

$$
\begin{equation*}
T_{\varphi}(f)(z)=P(\varphi f)(z)=\int_{\mathbb{D}^{n}} f(w) \varphi(w) \overline{K_{z}(w)} d V(w) \tag{1.3}
\end{equation*}
$$

for all $f \in A^{2}$. Since the Bergman projection P has norm 1, it is clear that Toeplitz operators defined in this way are bounded linear operators on A^{2} and $\left\|T_{\varphi}\right\| \leq\|\varphi\|_{\infty}$.

We now consider a more general class of Toeplitz operators. For $F \in L^{1}\left(\mathbb{D}^{n}, d V\right)$, in analogy to (1.3) we define an operator T_{F} by

$$
\begin{equation*}
T_{F} f(z)=\int_{\mathbb{D}^{n}} F(w) f(w) \overline{K_{z}(w)} d V(w) \tag{1.4}
\end{equation*}
$$

Since the Bergman projection P can be extended to $L^{1}\left(\mathbb{D}^{n}, d V\right)$, the operator T_{F} is well defined on H^{∞}, where H^{∞} is the space of bounded holomorphic functions on \mathbb{D}^{n}. Hence, T_{F} is always densely defined on $A^{2}\left(\mathbb{D}^{n}\right)$. Since P is not bounded on $L^{1}\left(\mathbb{D}^{n}, d V\right)$, it is well known that T_{F} can be unbounded in general. This motivates the following definition, which is based on the definitions on unit ball in [1].

Definition 1.1. Let $F \in L^{1}\left(\mathbb{D}^{n}, d V\right)$.
(a) F is called a T-function if (1.4) defines a bounded operator on A^{2}.
(b) If F is a T-function, one writes T_{F} for the continuous extension of the operator (it is defined on the dense subset H^{∞} of $L^{2}\left(\mathbb{D}^{n}\right)$) defined by (1.4). T_{F} is called a Toeplitz operator on A^{2}.
(c) If there exist $r_{j} \in(0,1), 1 \leq j \leq n$, such that F is (essentially) bounded on $\{z=$ $\left.\left(z_{1}, z_{2}, \ldots, z_{n}\right): r_{j}<\left|z_{j}\right|<1,1 \leq j \leq n\right\}$, then one says F is "nearly bounded."

Notice that the T-functions form a proper subset of $L^{1}\left(\mathbb{D}^{n}, d V\right)$ which contains all bounded and "nearly bounded" functions. In this paper, the functions which we considered are all T-functions without special introduction. We denote the semicommutator and commutator of two Toeplitz operators T_{f} and T_{g} by

$$
\begin{equation*}
\left(T_{f}, T_{g}\right]=T_{f g}-T_{f} T_{g}, \quad\left[T_{f}, T_{g}\right]=T_{f} T_{g}-T_{g} T_{f} \tag{1.5}
\end{equation*}
$$

The commuting problem and the finite-rank product problem for Toeplitz operators on the Hardy and Bergman spaces over various domains are some of the most interesting problems in operator theory.

For commuting problem, in 1963, Brown and Halmos [2] showed that two bounded Toeplitz operators T_{φ} and T_{ψ} on the classical Hardy space commute if and only if (i) both φ and ψ are analytic, (ii) both $\bar{\varphi}$ and $\bar{\psi}$ are analytic, or (iii) one is a linear function of the other. On the Bergman space of the unit disk, some similar results were obtained for Toeplitz operators with bounded harmonic symbols or analytic symbols (see [2-4]). The problem of characterizing commuting Toeplitz operators with arbitrary bounded symbols seems quite challenging and is not fully understood until now. In recent years, by Mellin transform, some results with quasihomogeneous symbols (it is of the form $e^{i k \theta} \phi$, where ϕ is a radial function) or monomial symbols were obtained (see [5-7]). On the Hardy and Bergman spaces of several complex variables, the situation is much more complicated. On the unit ball, Toeplitz operators with pluriharmonic or quasihomogeneous symbols were studied in [1,8-11]. On the polydisk, some results about Toeplitz operators with pluriharmonic symbols were obtained in [10, 12-14].

For finite-rank product problem, Luecking recently proved that a Toeplitz operator with measure symbol on the Bergman space of unit disk has finite rank if and only if its symbols are a linear combination of point masses (see [15]). In [16], Choe extended Luecking's theorem to higher-dimensional cases. Using those results, Le studied finite-rank products of Toeplitz operators on the Bergman space of the unit disk and unit ball in [17, 18].

Motivated by recent work in $[1,5,7,17,18]$, we define quasihomogeneous functions on the polydisk and study Toeplitz operators with quasihomogeneous symbols on the Bergman space of the polydisk. The present paper is assembled as follows. In Section 2, we introduce Mellin transform, Toeplitz operators with quasihomogeneous symbols and property (P). In Section 3, we study commutativity of certain quasihomogeneous Toeplitz operators and commutators of diagonal Toeplitz operators. In Sections 4 and 5, we prove that finite rank semicommutators and commutators of Toeplitz operators with quasihomogeneous symbols must be zero operator and we also solve the finite-rank product problem for Toeplitz operators on the Bergman space of the polydisk.

2. Mellin Transform, Toeplitz Operators with Quasihomogeneous Symbols and Property (P)

For any multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ (here \mathbb{N} denotes the set of all nonnegative integers), we write $a_{\alpha}=\alpha_{1} \cdots \alpha_{n}$ and $z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$ for $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{D}^{n}$. The standard orthonormal basis for A^{2} is $\left\{e_{\alpha}: \alpha \in \mathbb{N}^{n}\right\}$, where

$$
\begin{equation*}
e_{\alpha}(z)=\sqrt{\left(\alpha_{1}+1\right) \cdots\left(\alpha_{n}+1\right)} z^{\alpha}, \quad \alpha \in \mathbb{N}^{n}, z \in \mathbb{D}^{n} \tag{2.1}
\end{equation*}
$$

For two n-tuples of integers $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$, we define $\alpha>\beta$ if $\alpha_{j}>\beta_{j}$ for all $0 \leq j \leq n$. Similarly, we write $\alpha \geq \beta$ if $\alpha_{j} \geq \beta_{j}$ for all $1 \leq j \leq n$ and $\alpha \succeq \beta$ if otherwise. We also define $\alpha \perp \beta$ if $\alpha_{1} \beta_{1}+\cdots+\alpha_{n} \beta_{n}=0$ and $\alpha-\beta=\left(\alpha_{1}-\beta_{1}, \ldots, \alpha_{n}-\beta_{n}\right)$.

For any $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$, particularly we write $\vec{k}_{1}=\left(k_{1}, \ldots, k_{1}\right)$ and put $k^{*}=$ $\left(\left|k_{1}\right|, \ldots,\left|k_{n}\right|\right), k^{+}=(1 / 2)\left(k^{*}+k\right)$ and $k^{-}=(1 / 2)\left(k^{*}-k\right)$. Then, $k^{+}, k^{-} \geq 0, k=k^{+}-k^{-}$, and $k^{+} \perp k^{-}$.

Recall that a function φ on \mathbb{D}^{n} is radial if and only if $\varphi(z)$ depends only on $\left(\left|z_{1}\right|,\left|z_{2}\right|, \ldots,\left|z_{n}\right|\right)$, that is, $\varphi\left(e^{i \theta_{1}} z_{1}, e^{i \theta_{2}} z_{2}, \ldots, e^{i \theta_{n}} z_{n}\right)=\varphi\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ for any $\theta_{1}, \theta_{2}, \ldots, \theta_{n} \in$ R. For any function $f \in L^{1}\left(\mathbb{D}^{n}, d V\right)$, we define the radicalization of f by

$$
\begin{equation*}
\operatorname{rad}(f)\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} f\left(e^{i t_{1}} z_{1}, e^{i t_{2}} z_{2}, \ldots, e^{i t_{n}} z_{n}\right) d t_{1} \cdots d t_{n} \tag{2.2}
\end{equation*}
$$

Then, f is radial if and only if $\operatorname{rad}(f)=f$. For $\alpha \in \mathbb{N}^{n}$, we have

$$
\begin{align*}
\left\langle T_{\operatorname{rad}(f)} z^{\alpha}, z^{\alpha}\right\rangle & =\left\langle\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} f\left(e^{i t_{1}} z_{1}, e^{i t_{2}} z_{2}, \ldots, e^{i t_{n}} z_{n}\right) d t_{1} \cdots d t_{n} z^{\alpha}, z^{\alpha}\right\rangle \\
& =\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \int_{\mathbb{D}^{n}} f\left(e^{i t_{1}} z_{1}, e^{i t_{2}} z_{2}, \ldots, e^{i t_{n}} z_{n}\right) z^{\alpha} \bar{z}^{\alpha} d V(z) d t_{1} \cdots d t_{n} \tag{2.3}\\
& =\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} d t_{1} \cdots d t_{n} \int_{\mathbb{D}^{n}} f\left(w_{1}, w_{2}, \ldots, \mathrm{w}_{n}\right) w^{\alpha} \bar{w}^{\alpha} d V(w) \\
& =\left\langle T_{f} z^{\alpha}, z^{\alpha}\right\rangle
\end{align*}
$$

The main tool in this paper will be the Mellin transform. which is defined by the equation

$$
\begin{equation*}
\widehat{\varphi}\left(z_{1}, \ldots, z_{n}\right)=\int_{0}^{\infty} \cdots \int_{0}^{\infty} \varphi\left(s_{1}, \ldots, s_{n}\right) s_{1}^{z_{1}-1} \cdots s_{n}^{z_{n}-1} d s_{1} \cdots d s_{n} \tag{2.4}
\end{equation*}
$$

We apply the Mellin transform to functions in $L^{1}\left([0,1]^{n}, r_{1} \cdots r_{n} d r_{1} \cdots d r_{n}\right)$; then,

$$
\begin{equation*}
\widehat{\varphi}\left(z_{1}, \ldots, z_{n}\right)=\int_{0}^{1} \cdots \int_{0}^{1} \varphi\left(s_{1}, \ldots, s_{n}\right) s_{1}^{z_{1}-1} \cdots s_{n}^{z_{n}-1} d s_{1} \cdots d s_{n} \tag{2.5}
\end{equation*}
$$

For convenience, we denote $\widehat{\varphi}\left(z_{1}, \ldots, z_{n}\right)$ by $\varphi^{\wedge}\left(z_{1}, \ldots, z_{n}\right)$ when the form of φ is complicated. It is clear that $\hat{\varphi}$ is well defined on $I_{n}=\left\{z=\left(z_{1}, z_{2}, \ldots, z_{n}\right): \operatorname{Re} z_{j}>2, j=1,2, \ldots, n\right\}$. Using the Hartogs theorem, for any function $\varphi \in L^{1}\left([0,1]^{n}, r_{1} \cdots r_{n} d r_{1} \cdots d r_{n}\right)$, the Mellin transform of φ is a bounded holomorphic function on I_{n}.

By calculation, we can get

$$
\begin{equation*}
\widehat{\varphi}(z+p)=\widehat{\varphi}\left(z_{1}+p_{1}, z_{2}+p_{2}, \ldots, z_{n}+p_{n}\right)=\widehat{r^{p} \varphi}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\widehat{r^{p} \varphi}(z) \tag{2.6}
\end{equation*}
$$

where $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \succeq 0, z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in I_{n}$, and $r^{p}=r_{1}^{p_{1}} r_{2}^{p_{2}} \cdots r_{n}^{p_{n}}$.
The quasihomogeneous functions have been defined in many spaces (see [5, 7]). In the following, we give a similar definition on the polydisk \mathbb{D}^{n}.

Definition 2.1. Let $k \in \mathbb{Z}^{n}$. A function $f \in L^{1}\left(\mathbb{D}^{n}, d V\right)$ is called a quasihomogeneous function of degree k if f is of the form $\xi^{k} \varphi$ where φ is a radial function, that is,

$$
\begin{equation*}
f(r \xi)=\xi^{k} \varphi(r) \tag{2.7}
\end{equation*}
$$

for any ξ in the torus \mathbb{T}^{n} and $r \in[0,1)^{n}$.
As in [19], for any n-tuple $k \in \mathbb{Z}^{n}$, let $H_{k}=\left\{f \in L^{2}: f\right.$ is a quasihomogeneous function of degree $k\}$. It is clear that H_{k} is a closed subspace of L^{2}. By Lemma 3.2 in [19], $L^{2}=\bigoplus_{s \in \mathbb{Z}^{n}} H_{s}$. In particular, for all $z=\left(r_{1} \xi_{1}, \ldots, r_{n} \xi_{n}\right) \in \mathbb{D}$, if $f \in H_{k}$, that is, $f\left(r_{1} \xi_{1}, \ldots, r_{n} \xi_{n}\right)=$ $\xi^{k} f_{k}\left(r_{1}, \ldots, r_{n}\right)$, then we conclude that $L^{2}\left(\mathbb{D}^{n}, d V\right)=\bigoplus_{k \in \mathbb{Z}^{n}} \xi^{k} f_{k}\left(r_{1}, \ldots, r_{n}\right), f_{k} \in \mathfrak{R}$, where $\mathfrak{R}=\left\{\varphi: \mathbb{D}^{n} \rightarrow \mathbb{C}\right.$ radial $\left.\left.\left|\int_{[0,1]^{n}}\right| \varphi\left(r_{1}, \ldots, r_{n}\right)\right|^{2} \prod_{i=1}^{n} r_{i} d r_{i}<+\infty\right\}$.

Lemma 2.2. Let $k, l \in \mathbb{Z}^{n}$, and let φ, ψ be radial functions on \mathbb{D}^{n}, such that $\xi^{k} \varphi, \xi^{l} \psi$, and $\xi^{k+l} \varphi \psi$ are all T-functions. Then, the following equation holds for every $\alpha \in \mathbb{N}^{n}$:

$$
T_{\xi^{k} \varphi}\left(z^{\alpha}\right)= \begin{cases}0 & \text { if } \alpha \nsucceq k^{-} \tag{2.8}\\ 2^{n} a_{\alpha+k+\overrightarrow{1}} \hat{\varphi}(2 \alpha+k+\overrightarrow{2}) z^{\alpha+k}, & \text { if } \alpha \succeq k^{-}\end{cases}
$$

where $a_{\alpha+k+\overrightarrow{1}}=\left(\alpha_{1}+k_{1}+1\right) \cdots\left(\alpha_{n}+k_{n}+1\right)$ and $\widehat{\varphi}(2 \alpha+k+\overrightarrow{2})=\widehat{\varphi}\left(2 \alpha_{1}+k_{1}+2,2 \alpha_{2}+k_{2}+2, \ldots, 2 \alpha_{n}+\right.$ $k_{n}+2$).

Using Lemma 2.2, we can get the following two results:

$$
\left(T_{\xi^{k} \varphi}, T_{\xi^{l} \psi}\right]\left(z^{\alpha}\right)= \begin{cases}0 & \text { if } \alpha \in E_{1} \tag{2.9}\\ 2^{n} a_{\alpha+m+\overrightarrow{1}} \widehat{\varphi \varphi}(2 \alpha+m+\overrightarrow{2}) z^{\alpha+m} & \text { if } \alpha \in E_{1}^{c} \cap E_{2^{\prime}}^{c} \\ \left(2^{n} a_{\alpha+m+\overrightarrow{1}} \widehat{\varphi \psi}(2 \alpha+m+\overrightarrow{2})-\lambda\right) z^{\alpha+m} & \text { if } \alpha \in E_{2},\end{cases}
$$

where $m=k+l, \lambda=4^{n} a_{\alpha+l+\overrightarrow{1}} a_{\alpha+m+\overrightarrow{1}} \widehat{\psi}(2 \alpha+l+\overrightarrow{2}) \widehat{\varphi}(2(\alpha+l)+k+\overrightarrow{2}), E_{1}=\left\{\alpha: \alpha \nsucceq m^{-}\right\}$, $E_{2}=\left\{\alpha: \alpha \succeq l^{-}\right\} \cap\left\{\alpha: \alpha+l \succeq k^{-}\right\}, E_{1}^{c}=\mathbb{N}^{n} \backslash E_{1}$, and $E_{2}^{c}=\mathbb{N}^{n} \backslash E_{2}$. It is easy to check that $E_{1} \cap E_{2}=\phi$

$$
\left[T_{\xi^{k} \varphi}, T_{\xi^{l} \psi}\right]\left(z^{\alpha}\right)= \begin{cases}0 & \text { if } \alpha \in F_{1}^{c} \cap F_{2}^{c} \tag{2.10}\\ \lambda_{1} z^{\alpha+k+l} & \text { if } \alpha \in F_{1} \cap F_{2}^{c} \\ -\lambda_{2} z^{\alpha+k+l} & \text { if } \alpha \in F_{1}^{c} \cap F_{2} \\ \left(\lambda_{1}-\lambda_{2}\right) z^{\alpha+k+l} & \text { if } \alpha \in F_{1} \cap F_{2}\end{cases}
$$

where $\lambda_{1}=4^{n} a_{\alpha+l+\overrightarrow{1}} a_{\alpha+k+l+\overrightarrow{1}} \widehat{\psi}(2 \alpha+l+\overrightarrow{2}) \widehat{\varphi}(2(\alpha+l)+k+\overrightarrow{2}), \lambda_{2}=4^{n} a_{\alpha+k+\overrightarrow{1}} a_{\alpha+k+l+\overrightarrow{1}} \widehat{\varphi}(2 \alpha+k+\overrightarrow{2}) \widehat{\psi}(2(\alpha+$ $k)+l+\overrightarrow{2}), F_{1}=\left\{\alpha: \alpha \succeq l^{-}\right\} \cap\left\{\alpha: \alpha+l \succeq k^{-}\right\}, F_{2}=\left\{\alpha: \alpha \succeq k^{-}\right\} \cap\left\{\alpha: \alpha+k \succeq l^{-}\right\}, F_{1}^{c}=\mathbb{N}^{n} \backslash F_{1}$ and $F_{2}^{c}=\mathbb{N}^{n} \backslash F_{2}$.

Let G be a region in complex plane \mathbb{C} and f holomorphic on G. If $\left\{z_{k}\right\}_{k=1}^{\infty}$ has a limit point in G, such that $f\left(z_{k}\right)=0$, then $f \equiv 0$. For functions of several complex variables, the above conclusion does not hold. For example, $f\left(z_{1}, z_{2}\right)=z_{1} z_{2}$ is analytic on bidisk $\left\{\left(z_{1}, z_{2}\right):\left|z_{1}\right|<1,\left|z_{2}\right|<1\right\}$, point sequence $\{(0,1 / k)\}, k=2,3, \ldots$, has a limit point $(0,0)$, and $f(0,1 / k)=0$, but f is not a zero function on the bidisk. So we need the following definition, which is given in $[9,17]$.

For any $1 \leq j \leq n$, let $\sigma_{j}: \mathbb{N} \times \mathbb{N}^{n-1} \rightarrow \mathbb{N}^{n}$ be the map defined by the formula $\sigma_{j}\left(s,\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\right)=\left(\alpha_{1}, \ldots, \alpha_{j-1}, s, \alpha_{j}, \ldots, \alpha_{n-1}\right)$ for all $s \in \mathbb{N}$ and $\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \in \mathbb{N}^{n-1}$. If M is a subset of \mathbb{N}^{n} and $1 \leq j \leq n$, we define

$$
\begin{equation*}
\widetilde{M_{j}}=\left\{\tilde{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \in \mathbb{N}^{n-1}: \sum_{s \in \mathbb{N}, \sigma_{j}(s, \tilde{\alpha}) \in M} \frac{1}{s+1}=\infty\right\} . \tag{2.11}
\end{equation*}
$$

As in $[9,17]$, we say that M has property (P) if one of the following statements holds:
(1) $M=\emptyset$,
(2) $M \neq \emptyset, n=1$, and $\sum_{s \in M} 1 / s<\infty$, or
(3) $M \neq \emptyset, n \geq 2$, and, for any $1 \leq j \leq n$, the set \widetilde{M}_{j} has property (P) as a subset of \mathbb{N}^{n-1}.

Let M and N be two sets that have property (P). It is not difficult to check that the following statements hold:
(1) $M \cap N$ and $M \cup N$ have property (P);
(2) $\mathbb{N}^{n} \backslash M$ do not have property (P).

Lemma 2.3. If $\varphi \in L^{1}\left([0,1]^{n}, r_{1} \cdots r_{n} d r_{1} \cdots d r_{n}\right)$ and $Z(\widehat{\varphi})=\left\{\alpha \in \mathbb{N}^{n}: \widehat{\varphi}(\alpha)=0\right\}$ does not have property (P), then φ is identically zero.

Proof. By the Müntz theorem, we can prove that it is true when $n=1$ (see [7] for more details). Suppose that the conclusion of the lemma holds whenever $n \leq N$, where N is a positive integer. Consider the case $n=N+1$. Since $Z(\widehat{\varphi})$ does not have property (P), there must be a $1 \leq j \leq N+1$, such that $\widetilde{Z(\widehat{\varphi})}$ j does not have property (P). Without loss of generality, taking $j=N+1$, then, $\widetilde{Z(\hat{\varphi})_{N+1}}{ }^{\prime} \neq \emptyset$. For each $\tilde{r} \in \widetilde{Z(\hat{\varphi})}_{N+1}, \sum_{s \in \mathbb{N},} \hat{\varphi}(\tilde{r}, s)=0,(s+1)=\infty$. So $\widehat{\varphi}\left(\widetilde{r}, z_{N+1}\right)=0$, for all $z_{N+1} \in I_{1}$. For every $\lambda \in I_{1}$, let $\widehat{\varphi}_{\lambda}\left(z^{\prime}\right)=\widehat{\varphi}\left(z^{\prime}, \lambda\right)$; then, $\widehat{\varphi}_{\lambda}$ is an analytic function on I_{N} and $Z\left(\widehat{\varphi}_{\lambda}\right)=\widetilde{Z(\widehat{\varphi})_{N+1}}$, which does not have property (P). By the induction hypothesis, we have $\widehat{\varphi}\left(z^{\prime}, \lambda\right)=0, z^{\prime} \in I_{N}$. Thus, $\widehat{\varphi}(z)=0$ on I_{N+1}. Therefore, φ is identically zero.

Theorem 2.4. Let $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathbb{Z}^{n}$, and let f be a T-function. Then, the following statements hold.
(i) If $E_{p}=\left\{\alpha ;\left\langle T_{f} z^{\alpha+p}, z^{\alpha}\right\rangle=0\right.$ for all $\left.\alpha \geq p^{-}\right\}$does not have property (P), then $\left\langle T_{f} z^{\alpha+p}\right.$, $\left.z^{\alpha}\right\rangle=0$ for all $\alpha \geq p^{-}$.
(ii) Let $E, E^{\prime} \subseteq \mathbb{N}^{n}$ be the sets that have property (P). If $\left\langle T_{f} z^{\alpha}, z^{\beta}\right\rangle=0$ for all $\alpha \in \mathbb{N}^{n} \backslash E$, $\beta \in \mathbb{N}^{n} \backslash E^{\prime}$, then $f(z) \equiv 0$ for almost all $z \in \mathbb{D}^{n}$.
(iii) If $\left\langle T_{f} z^{\alpha}, z^{\beta}\right\rangle=0$ for all $\alpha+p \neq \beta$, then f is a quasihomogeneous function of degree p.

Proof. (i) By direct computation, we have

$$
\begin{align*}
& \left\langle T_{f} z^{\alpha+p}, z^{\alpha}\right\rangle \\
& \quad=\int_{\mathbb{D}^{n}} f(z) z^{\alpha+p} \bar{z}^{\alpha} d V(z) \\
& \quad=\frac{1}{\pi^{n}} \int_{[0,1]^{n}} \int_{[0,2 \pi]^{n}} f\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n} e^{i \theta_{n}}\right) \prod_{j=1}^{n} r_{j}^{2 \alpha_{j}+\left|p_{j}\right|+1} \prod_{j=1}^{n}\left(e^{i \theta_{j}}\right)^{p_{j}} d \theta_{1} \cdots d \theta_{n} d r_{1} \cdots d r_{n} . \tag{2.12}
\end{align*}
$$

Let

$$
\begin{equation*}
F\left(r_{1}, \ldots, r_{n}\right)=\frac{1}{\pi^{n}} \int_{[0,2 \pi]^{n}} f\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n} e^{i \theta_{n}}\right) \prod_{j=1}^{n}\left(e^{i \theta_{j}}\right)^{p_{j}} d \theta_{1} \cdots d \theta_{n} \tag{2.13}
\end{equation*}
$$

Then, $F \in L^{1}\left([0,1]^{n}, r_{1} \cdots r_{n} d r_{1} \cdots d r_{n}\right)$. In fact, $\left\|F\left(r_{1}, \ldots, r_{n}\right)\right\|_{L^{1}\left([0,1]^{n}, r_{1} \cdots r_{n} d r_{1} \cdots d r_{n}\right)} \leq\|f\|_{L^{1}\left(\mathbb{D}^{n}, d V\right)}$. Therefore, equality (2.12) shows that $\widehat{F}\left(2 \alpha_{1}+\left|p_{1}\right|+2, \ldots, 2 \alpha_{n}+\left|p_{n}\right|+2\right)=0$ for any $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. That is, $Z(\widehat{F})$ does not have property (P). Thus, Lemma 2.3 implies that $F \equiv 0$ and $\left\langle T_{f} z^{\alpha+p}, z^{\alpha}\right\rangle=0$ for all $\alpha \succeq p^{-}$.
(ii) For each $l=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{N}^{n},\left\langle T_{f} z^{\alpha}, z^{\alpha+l}\right\rangle=0$ for $\alpha \in\left(\mathbb{N}^{n} \backslash E\right) \cap\left(\mathbb{N}^{n} \backslash\left(E^{\prime}-l\right)\right)$. Since E and E^{\prime} have property (P), the subset $\left(\mathbb{N}^{n} \backslash E\right) \cap\left(\mathbb{N}^{n} \backslash\left(E^{\prime}-l\right)\right)=\left(\mathbb{N}^{n} \backslash\left(E \cup\left(E^{\prime}-l\right)\right)\right.$ does not have property (P). By (i), we have $\left\langle T_{f} z^{\alpha}, z^{\alpha+l}\right\rangle=0$ for $\alpha \in \mathbb{N}^{n}$. It is easy to prove that $\left\langle T_{f} z^{\alpha+l}, z^{\alpha}\right\rangle=0$ for $\alpha \in \mathbb{N}^{n}$. So $\left\langle T_{f} z^{\alpha}, z^{\beta}\right\rangle=0$ for all $\alpha, \beta \in \mathbb{N}^{n}$, that is, $T_{f}=0$ and $f(z) \equiv 0$ for almost all $z \in \mathbb{D}^{n}$.
(iii) Since

$$
\begin{align*}
\operatorname{rad}\left(\bar{\xi}^{p} f\right)\left(z_{1}, \ldots, z_{n}\right) & =\frac{1}{(2 \pi)^{n}} \int_{[0,2 \pi]^{n}}\left(\bar{\xi}^{p} f\right)\left(e^{i t_{1}} z_{1}, e^{i t_{2}} z_{2}, \ldots, e^{i t_{n}} z_{n}\right) d t_{1} \cdots d t_{n} \\
& =\frac{1}{(2 \pi)^{n}} \int_{[0,2 \pi]^{n}} e^{-i\left(t_{1}+\theta_{1}\right) p_{1}} \cdots e^{-i\left(t_{n}+\theta_{n}\right) p_{n}} f\left(r_{1} e^{i\left(t_{1}+\theta_{1}\right)}, \ldots, r_{n} e^{i\left(t_{n}+\theta_{n}\right)}\right) d t_{1} \cdots d t_{n} \\
& =\frac{1}{(2 \pi)^{n}} \int_{[0,2 \pi]^{n}} e^{-i\left(\sum_{j=1}^{n} t_{j} p_{j}\right)} f\left(r_{1} e^{i t_{1}}, \ldots, r_{n} e^{i t_{n}}\right) d t_{1} \cdots d t_{n} \tag{2.14}
\end{align*}
$$

we have

$$
\begin{align*}
\int_{\mathbb{D}^{n}}\left[\xi^{p}\right. & \left.\operatorname{rad}\left(\bar{\xi}^{p} f\right)\right](z) z^{\alpha} \bar{z}^{\beta} d V(z) \\
& =\frac{1}{(2 \pi)^{n}} \int_{[0,2 \pi]^{n}} \int_{[0,1]^{n}} \int_{[0,2 \pi]^{n}} e^{-i\left(\sum_{j=1}^{n} \theta_{j}\left(p_{j}+\alpha_{j}-\beta_{j}\right)\right)} f\left(r_{1} e^{i t_{1}}, \ldots, r_{n} e^{i t_{n}}\right) d \theta_{1} \cdots d \theta_{n} \tag{2.15}\\
& \times\left(\prod_{j=1}^{n} r_{j}^{\alpha_{j}+\beta_{j}+1}\right) e^{-i\left(\sum_{j=1}^{n} t_{j} p_{j}\right)} d r_{1} \cdots d r_{n} d t_{1} \cdots d t_{n} .
\end{align*}
$$

If $\alpha+p \neq \beta$, then $\int_{\mathbb{D}^{n}}\left[\xi^{p} \operatorname{rad}\left(\bar{\xi}^{p} f\right)\right](z) z^{\alpha} \bar{z}^{\beta} d V(z)=0$. Otherwise, if $\alpha+p=\beta$, then

$$
\begin{align*}
\int_{\mathbb{D}^{n}} & {\left[\xi^{p} \operatorname{rad}\left(\bar{\xi}^{p} f\right)\right](z) z^{\alpha} \bar{z}^{\beta} d V(z) } \\
& =\frac{1}{(2 \pi)^{n}} \int_{[0,2 \pi]^{n}} \int_{[0,1]^{n}} f\left(r_{1} e^{i t_{1}}, \ldots, r_{n} e^{i t_{n}}\right)\left(\prod_{j=1}^{n} r_{j}^{\alpha_{j}+\beta_{j}+1}\right) e^{-i\left(\sum_{j=1}^{n} t j_{j} p_{j}\right)} d r_{1} \cdots d r_{n} d t_{1} \cdots d t_{n} \\
& =\int_{\mathbb{D}^{n}} f(z) z^{\alpha} \bar{z}^{\beta} d V(z) . \tag{2.16}
\end{align*}
$$

Thus, we get $\int_{\mathbb{D}^{n}}\left[\xi^{p} \operatorname{rad}\left(\bar{\xi}^{p} f\right)\right](z) z^{\alpha} \bar{z}^{\beta} d V(z)=\int_{\mathbb{D}^{n}} f(z) z^{\alpha} \bar{z}^{\beta} d V(z)$ for any $\alpha, \beta \in \mathbb{Z}^{n}$. So $\xi^{p} \operatorname{rad}\left(\bar{\xi}^{p} f\right)=f$, this means that there exists $\varphi(r)$ such that $\bar{\xi}^{p} f(z)=\varphi(r)$, that is, $f(z)=\xi^{p} \varphi(r)$ is a quasihomogeneous function of degree p.

Remark 2.5. Let f be as in Theorem 2.4. Then, $T_{f}=\sum_{\alpha \in \mathbb{N}^{n}} w(f, \alpha, \alpha+p) e_{\alpha+p} \otimes e_{\alpha}$, where

$$
\begin{align*}
w(f, \alpha, \alpha+p) & =\left\langle T_{f} e_{\alpha}, e_{\alpha+p}\right\rangle=\sqrt{a_{\alpha+\overrightarrow{1}}} \sqrt{a_{\alpha+p+\overrightarrow{1}}} \int_{\mathbb{D}^{n}} \xi^{p} \varphi(r) z^{\alpha} \bar{z}^{\alpha+p} d V(z) \tag{2.17}\\
& =\sqrt{a_{\alpha+\overrightarrow{1}}} \sqrt{a_{\alpha+p+1} \hat{\varphi}} \widehat{\varphi}(2 \alpha+p+\overrightarrow{2}) .
\end{align*}
$$

Recall that a densely defined operator on $A^{2}\left(\mathbb{D}^{n}\right)$ is said to be diagonal if it is diagonal with respect to the standard orthonormal basis. In particular, for $f \in L^{\infty}\left(\mathbb{D}^{n}\right), T_{f}$ is diagonal if and only if $\operatorname{rad}(f)=f$. In this case, $T_{f}=\sum_{\alpha \in \mathbb{N}^{n}} w(f, \alpha) e_{\alpha} \otimes e_{\alpha}$, where $w(f, \alpha)=\left\langle T_{f} e_{\alpha}, e_{\alpha}\right\rangle=$ $a_{\alpha+\overrightarrow{1}} \widehat{f}(2 \alpha+\overrightarrow{2})$.

3. Commutativity of Toeplitz Operators

In this section, we study the commutativity of the Toeplitz operators with some special quasihomogeneous symbols and give the characterizations, respectively.

Theorem 3.1. Let $g=\xi^{p} \varphi(r) \in L^{2}\left(\mathbb{D}^{n}\right)$ be a quasihomogeneous function of degree p and $f=$ $\sum_{k \in \mathbb{Z}^{n}} \xi^{k} f_{k}\left(r_{1}, \ldots, r_{n}\right) \in L^{2}\left(\mathbb{D}^{n}\right)$. Then, $T_{f} T_{g}=T_{g} T_{f}$ if and only if $T_{\xi^{k} f_{k}} T_{g}=T_{g} T_{\xi^{k} k}$ for any $k \in \mathbb{Z}^{n}$. Moreover, the following statements hold.
(i) If $Q_{1}=\{\alpha: \alpha+p \succeq 0\} \cap\{\alpha: \alpha+k \succeq 0\} \cap\{\alpha: \alpha+k+p \succeq 0\} \neq \emptyset$, then, for each $\alpha \in Q_{1}$, $\widehat{\varphi}(2 \alpha+2 k+p+\overrightarrow{2}) \widehat{f}_{k}(2 \alpha+k+\overrightarrow{2})=0$.
(ii) If $Q_{2}=\{\alpha: \alpha+k \succeq 0\} \cap\{\alpha: \alpha+p \succeq 0\} \cap\{\alpha: \alpha+k+p \succeq 0\} \neq \emptyset$, then, for each $\alpha \in Q_{2}$, $\widehat{\varphi}(2 \alpha+p+\overrightarrow{2}) \hat{f}_{k}(2 \alpha+2 p+k+\overrightarrow{2})=0$.

Proof. Note that, for $\alpha \in \mathbb{N}^{n}$,

$$
\begin{align*}
T_{g} T_{f}\left(e_{\alpha}\right) & =\sum_{k \in \mathbb{Z}^{n}} T_{g} T_{\xi^{k} f_{k}} e_{\alpha}=\sum_{k \in \mathbb{Z}^{n}} \sum_{\beta \in \mathbb{N}^{n}}\left\langle T_{g} T_{\xi^{k} f_{k}} e_{\alpha}, e_{\beta}\right\rangle e_{\beta} \tag{3.1}\\
& =\sum_{k \in \mathbb{Z}^{n}}\left\langle T_{g} T_{\xi^{k} f_{k}} e_{\alpha}, e_{\alpha+k+p}\right\rangle e_{\alpha+k+p} .
\end{align*}
$$

The second equality follows that $\left\langle T_{g} T_{\xi^{k} f_{k}} e_{\alpha}, e_{\beta}\right\rangle=0$, when $\beta \neq \alpha+k+p$.
Similarly,

$$
\begin{align*}
T_{f} T_{g}\left(e_{\alpha}\right) & =\sum_{k \in \mathbb{Z}^{n}} T_{\xi^{k} f_{k}} T_{g} e_{\alpha}=\sum_{k \in \mathbb{Z}^{n}} \sum_{\beta \in \mathbb{N}^{n}}\left\langle T_{\xi^{k}} f_{k} T_{g} e_{\alpha}, e_{\beta}\right\rangle e_{\beta} \\
& =\sum_{k \in \mathbb{Z}^{n}}\left\langle T_{\xi^{k}} f_{k} T_{g} e_{\alpha}, e_{\alpha+k+p}\right\rangle e_{\alpha+k+p} \tag{3.2}
\end{align*}
$$

Since $\left\{e_{\alpha}\right\}$ are the standard orthogonal basis and $\left\langle T_{g} T_{\xi^{k}} f_{k} e_{\alpha}, e_{\beta}\right\rangle=\left\langle T_{\xi^{k} f_{k}} T_{g} e_{\alpha}, e_{\beta}\right\rangle=0$ for $\beta \neq \alpha+k+p$, it is easy to check that the following statements are equal:
(I) $T_{f} T_{g}=T_{g} T_{f}$;
(II) $\left\langle T_{g} T_{\xi^{k} f_{k}} e_{\alpha}, e_{\alpha+k+p}\right\rangle=\left\langle T_{\xi^{k} f_{k}} T_{g} e_{\alpha}, e_{\alpha+k+p}\right\rangle, \alpha \in \mathbb{N}^{n}$;
(III) $T_{g} T_{\xi^{k} f_{k}} e_{\alpha}=T_{\xi^{k} f_{k}} T_{g} e_{\alpha}, \alpha \in \mathbb{N}^{n}$;
(IV) $T_{g} T_{\xi^{k} f_{k}}=T_{\xi^{k} f_{k}} T_{g}$.

Furthermore,

$$
\begin{align*}
& \left\langle T_{g} T_{\xi^{k} f_{k}} e_{\alpha}, e_{\alpha+k+p}\right\rangle=\left\langle T_{\xi^{k} f_{k}} e_{\alpha}, e_{\alpha+k}\right\rangle\left\langle T_{g} e_{\alpha+k}, e_{\alpha+k+p}\right\rangle \\
& \quad= \begin{cases}0, & \alpha+k \nsucceq 0 \text { or } \alpha+k+p \nsucceq 0, \\
\sqrt{a_{\alpha+\overrightarrow{1}}} \sqrt{a_{\alpha+k+p+\overrightarrow{1}}} a_{\alpha+k+1} \hat{\varphi}(2 \alpha+2 k+p+\overrightarrow{2}) \widehat{f}_{k}(2 \alpha+k+\overrightarrow{2}), & \alpha+k \succeq 0, \alpha+k+p \succeq 0,\end{cases} \\
& \left\langle T_{\xi^{k} f_{k}} T_{g} e_{\alpha} e_{\alpha+k+p}\right\rangle=\left\langle T_{g} e_{\alpha}, e_{\alpha+p}\right\rangle\left\langle T_{\xi^{k} f_{k}} e_{\alpha+p}, e_{\alpha+k+p}\right\rangle \\
& = \begin{cases}0, & \alpha+p \nsucceq 0 \text { or } \alpha+k+p \nsucceq 0, \\
\sqrt{a_{\alpha+\overrightarrow{1}}} \sqrt{a_{\alpha+k+p+1}} a_{\alpha+p+\overrightarrow{1}} \widehat{f}_{k}(2 \alpha+2 p+k+\overrightarrow{2}) \hat{\varphi}(2 \alpha+p+\overrightarrow{2}), & \alpha+p \succeq 0, \alpha+k+p \succeq 0 .\end{cases} \tag{3.3}
\end{align*}
$$

Thus, the statements (i) and (ii) hold.
Theorem 3.2. Let f_{1}, f_{2} be quasihomogeneous functions of degree p and $-s$, where $p \geq s>0$. If $\left[T_{f_{1}}, T_{f_{2}}\right]=0$, then $f_{1}=0$ or $f_{2}=0$.

Proof. If f_{1}, f_{2} are quasihomogeneous functions of degree p and $-s$, then there exist radial functions φ_{1} and φ_{2}, such that $f_{1}=\xi^{p} \varphi_{1}$ and $f_{2}=\bar{\xi}^{s} \varphi_{2}$. If $T_{f_{1}} T_{f_{2}}=T_{f_{2}} T_{f_{1}}$, (2.10) implies that, for all $\alpha \in \mathbb{N}^{n}$,

$$
\begin{gather*}
a_{\alpha-s+\overrightarrow{1}} \widehat{\varphi_{2}}(2 \alpha-s+\overrightarrow{2}) \widehat{\varphi_{1}}(2 \alpha-2 s+p+\overrightarrow{2})=a_{\alpha+p+1} \widehat{1} \widehat{\varphi_{1}}(2 \alpha+p+\overrightarrow{2}) \widehat{\varphi_{2}}(2 \alpha+2 p-s+\overrightarrow{2}), \quad \text { if } \alpha \geq s, \tag{3.4}\\
\widehat{\varphi_{1}}(2 \alpha+p+\overrightarrow{2}) \widehat{\varphi_{2}}(2 \alpha+2 p-s+\overrightarrow{2})=0, \quad \text { if } \alpha \nsucceq s .
\end{gather*}
$$

We claim that there exist $\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ with $\sum 1 / \lambda_{k}=\infty$ such that

$$
\begin{equation*}
\widehat{\varphi_{1}}\left(2 \lambda_{k}+p_{1}+2, z^{\prime}\right) \widehat{\varphi_{2}}\left(2 \lambda_{k}+2 p_{1}-s_{1}+2, z^{\prime}\right)=0, \quad \text { for any } z^{\prime} \in I_{n-1} \tag{3.5}
\end{equation*}
$$

It follows that $Z\left(\widehat{\varphi_{1}} \widehat{\varphi_{2}}\right)$ do not have property (P). So we can get $f_{1}=0$ or $f_{2}=0$ by Lemma 2.3.
We only need to prove the claim. Since $s>0$, there exists $1 \leq j \leq n$, such that $s_{j} \geq 1$. Without losing generality, suppose that $j=1$. Let $\lambda_{0}=s_{1}-1 \geq 0$; then, $\alpha^{0}=\left(\lambda_{0}, \alpha^{\prime}\right) \nsucceq s$ and $\widehat{\varphi_{1}}\left(2 \lambda_{0}+p_{1}+2, \alpha^{\prime}+p^{\prime}+\overrightarrow{2}\right) \widehat{\varphi_{2}}\left(2 \lambda_{0}+p_{1}+2, \alpha^{\prime}+2 p^{\prime}-s^{\prime}+\overrightarrow{2}\right)=0$ where $\alpha^{\prime} \in \mathbb{N}^{n-1}, p^{\prime}=\left(p_{2}, \ldots, p_{n}\right)$ and $s^{\prime}=\left(s_{2}, \ldots, s_{n}\right)$. Denote $E_{0}=\left\{z^{\prime} \in I_{n-1}: \widehat{\varphi_{1}}\left(2 \lambda_{0}+p_{1}+2, z^{\prime}\right)=0\right\}$ and $F_{0}=\left\{z^{\prime} \in I_{n-1}\right.$: $\left.\widehat{\varphi_{1}}\left(2 \lambda_{0}+p_{1}+2, z^{\prime}\right)=0\right\}$. Note that at least one of the sets E_{0} and F_{0} does not have property (P). Since $\widehat{\varphi_{1}}\left(2 \lambda_{0}+p_{1}+2, z^{\prime}\right)=0$ and $\widehat{\varphi_{2}}\left(2 \lambda_{0}+p_{1}+2, z^{\prime}\right)=0$ are analytic on I_{n-1}, Lemma 2.3 shows that $E_{0}=I_{n-1}$ or $F_{0}=I_{n-1}$.

Case 1. If $E_{0}=I_{n-1}$, then
$\widehat{\varphi_{1}}\left(2\left(\alpha^{0}+s\right)+p+\overrightarrow{2}\right) \widehat{\varphi_{2}}\left(2\left(\alpha^{0}+s\right)+2 p-s+\overrightarrow{2}\right)=\frac{a_{\alpha-s+\overrightarrow{1}}}{a_{\alpha+p+\overrightarrow{1}}} \widehat{\varphi_{1}}\left(2 \varphi^{0}+p+\overrightarrow{2}\right) \widehat{\varphi_{2}}\left(2 \alpha^{0}+s+\overrightarrow{2}\right)=0$,
where $\alpha^{0}=\left(\lambda_{0}+s, \alpha^{\prime}\right)$ with $\alpha^{\prime} \in N^{n-1}$. Let $\lambda_{1}=\lambda_{0}+s$. Denote by $E_{1}=\left\{z^{\prime} \in I_{n-1}: \widehat{\varphi_{1}}\left(2 \lambda_{1}+\right.\right.$ $\left.\left.p_{1}+2, z^{\prime}\right)=0\right\}$ and $F_{1}=\left\{z^{\prime} \in I_{n-1}: \widehat{\varphi_{1}}\left(2 \lambda_{1}+p_{1}+2, z^{\prime}\right)=0\right\}$. Then, at least one of the sets E_{1} and F_{1} does not have property (P). By Lemma 2.3 again, we have $E_{1}=I_{n-1}$ or $F_{1}=I_{n-1}$. Thus $\widehat{\varphi_{1}}\left(\lambda_{1}, z^{\prime}\right) \widehat{\varphi_{2}}\left(\lambda_{1}, z^{\prime}\right)=0$, for any $z^{\prime} \in I_{n-1}$.

Case 2. If $F_{0}=I_{n-1}$, then

$$
\begin{align*}
& \widehat{\varphi_{1}}\left(2\left(\alpha^{0}+p\right)+p+\overrightarrow{2}\right) \widehat{\varphi_{2}}\left(2\left(\alpha^{0}+p\right)+2 p-s+\overrightarrow{2}\right) \\
& \quad=\frac{a_{\alpha-s+\overrightarrow{1}}}{a_{\alpha+p+\overrightarrow{1}}} \widehat{\varphi_{1}}\left(2 \alpha^{0}+3 p-2 s+\overrightarrow{2}\right) \widehat{\varphi_{2}}\left(2 \alpha^{0}+2 p-s+\overrightarrow{2}\right)=0 \tag{3.7}
\end{align*}
$$

By the same technique, we can get that (3.5) holds when $\lambda_{1}=\lambda_{0}+p_{1}$.
Similarly, we can find a sequence $\lambda_{k}=\lambda_{0}+u(k) p_{1}+v(k) s_{1}$, where the functions $u(k)=1$ or $0, v(k)=1$ or 0 , and $u(k)+v(k)=1$ for $k \in \mathbb{Z}^{+}$. Then, (i) $\lambda_{1} \geq \min \left\{p_{1}, s_{1}\right\}$, (ii) $\sum_{k \in \mathbb{N}} 1 / \lambda_{k}=$ $+\infty$, and (iii) for every $k \geq 1, \lambda_{k}$ satisfies (3.5). So we complete the proof.

For $n=2$, we have the following results.
Theorem 3.3. Let $g(r)=r_{1}^{m_{1}} r_{2}^{m_{2}}$, where $m_{1} \geq 0$ and $m_{2} \geq 0$. Let $f\left(r_{1}, r_{2}\right) \in L^{\infty}\left([0,1]^{2}\right), p=$ $\left(p_{1}, p_{2}\right) \in \mathbb{N}^{2}$ and $p_{1} \cdot p_{2} \neq 0$. Then, $T_{\xi^{p} g} T_{\xi^{p} f}=T_{\xi^{p} f} T_{\xi^{p} g}$ if and only if there exists an analytic function on \mathbb{C}, such that the function $\psi\left(\left(z_{2} p_{1}-z_{1} p_{2}\right) /\left(p_{1}^{2}+p_{2}^{2}\right)\right) /\left(\left(z_{1}+m_{1}\right)\left(z_{2}+m_{2}\right)\right)$ is bounded on I_{2} and

$$
\begin{equation*}
\widehat{f}\left(z_{1}, z_{2}\right)=\frac{\psi\left(\left(z_{2} p_{1}-z_{1} p_{2}\right) /\left(p_{1}^{2}+p_{2}^{2}\right)\right)}{\left(z_{1}+m_{1}\right)\left(z_{2}+m_{2}\right)}, \quad \forall z=\left(z_{1}, z_{2}\right) \in I_{2} . \tag{3.8}
\end{equation*}
$$

Proof. As in the proof of Theorem 3.2, it is easy to check that $T_{\xi^{p} g} T_{\xi^{p} f}=T_{\xi^{p} f} T_{\xi^{p} g}$ if and only if

$$
\begin{equation*}
\left\langle T_{\xi^{p} g} T_{\xi^{p} f} e_{\alpha}, e_{\alpha+2 p}\right\rangle=\left\langle T_{\xi^{p} f} f T_{\xi^{p} g} e_{\alpha}, e_{\alpha+2 p}\right\rangle, \tag{3.9}
\end{equation*}
$$

which is equal to

$$
\begin{equation*}
\widehat{g}(2 \alpha+p+\overrightarrow{2}) \widehat{f}(2 \alpha+3 p+\overrightarrow{2})=\hat{f}(2 \alpha+p+\overrightarrow{2}) \widehat{g}(2 \alpha+3 p+\overrightarrow{2}), \quad \forall \alpha \in \mathbb{N}^{2} \tag{3.10}
\end{equation*}
$$

Suppose that there is a function ψ as in this theorem.
Note that

$$
\begin{equation*}
\widehat{g}(z)=\int_{[0,1]^{2}} r^{m+z-\overrightarrow{1}} d r_{1} d r_{2}=\frac{1}{\left(z_{1}+m_{1}\right)\left(z_{2}+m_{2}\right)} \neq 0, \quad \forall z \in I_{2} \tag{3.11}
\end{equation*}
$$

and $\left(2 \alpha_{2}+3 p_{2}+2\right) p_{1}-\left(2 \alpha_{1}+3 p_{1}+2\right) p_{2}=\left(2 \alpha_{2}+p_{2}+2\right) p_{1}-\left(2 \alpha_{1}+p_{1}+2\right) p_{2}$, for any $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{N}^{2}$. Then, it is easy to check that equality (3.10) holds, that is, $T_{\xi^{p} g} T_{\xi^{p} f} f=T_{\xi^{p}} f T_{\xi^{p} g}$.

Conversely, if $T_{\xi^{p} g} g$ and $T_{\xi^{p} f}$ commute, we will structure an analytic ψ which satisfies the conditions in this theorem.

Since $\widehat{g}(z) \neq 0$ for all $z \in I_{2}$, the function $\widehat{f}(z) / \widehat{g}(z)$ is analytic on I_{2}. Note that $\left|r^{z-1}\right|<1$ for $0<r_{j}<1, j=1,2$ and $z \in I_{2}$. Thus,

$$
\begin{gather*}
|\widehat{f}(z)| \leq \int_{\mathbb{D}^{2}}|f| d V(z)=\|f\|_{L^{1}\left([0,1]^{2}\right)^{2}} \tag{3.12}\\
|\widehat{g}(z)| \leq\|g\|_{L^{1}\left([0,1]^{2}\right)}
\end{gather*}
$$

Fix $\alpha_{0} \in \mathbb{N}^{2}$, and let $z_{0}=2 \alpha_{0}+p+\overrightarrow{2}$, then,

$$
\begin{equation*}
\frac{\widehat{f}\left(z_{0}\right)}{\widehat{g}\left(z_{0}\right)}=\frac{\widehat{f}\left(z_{0}+2 p\right)}{\widehat{g}\left(z_{0}+2 p\right)}=\cdots=\frac{\widehat{f}\left(z_{0}+2 k p\right)}{\widehat{g}\left(z_{0}+2 k p\right)}, \quad k=0,1,2, \ldots \tag{3.13}
\end{equation*}
$$

Combining this with Lemma 2.3, we can get that the above equality holds for any $z_{0} \in I_{2}$. Let $p^{\perp}=\left(-p_{2}, p_{1}\right)$; then, $p \perp p^{\perp}$. For each $z_{0} \in I_{2}$, there exist $\mu_{1}, \mu_{2} \in \mathbb{C}$ such that $z_{0}=\mu_{1} p+\mu_{2} p^{\perp}$. So

$$
\begin{equation*}
\frac{\widehat{f}\left(\mu_{1} p+\mu_{2} p^{\perp}\right)}{\widehat{g}\left(\mu_{1} p+\mu_{2} p^{\perp}\right)}=\frac{\widehat{f}\left(\left(\mu_{1}+2\right) p+\mu_{2} p^{\perp}\right)}{\widehat{g}\left(\left(\mu_{1}+2\right) p+\mu_{2} p^{\perp}\right)}=\cdots=\frac{\widehat{f}\left(\left(\mu_{1}+2 k\right) p+\mu_{2} p^{\perp}\right)}{\widehat{g}\left(\left(\mu_{1}+2 k\right) p+\mu_{2} p^{\perp}\right)}, \quad k=0,1,2, \ldots . \tag{3.14}
\end{equation*}
$$

Put

$$
\begin{equation*}
F(\lambda)=\frac{\hat{f}\left(\lambda p+\mu_{2} p^{\perp}\right)}{\hat{g}\left(\lambda p+\mu_{2} p^{\perp}\right)}-\frac{\hat{f}\left(\mu_{1} p+\mu_{2} p^{\perp}\right)}{\hat{g}\left(\mu_{1} p+\mu_{2} p^{\perp}\right)} \tag{3.15}
\end{equation*}
$$

then, $F(\lambda)$ is analytic on $\left\{\mathrm{z} \in \mathbb{C}: \operatorname{Re}\left(z p_{1}-\mu_{2} p_{2}\right)>2\right.$ and $\left.\operatorname{Re}\left(z p_{2}+\mu_{2} p_{1}\right)>2\right\}$ and

$$
\begin{equation*}
|F(\lambda)| \leq\|f\|_{L^{1}}\left(\left|m_{1}+\lambda p_{1}-\mu_{2} p_{2}\right| \cdot\left|m_{2}+\lambda p_{2}+\mu_{2} p_{1}\right|+C_{1}\right) \leq\|f\|_{L^{1}}\left(D_{1}|\lambda|^{2}+D_{2}|\lambda|+D_{3}\right) \tag{3.16}
\end{equation*}
$$

where $C_{1}, D_{1}, D_{2}, D_{3}$ are all constants. Since $F\left(\mu_{1}+2 k\right)=0$ and $\sum_{k=0}^{+\infty} 1 / 2 k=+\infty$, the set $\left\{\mu_{1}+2 k: k=0,1,2, \ldots\right\} \subseteq Z(F)$. Thus $F(\lambda) \equiv 0$. That is

$$
\begin{equation*}
\widehat{f}\left(\lambda p+\mu_{2} p^{\perp}\right)=\frac{\widehat{f}\left(\mu_{1} p+\mu_{2} p^{\perp}\right)}{\widehat{g}\left(\mu_{1} p+\mu_{2} p^{\perp}\right)} \widehat{g}\left(\lambda p+\mu_{2} p^{\perp}\right) \tag{3.17}
\end{equation*}
$$

For each $\mu \in \mathbb{C}$, there exists $\lambda_{0} \in \mathbb{C}$ such that $\operatorname{Re}\left(\lambda_{0} p_{1}-\mu p_{2}\right)>2$ and $\operatorname{Re}\left(\lambda_{0} p_{2}+\mu p_{1}\right)>2$; then, let $\psi(\mu)=\widehat{f}\left(\lambda_{0} p+\mu p^{\perp}\right) / \widehat{g}\left(\lambda_{0} p+\mu p^{\perp}\right)$. By equality (3.17), we conclude that the function ψ is well defined. Since the function $\widehat{f} / \widehat{g}$ is analytic on I_{2}, we can prove that ψ is an analytic function on \mathbb{C}. Let

$$
\begin{align*}
& z_{1}=\lambda p_{1}-\mu_{2} p_{2} \tag{3.18}\\
& z_{2}=\lambda p_{2}+\mu_{2} p_{1} ;
\end{align*}
$$

Then,

$$
\begin{align*}
\lambda & =\frac{z_{1} p_{1}-z_{2} p_{2}}{p_{1}^{2}+p_{2}^{2}} \tag{3.19}\\
\mu_{2} & =\frac{z_{2} p_{1}-z_{1} p_{2}}{p_{1}^{2}+p_{2}^{2}}
\end{align*}
$$

So (3.17) is equal to

$$
\begin{equation*}
\widehat{f}\left(z_{1}, z_{2}\right)=\frac{\psi\left(\left(z_{2} p_{1}-z_{1} p_{2}\right) /\left(p_{1}^{2}+p_{2}^{2}\right)\right)}{\left(z_{1}+m_{1}\right)\left(z_{2}+m_{2}\right)} \tag{3.20}
\end{equation*}
$$

where $\left|\psi\left(\left(z_{2} p_{1}-z_{1} p_{2}\right) /\left(p_{1}^{2}+p_{2}^{2}\right)\right) /\left(\left(z_{1}+m_{1}\right)\left(z_{2}+m_{2}\right)\right)\right| \leq\|f\|_{L^{1}\left([0,1]^{2}\right)}$ and $\left(z_{1}, z_{2}\right) \in I_{2}$. This completes the proof.

Corollary 3.4. Let f, g be as in Theorem 3.3 and $p \in \mathbb{N}^{+}$; then, the following statements hold:
(i) $T_{e^{i p \theta_{1}}}{ }_{g} T_{e^{i p \theta_{1}}}=T_{e^{i p \theta_{1}}} T_{e^{i p \theta_{1}}}$ if and only if $f=r_{1}^{m_{1}} \varphi\left(r_{2}\right)$, where $\varphi \in L^{\infty}([0,1])$;
(ii) $T_{e^{i p \theta_{2}}} T_{e^{i p \theta_{2}}}=T_{e^{i p \theta_{2}}} T_{e^{i p \theta_{2}} g}$ if and only if $f=r_{2}^{m_{2}} \varphi\left(r_{1}\right)$, where $\varphi \in L^{\infty}([0,1])$.

Proof. (i) By (3.17) we have

$$
\begin{equation*}
\int_{[0,1]^{2}} f\left(r_{1}, r_{2}\right) r_{1}^{z_{1}-1} r_{2}^{z_{2}-1} d r_{1} d r_{2}=\psi\left(\frac{z_{2}}{p}\right) \int_{[0,1]^{2}} r_{1}^{m_{1}+z_{1}-1} r_{2}^{m_{2}+z_{2}-1} d r_{1} d r_{2} \tag{3.21}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\int_{[0,1]}\left[\int_{[0,1]} f\left(r_{1}, r_{2}\right) r_{2}^{z_{2}-1} d r_{2}-r_{1}^{m_{1}} \psi\left(\frac{z_{2}}{p}\right) \int_{[0,1]} r_{2}^{m_{2}+z_{2}-1} d r_{2}\right] r_{1}^{z_{1}-1} d r_{1}=0 \tag{3.22}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\int_{[0,1]} f\left(r_{1}, r_{2}\right) r_{2}^{z_{2}-1} d r_{2}=r_{1}^{m_{1}} \psi\left(\frac{z_{2}}{p}\right) \frac{1}{m_{2}+z_{2}} \tag{3.23}
\end{equation*}
$$

It follows that there exists $\varphi=\varphi\left(r_{2}\right) \in L^{\infty}([0,1])$ such that $f=r_{1}^{m_{1}} \varphi\left(r_{2}\right)$.
On the other hand, if $f=r_{1}^{m_{1}} \varphi\left(r_{2}\right)$, then

$$
\begin{align*}
& \widehat{f}(z) \widehat{g}(z+2(p, 0))=\frac{1}{m_{1}+z_{1}} \cdot \widehat{\varphi}\left(z_{2}\right) \cdot \frac{1}{m_{1}+z_{1}+2 p} \cdot \frac{1}{m_{2}+z_{2}} \tag{3.24}\\
& \widehat{f}(z+2(p, 0)) \widehat{g}(z)=\frac{1}{m_{1}+z_{1}+2 p} \cdot \widehat{\varphi}\left(z_{2}\right) \cdot \frac{1}{m_{1}+z_{1}} \cdot \frac{1}{m_{2}+z_{2}}
\end{align*}
$$

Thus, we have $T_{\xi^{p} g} T_{\xi^{p} f}=T_{\xi^{p} f} T_{\xi^{p} g}$.
(ii) Can also be proved in the same way.

In [6], Čučković and Rao showed that if $f, g \in L^{\infty}(\mathbb{D})$ and g is a nonconstant radial function, then $T_{f} T_{g}=T_{g} T_{f}$ implies that f is a radial function. However, this is not true if $f, g \in L^{\infty}\left(\mathbb{D}^{n}\right)$, where $n \geq 2$. For example, $g(z)=g\left(z_{1}, \ldots, z_{j-1},\left|z_{j}\right|, z_{j+1}, \ldots, z_{n}\right)$ and $f(z)=f\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right)$ only for $\left|z_{j}\right|$, and it is clear that $T_{g} T_{f}=T_{f} T_{g}$, but $g(z)$ may not be a radial function. Let $G=\left\{g \in L^{\infty}\left(\mathbb{D}^{n}\right): g\right.$ is radial and for $f \in L^{\infty}\left(\mathbb{D}^{n}\right), T_{f} T_{g}=$ $T_{g} T_{f}$ implies that f is radial $\}$ (if $n=1$, this set is exactly the set of all non-constant bounded radial functions). In the following, we can give a complete description of G.

Theorem 3.5. $G=\left\{g(z)\right.$ is a bounded radial function: for each $k=\left(k_{1}, \ldots, k_{n}\right) \neq 0, a_{(2 z)} \widehat{g}(2 z) \neq$ $a_{(2 z+2 k)} \hat{g}(2 z+2 k)$, where $z \in I_{n}$ and $\left.z+k \in I_{n}\right\}$.

Proof. Suppose that $f(z)=\sum_{k \in \mathbb{Z}^{n}} \xi^{k} f_{k}\left(r_{1}, \ldots, r_{n}\right) \in L^{\infty}\left(\mathbb{D}^{n}\right)$ and g is a radial function. Lemma 2.2 shows that

$$
\begin{gather*}
T_{f} T_{g}\left(z^{\alpha}\right)=\sum_{k \in \mathbb{Z}^{n}} 2^{n} a_{\alpha+\overrightarrow{1}} \hat{g}(2 \alpha+\overrightarrow{2}) C_{k} \widehat{f}_{k}(2 \alpha+k+\overrightarrow{2}) z^{\alpha+k}, \tag{3.25}\\
T_{g} T_{f}\left(z^{\alpha}\right)=\sum_{k \in \mathbb{Z}^{n}} C_{k} \widehat{f}_{k}(2 \alpha+k+\overrightarrow{2}) 2^{n} a_{\alpha+k+\overrightarrow{1}} \widehat{g}(2 \alpha+2 k+\overrightarrow{2}) z^{\alpha+k},
\end{gather*}
$$

where $\alpha \in \mathbb{N}^{n}$ and

$$
C_{k}= \begin{cases}0 & \text { if } \alpha \nsucceq k^{-} \tag{3.26}\\ 2^{n} a_{\alpha+k+\overrightarrow{1}} & \text { if } \alpha \succeq k^{-}\end{cases}
$$

It follows that $T_{f} T_{g}=T_{g} T_{f}$ if and only if

$$
\begin{equation*}
a_{\alpha+\overrightarrow{1}} \widehat{g}(2 \alpha+\overrightarrow{2}) C_{k} \widehat{f}_{k}(2 \alpha+k+\overrightarrow{2})=C_{k} \widehat{f}_{k}(2 \alpha+k+\overrightarrow{2}) a_{\alpha+k+1} \widehat{g}(2 \alpha+2 k+\overrightarrow{2}) \tag{3.27}
\end{equation*}
$$

for any $k \in \mathbb{Z}^{n}$. Let $E_{1}=\left\{\alpha:\left(a_{\alpha+\overrightarrow{1}} g-a_{\alpha+k+1} r^{k} g\right)^{\wedge}(2 \alpha+\overrightarrow{2})=0\right\}$ and $E_{2}=\left\{\alpha: \widehat{r}^{k} f_{k}(2 \alpha+\overrightarrow{2})=\right.$ $0\}$. Then $E_{1} \cup E_{2}=\left\{\alpha ; \alpha \succeq k^{-}\right\}$. The commutativity of T_{f} and T_{g} is equivalent to that at least one of E_{1} and E_{2} does not have property (P); then, Lemma 2.3 shows that $f_{k} \equiv 0$ or $a_{(2 z)} \widehat{g}(2 z) \neq a_{(2 z+2 k)} \widehat{g}(2 z+2 k)$, where $z \in I_{n}$ and $z+k \in I_{n}$. The rest of the proof is obvious.

Remark 3.6. In Theorem 3.5, particularly if g is a radial function such that $g(z)=\prod_{j=1}^{n} g_{j}\left(z_{j}\right)$ or $g(z)=\sum_{j=1}^{n} g_{j}\left(z_{j}\right)$, where each $g_{j}\left(z_{j}\right)(1 \leq j \leq n)$ is a non-constant radial function, then for each $k=\left(k_{1}, \cdots, k_{n}\right) \neq 0, a_{(2 z)} \widehat{g}(2 z) \neq a_{(2 z+2 k)} \widehat{g}(2 z+2 k)$, where $z \in I_{n}$ and $z+k \in I_{n}$, so $g \in G$. It follows that G is nonempty.

4. Finite Rank Semicommutators and Commutators

Recall that Čučković and Louhichi (see [5]) have found some nonzero finite rank semicommutators of quasihomogeneous symbol Toeplitz operators on the Bergman space of unit disk. In this section, we will show that the finite rank semicommutators and commutators of Toeplitz operators with quasihomogeneous symbols must be zero on $A^{2}\left(\mathbb{D}^{n}\right)$ with $n \geq 2$. Our idea is mainly from [17].

Theorem 4.1. Let $k, l \in \mathbb{Z}^{n}$ with $n \geq 2, k+l=m$, and let φ, ψ be radial functions such that $f_{1}=\xi^{k} \varphi$, $f_{2}=\xi^{l} \psi$, and $\xi^{m} \varphi \psi$ are all T-functions. If the semicommutator $\left(T_{f_{1}}, T_{f_{2}}\right]$ has finite rank, then it must be zero.

Proof. Let S denote the semicommutator $\left(T_{f_{1}}, T_{f_{2}}\right]$. For $\alpha \in \mathbb{N}^{n}$, if S is finite rank, by equality (2.9), we have that there exists $\alpha^{0} \succeq k^{-}+l^{-}$such that

$$
\begin{array}{r}
S\left(z^{\alpha}\right)=2^{n} a_{\alpha+m+\overrightarrow{1}}\left(2^{n} a_{\alpha+l+1} \hat{\psi}(2 \alpha+l+\overrightarrow{2}) \hat{\varphi}(2(\alpha+l)+k+\overrightarrow{2})\right. \tag{4.1}\\
-\widehat{\varphi \varphi}(2 \alpha+m+\overrightarrow{2}))=0 \quad \text { for } \alpha \geq \alpha^{0},
\end{array}
$$

which is equivalent to

$$
\begin{align*}
& \left(r^{k^{+}+l^{+}} \varphi\right)^{\wedge}\left(2 \alpha+l-k^{-}-l^{-}+\overrightarrow{2}\right)\left(r^{k^{-}+l^{-}} \psi\right)^{\wedge}\left(2 \alpha+l-k^{-}-l^{-}+\overrightarrow{2}\right) \\
& \quad=\left(r^{l^{+}+l^{-}}\right)^{\wedge}\left(2 \alpha+l-k^{-}-l^{-}+\overrightarrow{2}\right)\left(r^{k} \varphi \psi\right)^{\wedge}\left(2 \alpha+l-k^{-}-l^{-}+\overrightarrow{2}\right) \tag{4.2}
\end{align*}
$$

for $\alpha \succeq \alpha^{0}$. Combining this with Lemma 2.3, we get

$$
\begin{equation*}
\left(r^{k^{+}+l^{+}} \varphi\right)^{\wedge}(z)\left(r^{k^{-}+l^{-}} \psi\right)^{\wedge}(z)=\left(r^{l^{+}+l^{-}}\right)^{\wedge}(z)\left(r^{k} \varphi \psi\right)^{\wedge}(z), \text { for } z \in I_{n} \tag{4.3}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
S\left(z^{\alpha}\right)=0 \quad \forall \alpha \in E_{2} \tag{4.4}
\end{equation*}
$$

In the following, we only need to prove that $\widehat{\varphi \psi}(\alpha)=0$ for all $\alpha \in E_{1}^{c} \cap E_{2}^{c}$.
If $E_{1}^{c} \cap E_{2}^{c} \neq \emptyset$, there is a $j(0 \leq j \leq n)$ such that $m_{j}^{-}<l_{j}^{-}$. Without loss of generality, assume that $j=1$. Then, $\left\{\left(\alpha_{1}, m_{2}+\alpha_{2}, \ldots, m_{n}+\alpha_{n}\right): m_{1}^{-} \leq \alpha_{1} \leq l_{1}^{-}, \alpha_{j} \geq 0, j=2, \ldots, n\right\} \subseteq E_{2}$. For each $m_{1}^{-} \leq \alpha_{1}$, let $F_{a_{1}}\left(r_{2}, \ldots, r_{n}\right)=\int_{0}^{1}(\varphi \psi)\left(r_{1}, r_{1}, \ldots, r_{n}\right) r_{1}^{a_{1}-1} d r_{1}$. Since $Z\left(\widehat{F_{a_{1}}}\right) \supseteq\left\{\left(m_{2}+\right.\right.$ $\left.\left.\alpha_{2}, \ldots, m_{n}+\alpha_{n}\right):\left(\alpha_{2}, \ldots, \alpha_{n}\right) \in N^{n-1}\right\}$ does not have property (P), we have $\widehat{F_{a_{1}}} \equiv 0$. Therefore, $\widehat{\varphi \psi}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$ for $m_{1}^{-} \leq a_{1} \leq l_{1}^{-}$and $a_{j} \geq m_{j}^{-}, j=2, \ldots, n$. So $S\left(z^{\alpha}\right)=0$ for $\alpha \in E_{1}^{c} \cap E_{2}^{c}$.

This completes the proof.
We now pass to the commutator of two quasihomogeneous Toeplitz operators. Here the situation is the same as for the semicommutator.

Theorem 4.2. Let $k, l \in \mathbb{Z}^{n}$ with $n \geq 2$, and let φ, ψ be radial functions such that $f_{1}=\xi^{k} \varphi$ and $f_{2}=\xi^{l} \psi$ are both T-functions. The commutator $\left[T_{f_{1}}, T_{f_{2}}\right]$ has finite rank if and only if it is a zero operator.

Proof. Let S denote the commutator $\left[T_{f_{1}}, T_{f_{2}}\right]$. For $\alpha \in \mathbb{N}^{n}$, if S has finite rank N, by equality (2.10), we have that there exists $\alpha^{0} \succeq k^{-}+l^{-}$such that

$$
\begin{align*}
S\left(z^{\alpha}\right)=4^{n} a_{\alpha+k+l+\overrightarrow{1}} & \left(a_{\alpha+l+\overrightarrow{1}} \widehat{\psi}(2 \alpha+l+\overrightarrow{2}) \widehat{\varphi}(2(\alpha+l)+k+\overrightarrow{2})\right. \\
& \left.-a_{\alpha+k+1} \hat{1} \hat{\varphi}(2 \alpha+k+\overrightarrow{2}) \widehat{\psi}(2(\alpha+k)+l+\overrightarrow{2})\right)\left(z^{\alpha}\right)=0 \tag{4.5}
\end{align*}
$$

for $\alpha \geq \alpha^{0}$. As in the proof of Theorem 4.1, the above equation implies that

$$
\begin{align*}
& \left(X_{[0,1]^{n}}\right)^{\wedge}(2 \alpha+2 k+\overrightarrow{2}) \hat{\psi}(2 \alpha+l+\overrightarrow{2}) \hat{\varphi}(2(\alpha+l)+k+\overrightarrow{2}) \\
& \quad=\left(X_{[0,1]^{n}}\right)^{\wedge}(2 \alpha+2 l+\overrightarrow{2}) \hat{\varphi}(2 \alpha+k+\overrightarrow{2}) \widehat{\psi}(2(\alpha+k)+l+\overrightarrow{2}) \tag{4.6}
\end{align*}
$$

for $\alpha \in F_{1} \cap F_{2}$. Hence,

$$
\begin{equation*}
S\left(z^{\alpha}\right)=0 \quad \forall \alpha \in F_{4} . \tag{4.7}
\end{equation*}
$$

For $\alpha \in F_{1} \cap F_{2}^{c}$ or $\alpha \in F_{1}^{c} \cap F_{2}$, following the same way as above, we can also prove that $S\left(z^{\alpha}\right)=0$.

This completes the proof.

5. Finite Rank Products of Toeplitz Operators

In [17], the author showed that under certain conditions on the bounded operators S_{1} and S_{2} on $A^{2}\left(\mathbb{B}_{n}\right)$, if $f \in L^{2}\left(\mathbb{B}_{n}\right)$, such that $S_{2} T_{f} S_{1}$ is a finite-rank operator, then f must be zero almost everywhere on \mathbb{B}_{n}. On the Bergman space of the polydisk, using the same method as in [17], we can prove Theorem 5.1. Using Theorem 5.1, we get two useful theorems for Toeplitz operators with quasihomogeneous symbols.

Theorem 5.1. Let S_{1}, S_{2} be two bounded operators on $A^{2}\left(\mathbb{D}^{n}\right)$. Suppose that there is a set $\mathbb{S} \subseteq \mathbb{N}^{n}$ which has property (P), such that $\operatorname{ker}\left(S_{2}\right) \subseteq \overline{\mathcal{M}}$ and $\mathcal{N} \subseteq \operatorname{ran}\left(S_{1}\right)$. Here, \mathcal{M} (resp., \mathcal{N}) is the linear subspace of $A^{2}\left(\mathbb{D}^{n}\right)$ spanned by $\left\{z^{m}, m \in \mathbb{S}\right\}$ (resp., $\left\{z^{m}, m \in \mathbb{N}^{n} \backslash \mathbb{S}\right\}$). Suppose that $f \in L^{2}\left(\mathbb{D}^{n}\right)$ such that the operator $S_{2} T_{f} S_{1}$ has finite rank; then f is the zero function.

Theorem 5.2. Let M and W be two positive integers. Let f_{1}, \ldots, f_{M} and g_{1}, \ldots, g_{W} be quasihomogeneous functions, none of which is the zero function. If $f \in L^{2}$ such that the operator $T_{f_{M}} \cdots T_{f_{1}} T_{f} T_{g_{W}} \cdots T_{g_{1}}$ has finite rank, then f is the zero function.

Proof. Let $S_{2}=T_{f_{M}} \cdots T_{f_{1}}$ and $S_{1}=T_{g_{W}} \cdots T_{g_{1}}$. Suppose that $f_{j}=\xi^{p_{j}} \varphi_{j}(r), 1 \leq j \leq M$, and $g_{l}=\xi^{q_{l}} \Psi_{l}(r), 1 \leq l \leq W$, where $p_{j}, q_{l} \in \mathbb{Z}^{n}$. By Lemma 2.2, for $\alpha \geq \sum_{l=1}^{w} q_{l}^{-}$, we have

$$
\begin{equation*}
S_{1}\left(z^{\alpha}\right)=\left(2^{2 n W} \prod_{j=1}^{W} a_{\alpha+\sum_{l=1}^{j} q_{l+}+\bar{\Psi}} \widehat{\psi_{j}}\left(2\left(\alpha+\sum_{l=1}^{j} q_{l}\right)-q_{j}+\overrightarrow{2}\right)\right) z^{\alpha+\sum_{j=1}^{W} q_{j}} . \tag{5.1}
\end{equation*}
$$

Define $\mathcal{Z}=\left\{\alpha \in \mathbb{N}^{n}: \alpha \nsucceq \sum_{l=1}^{W} q_{l}^{-}\right\} \bigcup\left(\bigcup_{j=1}^{W}\left\{\alpha \in \mathbb{N}^{n}: \widehat{\psi_{j}}\left(2\left(\alpha+\sum_{l=1}^{j} q_{l}\right)-q_{j}+\overrightarrow{2}\right)=0\right\}\right)$. Since none of the functions $\psi_{1}, \ldots, \psi_{W}$ is the zero function, the set \mathcal{Z} has property (P).

For $\alpha \in \mathbb{N}^{n} \backslash 2$, we see that $S_{1}\left(z^{\alpha}\right) \neq 0$. Suppose that $\varphi \in A_{\alpha}^{2}$ such that $S_{1}(\varphi)=0$; then,

$$
\begin{equation*}
0=S_{1}(\varphi)=S_{1}\left(\sum_{\alpha \in \mathbb{N}^{n}}\left\langle\varphi, z^{\alpha}\right\rangle z^{\alpha}\right)=\sum_{\alpha \in \mathbb{N}^{n}}\left\langle\varphi, z^{\alpha}\right\rangle S_{1} z^{\alpha} . \tag{5.2}
\end{equation*}
$$

So (5.1) implies that for any $\alpha \in \mathbb{N}^{n} \backslash 2,\left\langle\varphi, z^{\alpha}\right\rangle=0$. Therefore $\operatorname{ker}\left(S_{1}\right)$ is contained in the closure of the linear span of $\left\{z^{\alpha}: \alpha \in \partial\right\}$ in A_{α}^{2}. Now suppose that

$$
\begin{equation*}
\supset=\left\{\alpha: \alpha \nsucceq \sum_{l=1}^{W} q_{l}^{-}\right\} \bigcup\left(\mathbb{N}^{n} \bigcap\left(2+\sum_{j=1}^{W} q_{j}\right)\right) . \tag{5.3}
\end{equation*}
$$

Then the set ∂ has property (P) and, for any $\alpha \in \mathbb{N}^{n} \backslash \partial, \beta=\alpha-\sum_{j=1}^{W} q_{j}$ belongs to $\mathbb{N}^{n} \backslash 2$. Equality (5.1) implies that $z^{\alpha}=z^{\beta+\sum_{j=1}^{W} q_{j}}$ is a multiple of $S_{1} z^{\beta}$. So the linear span of $\left\{z^{\alpha}\right.$: $\left.\alpha \in \mathbb{N}^{n} \backslash \partial\right\}$ is contained in the range of S_{1}. So there exist subsets ∂ and ∂ of \mathbb{N}^{n} that have property (P) such that $\operatorname{ker}\left(S_{2}\right)$ is contained in the closure in A_{α}^{2} of $\operatorname{Span}\left(\left\{z^{\alpha}: \alpha \in 2\right\}\right)$ and $\operatorname{Span}\left(\left\{z^{\alpha}: \alpha \in \mathbb{N}^{n} \backslash \partial\right\}\right.$ is a subspace of $S_{1}\left(A_{\alpha}^{2}\right)$. Let $\mathbb{S}=\partial \bigcup \partial$; then, Theorem 5.1 implies that f is the zero function.

Theorem 5.3. Suppose that the function $f(z) \in L^{2}\left(\mathbb{D}^{n}\right)$ has the expansion

$$
\begin{equation*}
f(z)=\sum_{k \leq M} \xi^{k} f_{k}\left(r_{1}, \ldots, r_{n}\right), \tag{5.4}
\end{equation*}
$$

and $\widehat{f}_{M}(l) \neq 0$ for all $l \geq l_{0}$, where $l_{0} \in \mathbb{N}^{n}$, if there is a function $g(z) \in L^{2}\left(\mathbb{D}^{n}\right)$, such that $T_{g} T_{f}$ has finite rank; then $g=0$.

Proof. For $\alpha \in \mathbb{N}^{n}$,

$$
\begin{align*}
T_{f}\left(z^{\alpha}\right) & =\sum_{M \geq k \geq-\alpha} 2^{n} a_{\alpha+k+1} \widehat{1} f_{k}(2 \alpha+k+\overrightarrow{2}) z^{\alpha+k} \\
& =2^{n} a_{\alpha+M+\overrightarrow{1}} \widehat{f_{M}}(2 \alpha+M+\overrightarrow{2}) z^{\alpha+M}+\sum_{M \geq k \geq-\alpha, k \neq M} 2^{n} a_{\alpha+k+\overrightarrow{1}} \widehat{f_{k}}(2 \alpha+k+\overrightarrow{2}) z^{\alpha+k} \tag{5.5}
\end{align*}
$$

By hypothesis, there exists $\alpha_{0} \in \mathbb{N}^{n}$, such that, for any $\alpha \geq \alpha_{0}, \widehat{f}_{M}(2 \alpha+M+\overrightarrow{2}) \neq 0$; then, $\widehat{f}_{M}\left(2 \alpha_{0}+M+\overrightarrow{2}\right) \neq 0$. Thus, we have

$$
\begin{equation*}
z^{\alpha_{0}+M} \in \operatorname{Span}\left\{T_{f}\left(z^{\alpha_{0}}\right), z^{\alpha}: 0 \leq \alpha \leq \alpha_{0}+M, \alpha \neq \alpha_{0}+M\right\} . \tag{5.6}
\end{equation*}
$$

Considering the same argument, we get, for all $l \succeq 0$,

$$
\begin{equation*}
z^{\alpha_{0}+M+l} \in \operatorname{Span}\left\{T_{f}\left(z^{\beta}\right), z^{\alpha}: \alpha_{0} \leq \beta \leq \alpha_{0}+l, 0 \leq \alpha \leq \alpha_{0}+M, \alpha \neq \alpha_{0}+M\right\} . \tag{5.7}
\end{equation*}
$$

Now suppose that $T_{g} T_{f}$ has finite rank, and let $\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$ be the set that spans $T_{g} T_{f}(D)$, where D is the space of all holomorphic polynomials in the variable z. Then, for any $l \in \mathbb{N}^{n}$, we see that $T_{g} z^{\alpha_{0}+M+l}$ is a linear combination of $\left\{\varphi_{1}, \ldots, \varphi_{N}\right\} \bigcup\left\{T_{g}\left(z^{\alpha}\right)\right.$, where $0 \leq$ $\alpha \leq \alpha_{0}+M$ and $\left.\alpha \neq \alpha_{0}+M\right\}$, and it follows that T_{g} is a finite-rank operator. By Theorem 2.4, we conclude that g is the zero function.

Acknowledgments

The authors thank the referee for several suggestions that improved the paper. This research is supported by NSFC, Item number 10971020.

References

[1] Z. H. Zhou and X. T. Dong, "Algebraic properties of Toeplitz operators with radial symbols on the Bergman space of the unit ball," Integral Equations and Operator Theory, vol. 64, no. 1, pp. 137-154, 2009.
[2] A. Brown and P. R. Halmos, "Algebraic properties of Toeplitz operators," Journal für die Reine und Angewandte Mathematik, vol. 213, pp. 89-102, 1963.
[3] S. Axler, Ž. Čučković, and N. V. Rao, "Commutants of analytic Toeplitz operators on the Bergman space," Proceedings of the American Mathematical Society, vol. 128, no. 7, pp. 1951-1953, 2000.
[4] Ž. Čučković, "Commutants of Toeplitz operators on the Bergman space," Pacific Journal of Mathematics, vol. 162, no. 2, pp. 277-285, 1994.
[5] Ž. Čučković and I. Louhichi, "Finite rank commutators and semicommutators of quasihomogeneous Toeplitz operators," Complex Analysis and Operator Theory, vol. 2, no. 3, pp. 429-439, 2008.
[6] Ž. Čučković and N. V. Rao, "Mellin transform, monomial symbols, and commuting Toeplitz operators," Journal of Functional Analysis, vol. 154, no. 1, pp. 195-214, 1998.
[7] I. Louhichi and L. Zakariasy, "On Toeplitz operators with quasihomogeneous symbols," Archiv der Mathematik, vol. 85, no. 3, pp. 248-257, 2005.
[8] B. R. Choe and Y. J. Lee, "Pluriharmonic symbols of commuting Toeplitz operators," Illinois Journal of Mathematics, vol. 37, no. 3, pp. 424-436, 1993.
[9] T. Le, "The commutants of certain Toeplitz operators on weighted Bergman spaces," Journal of Mathematical Analysis and Applications, vol. 348, no. 1, pp. 1-11, 2008.
[10] Y. Lu and B. Zhang, "Finite rank commutator of Toeplitzoperators with quasihomogeneous symbols on the unit ball," Acta Mathematica Sinic. In press.
[11] D. Zheng, "Commuting Toeplitz operators with pluriharmonic symbols," Transactions of the American Mathematical Society, vol. 350, no. 4, pp. 1595-1618, 1998.
[12] D. Xuanhao and T. Shengqiang, "The pluriharmonic Toeplitz operators on the polydisk," Journal of Mathematical Analysis and Applications, vol. 254, no. 1, pp. 233-246, 2001.
[13] Y. J. Lee, "Commuting Toeplitz operators on the Hardy space of the bidisk," Journal of Mathematical Analysis and Applications, vol. 341, no. 1, pp. 738-749, 2008.
[14] Y. J. Lee, "Commuting Toeplitz operators on the Hardy space of the polydisk," Proceedings of the American Mathematical Society, vol. 138, no. 1, pp. 189-197, 2010.
[15] D. H. Luecking, "Finite rank Toeplitz operators on the Bergman space," Proceedings of the American Mathematical Society, vol. 136, no. 5, pp. 1717-1723, 2008.
[16] B. R. Choe, "On higher dimensional Luecking's theorem," Journal of the Mathematical Society of Japan, vol. 61, no. 1, pp. 213-224, 2009.
[17] T. Le, "Finite-rank products of Toeplitz operators in several complex variables," Integral Equations and Operator Theory, vol. 63, no. 4, pp. 547-555, 2009.
[18] T. Le, "A refined Luecking's theorem and finite-rank products of Toeplitz operators," Complex Analysis and Operator Theory, vol. 4, no. 2, pp. 391-399, 2010.
[19] T. Le, "Compact Hankel operators on generalized Bergman spaces of the polydisc," Integral Equations and Operator Theory, vol. 67, no. 3, pp. 425-438, 2010.

