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We discuss some algebraic properties of Toeplitz operators on the Bergman space of the polydisk
D
n. Firstly, we introduce Toeplitz operators with quasihomogeneous symbols and property

(P). Secondly, we study commutativity of certain quasihomogeneous Toeplitz operators and
commutators of diagonal Toeplitz operators. Thirdly, we discuss finite rank semicommutators and
commutators of Toeplitz operators with quasihomogeneous symbols. Finally, we solve the finite
rank product problem for Toeplitz operators on the polydisk.

1. Introduction

Let D be the open unit disk in the complex plane C and its boundary the unit circle T. For
a fixed positive integer n, the unit polydisk D

n and the torus T
n are the subsets of C

n which
are Cartesian products of n copies D and T, respectively. Let dV (z) = dVn(z) denote the
Lebesgue volume measure on the polydisk D

n, normalized so that the measure of D
n equals

1. Let Lp = Lp(Dn) denote the usual Lebesgue space. The Bergman space A2 = A2(Dn) is
the Hilbert space consisting of holomorphic functions on D

n that are also in L2(Dn, dV (z)).
Since every point evaluation is a bounded linear functional onA2, there corresponds to every
z = (z1, . . . , zn) ∈ D

n a unique function Kz ∈ A2 which has the following reproducing
property:

f(z) =
〈
f,Kz

〉
, f ∈ A2, (1.1)
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where the notation 〈·, ·〉 denotes the inner product in L2. The function Kz is the well-known
Bergman kernel and its explicit formula is given by

Kz(w) =
n∏

j=1

1
(
1 −wjzj

)2 , w ∈ D
n. (1.2)

Here and elsewhere zj denotes the jth component of z. The Bergman projection P is defined
for the Hilbert space orthogonal projection from L2 ontoA2. Given a function ϕ ∈ L∞(Dn, dV ),
the Toeplitz operator Tϕ : A2 → A2 is defined by the formula

Tϕ
(
f
)
(z) = P

(
ϕf
)
(z) =

∫

Dn

f(w)ϕ(w)Kz(w)dV (w) (1.3)

for all f ∈ A2. Since the Bergman projection P has norm 1, it is clear that Toeplitz operators
defined in this way are bounded linear operators on A2 and ‖Tϕ‖ ≤ ‖ϕ‖∞.

We now consider a more general class of Toeplitz operators. For F ∈ L1(Dn, dV ), in
analogy to (1.3)we define an operator TF by

TFf(z) =
∫

Dn

F(w)f(w)Kz(w)dV (w). (1.4)

Since the Bergman projection P can be extended to L1(Dn, dV ), the operator TF is well
defined onH∞, whereH∞ is the space of bounded holomorphic functions on D

n. Hence, TF
is always densely defined on A2(Dn). Since P is not bounded on L1(Dn, dV ), it is well known
that TF can be unbounded in general. This motivates the following definition, which is based
on the definitions on unit ball in [1].

Definition 1.1. Let F ∈ L1(Dn, dV ).

(a) F is called a T -function if (1.4) defines a bounded operator on A2.

(b) If F is a T -function, one writes TF for the continuous extension of the operator (it is
defined on the dense subsetH∞ of L2(Dn)) defined by (1.4). TF is called a Toeplitz
operator on A2.

(c) If there exist rj ∈ (0, 1), 1 ≤ j ≤ n, such that F is (essentially) bounded on {z =
(z1, z2, . . . , zn) : rj < |zj | < 1, 1 ≤ j ≤ n}, then one says F is “nearly bounded.”

Notice that the T -functions form a proper subset of L1(Dn, dV ) which contains all
bounded and “nearly bounded” functions. In this paper, the functions which we considered
are all T -functions without special introduction. We denote the semicommutator and
commutator of two Toeplitz operators Tf and Tg by

(
Tf , Tg

]
= Tfg − TfTg,

[
Tf , Tg

]
= TfTg − TgTf . (1.5)

The commuting problem and the finite-rank product problem for Toeplitz operators
on the Hardy and Bergman spaces over various domains are some of the most interesting
problems in operator theory.
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For commuting problem, in 1963, Brown and Halmos [2] showed that two bounded
Toeplitz operators Tϕ and Tψ on the classical Hardy space commute if and only if (i) both
ϕ and ψ are analytic, (ii) both ϕ and ψ are analytic, or (iii) one is a linear function of the
other. On the Bergman space of the unit disk, some similar results were obtained for Toeplitz
operators with bounded harmonic symbols or analytic symbols (see [2–4]). The problem of
characterizing commuting Toeplitz operators with arbitrary bounded symbols seems quite
challenging and is not fully understood until now. In recent years, by Mellin transform,
some results with quasihomogeneous symbols (it is of the form eikθφ, where φ is a radial
function) or monomial symbols were obtained (see [5–7]). On the Hardy and Bergman
spaces of several complex variables, the situation is much more complicated. On the unit
ball, Toeplitz operators with pluriharmonic or quasihomogeneous symbols were studied in
[1, 8–11]. On the polydisk, some results about Toeplitz operators with pluriharmonic symbols
were obtained in [10, 12–14].

For finite-rank product problem, Luecking recently proved that a Toeplitz operator
with measure symbol on the Bergman space of unit disk has finite rank if and only if
its symbols are a linear combination of point masses (see [15]). In [16], Choe extended
Luecking’s theorem to higher-dimensional cases. Using those results, Le studied finite-rank
products of Toeplitz operators on the Bergman space of the unit disk and unit ball in [17, 18].

Motivated by recent work in [1, 5, 7, 17, 18], we define quasihomogeneous functions on
the polydisk and study Toeplitz operators with quasihomogeneous symbols on the Bergman
space of the polydisk. The present paper is assembled as follows. In Section 2, we introduce
Mellin transform, Toeplitz operators with quasihomogeneous symbols and property (P).
In Section 3, we study commutativity of certain quasihomogeneous Toeplitz operators and
commutators of diagonal Toeplitz operators. In Sections 4 and 5, we prove that finite rank
semicommutators and commutators of Toeplitz operators with quasihomogeneous symbols
must be zero operator and we also solve the finite-rank product problem for Toeplitz
operators on the Bergman space of the polydisk.

2. Mellin Transform, Toeplitz Operators with Quasihomogeneous
Symbols and Property (P)

For any multi-index α = (α1, . . . , αn) ∈ N
n (here N denotes the set of all nonnegative integers),

we write aα = α1 · · ·αn and zα = zα11 · · · zαnn for z = (z1, . . . , zn) ∈ D
n. The standard orthonormal

basis for A2 is {eα : α ∈ N
n}, where

eα(z) =
√
(α1 + 1) · · · (αn + 1)zα, α ∈ N

n, z ∈ D
n. (2.1)

For two n-tuples of integers α = (α1, . . . , αn) and β = (β1, . . . , βn), we define α 	 β if
αj > βj for all 0 ≤ j ≤ n. Similarly, we write α 
 β if αj ≥ βj for all 1 ≤ j ≤ n and α �
 β if
otherwise. We also define α ⊥ β if α1β1 + · · · + αnβn = 0 and α − β = (α1 − β1, . . . , αn − βn).

For any k = (k1, . . . , kn) ∈ Z
n, particularly we write �k1 = (k1, . . . , k1) and put k∗ =

(|k1|, . . . , |kn|), k+ = (1/2)(k∗ + k) and k− = (1/2)(k∗ − k). Then, k+, k− 
 0, k = k+ − k−, and
k+ ⊥ k−.



4 Abstract and Applied Analysis

Recall that a function ϕ on D
n is radial if and only if ϕ(z) depends only on

(|z1|, |z2|, . . . , |zn|), that is, ϕ(eiθ1z1, eiθ2z2, . . . , eiθnzn) = ϕ(z1, z2, . . . , zn) for any θ1, θ2, . . . , θn ∈
R. For any function f ∈ L1(Dn, dV ), we define the radicalization of f by

rad
(
f
)
(z1, z2, . . . , zn) =

1
(2π)n

∫2π

0
· · ·
∫2π

0
f
(
eit1z1, e

it2z2, . . . , e
itnzn
)
dt1 · · ·dtn. (2.2)

Then, f is radial if and only if rad(f) = f . For α ∈ N
n, we have

〈
Trad(f)z

α, zα
〉
=

〈
1

(2π)n

∫2π

0
· · ·
∫2π

0
f
(
eit1z1, e

it2z2, . . . , e
itnzn
)
dt1 · · ·dtnzα, zα

〉

=
1

(2π)n

∫2π

0
· · ·
∫2π

0

∫

Dn

f
(
eit1z1, e

it2z2, . . . , e
itnzn
)
zαzαdV (z)dt1 · · ·dtn

=
1

(2π)n

∫2π

0
· · ·
∫2π

0
dt1 · · ·dtn

∫

Dn

f(w1, w2, . . . ,wn)wαwαdV (w)

=
〈
Tfz

α, zα
〉
.

(2.3)

The main tool in this paper will be the Mellin transform. which is defined by the
equation

ϕ̂(z1, . . . , zn) =
∫∞

0
· · ·
∫∞

0
ϕ(s1, . . . , sn)s

z1−1
1 · · · szn−1n ds1 · · ·dsn. (2.4)

We apply the Mellin transform to functions in L1([0, 1]n, r1 · · · rndr1 · · ·drn); then,

ϕ̂(z1, . . . , zn) =
∫1

0
· · ·
∫1

0
ϕ(s1, . . . , sn)s

z1−1
1 · · · szn−1n ds1 · · ·dsn. (2.5)

For convenience, we denote ϕ̂(z1, . . . , zn) by ϕ∧(z1, . . . , zn)when the form of ϕ is complicated.
It is clear that ϕ̂ is well defined on In = {z = (z1, z2, . . . , zn) : Re zj > 2, j = 1, 2, . . . , n}. Using
the Hartogs theorem, for any function ϕ ∈ L1([0, 1]n, r1 · · · rndr1 · · ·drn), the Mellin transform
of ϕ is a bounded holomorphic function on In.

By calculation, we can get

ϕ̂
(
z + p

)
= ϕ̂
(
z1 + p1, z2 + p2, . . . , zn + pn

)
= r̂pϕ(z1, z2, . . . , zn) = r̂pϕ(z), (2.6)

where p = (p1, p2, . . . , pn) 
 0, z = (z1, z2, . . . , zn) ∈ In, and rp = rp11 r
p2
2 · · · rpnn .

The quasihomogeneous functions have been defined in many spaces (see [5, 7]). In
the following, we give a similar definition on the polydisk D

n.
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Definition 2.1. Let k ∈ Z
n. A function f ∈ L1(Dn, dV ) is called a quasihomogeneous function

of degree k if f is of the form ξkϕwhere ϕ is a radial function, that is,

f(rξ) = ξkϕ(r) (2.7)

for any ξ in the torus T
n and r ∈ [0, 1)n.

As in [19], for any n-tuple k ∈ Z
n, let Hk = {f ∈ L2 : f is a quasihomogeneous

function of degree k}. It is clear that Hk is a closed subspace of L2. By Lemma 3.2 in [19],
L2 =

⊕
s∈ZnHs. In particular, for all z = (r1ξ1, . . . , rnξn) ∈ D, if f ∈ Hk, that is, f(r1ξ1, . . . , rnξn) =

ξkfk(r1, . . . , rn), then we conclude that L2(Dn, dV ) =
⊕

k∈Znξkfk(r1, . . . , rn), fk ∈ R, where
R = {ϕ : D

n → C radial | ∫[0,1]n |ϕ(r1, . . . , rn)|2
∏n

i=1ridri < +∞}.

Lemma 2.2. Let k, l ∈ Z
n, and let ϕ, ψ be radial functions on D

n, such that ξkϕ, ξlψ, and ξk+lϕψ are
all T -functions. Then, the following equation holds for every α ∈ N

n:

Tξkϕ(zα) =

⎧
⎨

⎩

0 if α �
 k−,

2naα+k+�1ϕ̂
(
2α + k + �2

)
zα+k, if α 
 k−,

(2.8)

where aα+k+�1 = (α1+k1+1) · · · (αn+kn+1) and ϕ̂(2α+k+�2) = ϕ̂(2α1+k1+2, 2α2+k2+2, . . . , 2αn+
kn + 2).

Using Lemma 2.2, we can get the following two results:

(
Tξkϕ, Tξlψ

]
(zα) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if α ∈ E1,

2naα+m+�1ϕ̂ψ
(
2α +m + �2

)
zα+m if α ∈ Ec1 ∩ Ec2,

(
2naα+m+�1ϕ̂ψ

(
2α +m + �2

)
− λ
)
zα+m if α ∈ E2,

(2.9)

where m = k + l, λ = 4naα+l+�1aα+m+�1ψ̂(2α + l + �2)ϕ̂(2(α + l) + k + �2), E1 = {α : α �
 m−},
E2 = {α : α 
 l−} ∩ {α : α + l 
 k−}, Ec1 = N

n \ E1, and Ec2 = N
n \ E2. It is easy to check that

E1 ∩ E2 = φ

[
Tξkϕ, Tξlψ

]
(zα) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if α ∈ Fc1 ∩ Fc2 ,
λ1z

α+k+l if α ∈ F1 ∩ Fc2 ,
−λ2zα+k+l if α ∈ Fc1 ∩ F2,

(λ1 − λ2)zα+k+l if α ∈ F1 ∩ F2,

(2.10)

where λ1 = 4naα+l+�1aα+k+l+�1ψ̂(2α+l+�2)ϕ̂(2(α+l)+k+�2), λ2 = 4naα+k+�1aα+k+l+�1ϕ̂(2α+k+�2)ψ̂(2(α+
k) + l + �2), F1 = {α : α 
 l−} ∩ {α : α + l 
 k−}, F2 = {α : α 
 k−} ∩ {α : α + k 
 l−}, Fc1 = N

n \ F1

and Fc2 = N
n \ F2.
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Let G be a region in complex plane C and f holomorphic on G. If {zk}∞k=1 has a limit
point in G, such that f(zk) = 0, then f ≡ 0. For functions of several complex variables,
the above conclusion does not hold. For example, f(z1, z2) = z1z2 is analytic on bidisk
{(z1, z2) : |z1| < 1, |z2| < 1}, point sequence {(0, 1/k)}, k = 2, 3, . . . , has a limit point (0, 0), and
f(0, 1/k) = 0, but f is not a zero function on the bidisk. So we need the following definition,
which is given in [9, 17].

For any 1 ≤ j ≤ n, let σj : N × N
n−1 → N

n be the map defined by the formula
σj(s, (α1, . . . , αn−1)) = (α1, . . . , αj−1, s, αj , . . . , αn−1) for all s ∈ N and (α1, . . . , αn−1) ∈ N

n−1. If
M is a subset of N

n and 1 ≤ j ≤ n, we define

M̃j =

⎧
⎨

⎩
α̃ = (α1, . . . , αn−1) ∈ N

n−1 :
∑

s∈N,σj (s,α̃)∈M

1
s + 1

= ∞
⎫
⎬

⎭
. (2.11)

As in [9, 17], we say thatM has property (P) if one of the following statements holds:

(1) M = ∅,
(2) M/= ∅, n = 1, and

∑
s∈M 1/s <∞, or

(3) M/= ∅, n ≥ 2, and, for any 1 ≤ j ≤ n, the set M̃j has property (P) as a subset of N
n−1.

Let M and N be two sets that have property (P). It is not difficult to check that the
following statements hold:

(1) M
⋂
N andM

⋃
N have property (P);

(2) N
n \M do not have property (P).

Lemma 2.3. If ϕ ∈ L1([0, 1]n, r1 · · · rndr1 · · ·drn) and Z(ϕ̂) = {α ∈ N
n : ϕ̂(α) = 0} does not have

property (P), then ϕ is identically zero.

Proof. By theMüntz theorem, we can prove that it is true when n = 1 (see [7] for more details).
Suppose that the conclusion of the lemma holds whenever n ≤ N, where N is a positive
integer. Consider the case n = N + 1. Since Z(ϕ̂) does not have property (P), there must be
a 1 ≤ j ≤ N + 1, such that Z̃(ϕ̂)j does not have property (P). Without loss of generality,

taking j = N + 1, then, Z̃(ϕ̂)N+1 /= ∅. For each r̃ ∈ Z̃(ϕ̂)N+1,
∑

s∈N, ϕ̂(r̃,s)=0 1/(s + 1) = ∞. So
ϕ̂(r̃, zN+1) = 0, for all zN+1 ∈ I1. For every λ ∈ I1, let ϕ̂λ(z′) = ϕ̂(z′, λ); then, ϕ̂λ is an analytic
function on IN and Z(ϕ̂λ) = Z̃(ϕ̂)N+1, which does not have property (P). By the induction
hypothesis, we have ϕ̂(z′, λ) = 0, z′ ∈ IN . Thus, ϕ̂(z) = 0 on IN+1. Therefore, ϕ is identically
zero.

Theorem 2.4. Let p = (p1, p2, . . . , pn) ∈ Z
n, and let f be a T -function. Then, the following statements

hold.

(i) If Ep = {α; 〈Tfzα+p, zα〉 = 0 for all α 
 p−} does not have property (P), then 〈Tfzα+p,
zα〉 = 0 for all α 
 p−.

(ii) Let E, E′ ⊆ N
n be the sets that have property (P). If 〈Tfzα, zβ〉 = 0 for all α ∈ N

n \ E,
β ∈ N

n \ E′, then f(z) ≡ 0 for almost all z ∈ D
n.

(iii) If 〈Tfzα, zβ〉 = 0 for all α + p /= β, then f is a quasihomogeneous function of degree p.
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Proof. (i) By direct computation, we have

〈
Tfz

α+p, zα
〉

=
∫

Dn

f(z)zα+pzαdV (z)

=
1
πn

∫

[0,1]n

∫

[0,2π]n
f
(
r1e

iθ1 , . . . , rne
iθn
) n∏

j=1

r
2αj+|pj |+1
j

n∏

j=1

(
eiθj
)pj

dθ1 · · ·dθndr1 · · ·drn.

(2.12)

Let

F(r1, . . . , rn) =
1
πn

∫

[0,2π]n
f
(
r1e

iθ1 , . . . , rne
iθn
) n∏

j=1

(
eiθj
)pj

dθ1 · · ·dθn. (2.13)

Then, F ∈ L1([0, 1]n, r1 · · · rndr1 · · ·drn). In fact, ‖F(r1, . . . , rn)‖L1([0,1]n,r1···rndr1···drn) ≤ ‖f‖L1(Dn,dV ).
Therefore, equality (2.12) shows that F̂(2α1 + |p1| + 2, . . . , 2αn + |pn| + 2) = 0 for any α =
(α1, . . . , αn) ∈ N

n. That is, Z(F̂) does not have property (P). Thus, Lemma 2.3 implies that
F ≡ 0 and 〈Tfzα+p, zα〉 = 0 for all α 
 p−.

(ii) For each l = (l1, . . . , ln) ∈ N
n, 〈Tfzα, zα+l〉 = 0 for α ∈ (Nn \ E) ∩ (Nn \ (E′ − l)). Since

E and E′ have property (P), the subset (Nn \ E) ∩ (Nn \ (E′ − l)) = (Nn \ (E ∪ (E′ − l)) does
not have property (P). By (i), we have 〈Tfzα, zα+l〉 = 0 for α ∈ N

n. It is easy to prove that
〈Tfzα+l, zα〉 = 0 for α ∈ N

n. So 〈Tfzα, zβ〉 = 0 for all α, β ∈ N
n, that is, Tf = 0 and f(z) ≡ 0 for

almost all z ∈ D
n.

(iii) Since

rad
(
ξ
p
f
)
(z1, . . . , zn) =

1
(2π)n

∫

[0,2π]n

(
ξ
p
f
)(
eit1z1, e

it2z2, . . . , e
itnzn
)
dt1 · · ·dtn

=
1

(2π)n

∫

[0,2π]n
e−i(t1+θ1)p1 · · · e−i(tn+θn)pnf

(
r1e

i(t1+θ1), . . . , rne
i(tn+θn)

)
dt1 · · ·dtn

=
1

(2π)n

∫

[0,2π]n
e−i(

∑n
j=1 tjpj )f

(
r1e

it1 , . . . , rne
itn
)
dt1 · · ·dtn,

(2.14)

we have

∫

Dn

[
ξprad

(
ξ
p
f
)]

(z)zαzβdV (z)

=
1

(2π)n

∫

[0,2π]n

∫

[0,1]n

∫

[0,2π]n
e−i(

∑n
j=1 θj (pj+αj−βj ))f

(
r1e

it1 , . . . , rne
itn
)
dθ1 · · ·dθn

×
⎛

⎝
n∏

j=1

r
αj+βj+1
j

⎞

⎠e−i(
∑n

j=1 tjpj )dr1 · · ·drndt1 · · ·dtn.

(2.15)
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If α + p /= β, then
∫
Dn[ξprad(ξ

p
f)](z)zαzβdV (z) = 0. Otherwise, if α + p = β, then

∫

Dn

[
ξprad

(
ξ
p
f
)]

(z)zαzβdV (z)

=
1

(2π)n

∫

[0,2π]n

∫

[0,1]n
f
(
r1e

it1 , . . . , rne
itn
)
⎛

⎝
n∏

j=1

r
αj+βj+1
j

⎞

⎠e−i(
∑n

j=1 tjpj )dr1 · · ·drndt1 · · ·dtn

=
∫

Dn

f(z)zαzβdV (z).

(2.16)

Thus, we get
∫
Dn[ξprad(ξ

p
f)](z)zαzβdV (z) =

∫
Dn f(z)zαz

βdV (z) for any α, β ∈ Z
n. So

ξprad(ξ
p
f) = f , this means that there exists ϕ(r) such that ξ

p
f(z) = ϕ(r), that is, f(z) = ξpϕ(r)

is a quasihomogeneous function of degree p.

Remark 2.5. Let f be as in Theorem 2.4. Then, Tf =
∑

α∈Nn w(f, α, α + p)eα+p ⊗ eα, where

w
(
f, α, α+p

)
=
〈
Tfeα, eα+p

〉
=
√
aα+�1
√
aα+p+�1

∫

Dn

ξpϕ(r)zαzα+pdV (z)

=
√
aα+�1
√
aα+p+�1ϕ̂

(
2α + p + �2

)
.

(2.17)

Recall that a densely defined operator on A2(Dn) is said to be diagonal if it is diagonal with
respect to the standard orthonormal basis. In particular, for f ∈ L∞(Dn), Tf is diagonal if
and only if rad(f) = f . In this case, Tf =

∑
α∈Nn w(f, α)eα ⊗ eα, where w(f, α) = 〈Tfeα, eα〉 =

aα+�1f̂(2α + �2).

3. Commutativity of Toeplitz Operators

In this section, we study the commutativity of the Toeplitz operators with some special
quasihomogeneous symbols and give the characterizations, respectively.

Theorem 3.1. Let g = ξpϕ(r) ∈ L2(Dn) be a quasihomogeneous function of degree p and f =∑
k∈Zn ξkfk(r1, . . . , rn) ∈ L2(Dn). Then, TfTg = TgTf if and only if TξkfkTg = TgTξkfk for any k ∈ Z

n.
Moreover, the following statements hold.

(i) If Q1 = {α : α + p �
 0} ∩ {α : α + k 
 0} ∩ {α : α + k + p 
 0}/= ∅, then, for each α ∈ Q1,
ϕ̂(2α + 2k + p + �2)f̂k(2α + k + �2) = 0.

(ii) If Q2 = {α : α + k �
 0} ∩ {α : α + p 
 0} ∩ {α : α + k + p 
 0}/= ∅, then, for each α ∈ Q2,
ϕ̂(2α + p + �2)f̂k(2α + 2p + k + �2) = 0.
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Proof. Note that, for α ∈ N
n,

TgTf(eα) =
∑

k∈Zn

TgTξkfkeα =
∑

k∈Zn

∑

β∈Nn

〈
TgTξkfkeα, eβ

〉
eβ

=
∑

k∈Zn

〈
TgTξkfkeα, eα+k+p

〉
eα+k+p.

(3.1)

The second equality follows that 〈TgTξkfkeα, eβ〉 = 0, when β /=α + k + p.
Similarly,

TfTg(eα) =
∑

k∈Zn

TξkfkTgeα =
∑

k∈Zn

∑

β∈Nn

〈
TξkfkTgeα, eβ

〉
eβ

=
∑

k∈Zn

〈
TξkfkTgeα, eα+k+p

〉
eα+k+p.

(3.2)

Since {eα} are the standard orthogonal basis and 〈TgTξkfkeα, eβ〉 = 〈TξkfkTgeα, eβ〉 = 0 for
β /=α + k + p, it is easy to check that the following statements are equal:

(I) TfTg = TgTf ;

(II) 〈TgTξkfkeα, eα+k+p〉 = 〈TξkfkTgeα, eα+k+p〉, α ∈ N
n;

(III) TgTξkfkeα = TξkfkTgeα, α ∈ N
n;

(IV) TgTξkfk = TξkfkTg .

Furthermore,

〈
TgTξkfkeα, eα+k+p

〉
=
〈
Tξkfkeα, eα+k

〉〈
Tgeα+k, eα+k+p

〉

=

⎧
⎨

⎩

0, α + k �
 0 or α + k + p �
 0,
√
aα+�1
√
aα+k+p+�1aα+k+�1ϕ̂

(
2α + 2k + p + �2

)
f̂k
(
2α + k + �2

)
, α + k 
 0, α + k + p 
 0,

〈
TξkfkTgeα, eα+k+p

〉
=
〈
Tgeα, eα+p

〉〈
Tξkfkeα+p, eα+k+p

〉

=

⎧
⎨

⎩

0, α + p �
 0 or α + k + p �
 0,
√
aα+�1
√
aα+k+p+�1aα+p+�1f̂k

(
2α + 2p + k + �2

)
ϕ̂
(
2α + p + �2

)
, α + p 
 0, α + k + p 
 0.

(3.3)

Thus, the statements (i) and (ii) hold.

Theorem 3.2. Let f1, f2 be quasihomogeneous functions of degree p and −s, where p 
 s 	 0. If
[Tf1 , Tf2] = 0, then f1 = 0 or f2 = 0.
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Proof. If f1, f2 are quasihomogeneous functions of degree p and −s, then there exist radial
functions ϕ1 and ϕ2, such that f1 = ξpϕ1 and f2 = ξ

s
ϕ2. If Tf1Tf2 = Tf2Tf1 , (2.10) implies that,

for all α ∈ N
n,

aα−s+�1ϕ̂2

(
2α−s+�2

)
ϕ̂1

(
2α−2s+p+�2

)
= aα+p+�1ϕ̂1

(
2α+p+�2

)
ϕ̂2

(
2α+2p−s+�2

)
, if α 
 s,

ϕ̂1

(
2α+p+�2

)
ϕ̂2

(
2α+2p−s+�2

)
= 0, if α �
 s.

(3.4)

We claim that there exist {λk}∞k=1 with
∑

1/λk = ∞ such that

ϕ̂1
(
2λk + p1 + 2, z′

)
ϕ̂2
(
2λk + 2p1 − s1 + 2, z′

)
= 0, for any z′ ∈ In−1. (3.5)

It follows thatZ(ϕ̂1ϕ̂2) do not have property (P). So we can get f1 = 0 or f2 = 0 by Lemma 2.3.
We only need to prove the claim. Since s 	 0, there exists 1 ≤ j ≤ n, such that sj ≥ 1.

Without losing generality, suppose that j = 1. Let λ0 = s1 − 1 ≥ 0; then, α0 = (λ0, α′) �
 s and
ϕ̂1(2λ0 + p1 + 2, α′ + p′ + �2)ϕ̂2(2λ0 + p1 + 2, α′ + 2p′ − s′ + �2) = 0 where α′ ∈ N

n−1, p′ = (p2, . . . , pn)
and s′ = (s2, . . . , sn). Denote E0 = {z′ ∈ In−1 : ϕ̂1(2λ0 + p1 + 2, z′) = 0} and F0 = {z′ ∈ In−1 :
ϕ̂1(2λ0 + p1 + 2, z′) = 0}. Note that at least one of the sets E0 and F0 does not have property
(P). Since ϕ̂1(2λ0 + p1 + 2, z′) = 0 and ϕ̂2(2λ0 + p1 + 2, z′) = 0 are analytic on In−1, Lemma 2.3
shows that E0 = In−1 or F0 = In−1.

Case 1. If E0 = In−1, then

ϕ̂1

(
2
(
α0 + s

)
+ p + �2

)
ϕ̂2

(
2
(
α0 + s

)
+ 2p − s + �2

)
=
aα−s+�1
aα+p+�1

ϕ̂1

(
2ϕ0 + p + �2

)
ϕ̂2

(
2α0 + s + �2

)
= 0,

(3.6)

where α0 = (λ0 + s, α′) with α′ ∈ Nn−1. Let λ1 = λ0 + s. Denote by E1 = {z′ ∈ In−1 : ϕ̂1(2λ1 +
p1 + 2, z′) = 0} and F1 = {z′ ∈ In−1 : ϕ̂1(2λ1 + p1 + 2, z′) = 0}. Then, at least one of the sets E1

and F1 does not have property (P). By Lemma 2.3 again, we have E1 = In−1 or F1 = In−1. Thus
ϕ̂1(λ1, z′)ϕ̂2(λ1, z′) = 0, for any z′ ∈ In−1.

Case 2. If F0 = In−1, then

ϕ̂1

(
2
(
α0 + p

)
+ p + �2

)
ϕ̂2

(
2
(
α0 + p

)
+ 2p − s + �2

)

=
aα−s+�1
aα+p+�1

ϕ̂1

(
2α0 + 3p − 2s + �2

)
ϕ̂2

(
2α0 + 2p − s + �2

)
= 0.

(3.7)

By the same technique, we can get that (3.5) holds when λ1 = λ0 + p1.

Similarly, we can find a sequence λk = λ0+u(k)p1+v(k)s1, where the functions u(k) = 1
or 0, v(k) = 1 or 0, and u(k) + v(k) = 1 for k ∈ Z

+. Then, (i) λ1 ≥ min{p1, s1}, (ii)
∑

k∈N
1/λk =

+∞, and (iii) for every k ≥ 1, λk satisfies (3.5). So we complete the proof.
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For n = 2, we have the following results.

Theorem 3.3. Let g(r) = rm1
1 rm2

2 , where m1 ≥ 0 and m2 ≥ 0. Let f(r1, r2) ∈ L∞([0, 1]2), p =
(p1, p2) ∈ N

2 and p1 · p2 /= 0. Then, TξpgTξpf = TξpfTξpg if and only if there exists an analytic function
on C, such that the function ψ((z2p1 − z1p2)/(p21 + p22))/((z1 +m1)(z2 +m2)) is bounded on I2 and

f̂(z1, z2) =
ψ
((
z2p1 − z1p2

)
/
(
p21 + p

2
2

))

(z1 +m1)(z2 +m2)
, ∀z = (z1, z2) ∈ I2. (3.8)

Proof. As in the proof of Theorem 3.2, it is easy to check that TξpgTξpf = TξpfTξpg if and only if

〈
TξpgTξpfeα, eα+2p

〉
=
〈
TξpfTξpgeα, eα+2p

〉
, (3.9)

which is equal to

ĝ
(
2α + p + �2

)
f̂
(
2α + 3p + �2

)
= f̂
(
2α + p + �2

)
ĝ
(
2α + 3p + �2

)
, ∀α ∈ N

2. (3.10)

Suppose that there is a function ψ as in this theorem.
Note that

ĝ(z) =
∫

[0,1]2
rm+z−�1dr1dr2 =

1
(z1 +m1)(z2 +m2)

/= 0, ∀z ∈ I2, (3.11)

and (2α2+3p2+2)p1−(2α1+3p1+2)p2 = (2α2+p2+2)p1−(2α1+p1+2)p2, for any α = (α1, α2) ∈ N
2.

Then, it is easy to check that equality (3.10) holds, that is, TξpgTξpf = TξpfTξpg .
Conversely, if Tξpg and Tξpf commute, we will structure an analytic ψ which satisfies

the conditions in this theorem.
Since ĝ(z)/= 0 for all z ∈ I2, the function f̂(z)/ĝ(z) is analytic on I2. Note that |rz−1| < 1

for 0 < rj < 1, j = 1, 2 and z ∈ I2. Thus,

∣∣∣f̂(z)
∣∣∣ ≤
∫

D2

∣∣f
∣∣dV (z) =

∥∥f
∥∥
L1([0,1]2),

∣∣ĝ(z)
∣∣ ≤ ∥∥g∥∥L1([0,1]2).

(3.12)

Fix α0 ∈ N
2, and let z0 = 2α0 + p + �2, then,

f̂(z0)
ĝ(z0)

=
f̂
(
z0 + 2p

)

ĝ
(
z0 + 2p

) = · · · = f̂
(
z0 + 2kp

)

ĝ
(
z0 + 2kp

) , k = 0, 1, 2, . . . . (3.13)
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Combining this with Lemma 2.3, we can get that the above equality holds for any z0 ∈ I2. Let
p⊥ = (−p2, p1); then, p ⊥ p⊥. For each z0 ∈ I2, there exist μ1, μ2 ∈ C such that z0 = μ1p + μ2p

⊥.
So

f̂
(
μ1p + μ2p

⊥)

ĝ
(
μ1p + μ2p⊥

) =
f̂
((
μ1 + 2

)
p + μ2p

⊥)

ĝ
((
μ1 + 2

)
p + μ2p⊥

) = · · · = f̂
((
μ1 + 2k

)
p + μ2p

⊥)

ĝ
((
μ1 + 2k

)
p + μ2p⊥

) , k = 0, 1, 2, . . . . (3.14)

Put

F(λ) =
f̂
(
λp + μ2p

⊥)

ĝ
(
λp + μ2p⊥

) − f̂
(
μ1p + μ2p

⊥)

ĝ
(
μ1p + μ2p⊥

) , (3.15)

then, F(λ) is analytic on {z ∈ C : Re(zp1 − μ2p2) > 2 and Re(zp2 + μ2p1) > 2} and

|F(λ)| ≤ ∥∥f∥∥L1

(∣∣m1 + λp1 − μ2p2
∣∣ · ∣∣m2 + λp2 + μ2p1

∣∣ + C1
) ≤ ∥∥f∥∥L1

(
D1|λ|2 +D2|λ| +D3

)
,

(3.16)

where C1, D1, D2, D3 are all constants. Since F(μ1 + 2k) = 0 and
∑+∞

k=0 1/2k = +∞, the set
{μ1 + 2k : k = 0, 1, 2, . . .} ⊆ Z(F). Thus F(λ) ≡ 0. That is

f̂
(
λp + μ2p

⊥
)
=
f̂
(
μ1p + μ2p

⊥)

ĝ
(
μ1p + μ2p⊥

) ĝ
(
λp + μ2p

⊥
)
. (3.17)

For each μ ∈ C, there exists λ0 ∈ C such that Re(λ0p1 − μp2) > 2 and Re(λ0p2 + μp1) > 2;
then, let ψ(μ) = f̂(λ0p + μp⊥)/ĝ(λ0p + μp⊥). By equality (3.17), we conclude that the function
ψ is well defined. Since the function f̂/ĝ is analytic on I2, we can prove that ψ is an analytic
function on C. Let

z1 = λp1 − μ2p2,

z2 = λp2 + μ2p1;
(3.18)

Then,

λ =
z1p1 − z2p2
p21 + p

2
2

,

μ2 =
z2p1 − z1p2
p21 + p

2
2

.

(3.19)

So (3.17) is equal to

f̂(z1, z2) =
ψ
((
z2p1 − z1p2

)
/
(
p21 + p

2
2

))

(z1 +m1)(z2 +m2)
, (3.20)
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where |ψ((z2p1 − z1p2)/(p21 + p22))/((z1 +m1)(z2 +m2))| ≤ ‖f‖L1([0,1]2) and (z1, z2) ∈ I2. This
completes the proof.

Corollary 3.4. Let f, g be as in Theorem 3.3 and p ∈ N
+; then, the following statements hold:

(i) Teipθ1gTeipθ1f = Teipθ1fTeipθ1g if and only if f = rm1
1 ϕ(r2), where ϕ ∈ L∞([0, 1]);

(ii) Teipθ2gTeipθ2f = Teipθ2fTeipθ2g if and only if f = rm2
2 ϕ(r1), where ϕ ∈ L∞([0, 1]).

Proof. (i) By (3.17)we have

∫

[0,1]2
f(r1, r2)r

z1−1
1 rz2−12 dr1dr2 = ψ

(
z2
p

)∫

[0,1]2
rm1+z1−1
1 rm2+z2−1

2 dr1dr2, (3.21)

that is,

∫

[0,1]

[∫

[0,1]
f(r1, r2)r

z2−1
2 dr2 − rm1

1 ψ

(
z2
p

)∫

[0,1]
rm2+z2−1
2 dr2

]

rz1−11 dr1 = 0. (3.22)

Then,

∫

[0,1]
f(r1, r2)r

z2−1
2 dr2 = r

m1
1 ψ

(
z2
p

)
1

m2 + z2
. (3.23)

It follows that there exists ϕ = ϕ(r2) ∈ L∞([0, 1]) such that f = rm1
1 ϕ(r2).

On the other hand, if f = rm1
1 ϕ(r2), then

f̂(z)ĝ
(
z + 2

(
p, 0
))

=
1

m1 + z1
· ϕ̂(z2) · 1

m1 + z1 + 2p
· 1
m2 + z2

,

f̂
(
z + 2

(
p, 0
))
ĝ(z) =

1
m1 + z1 + 2p

· ϕ̂(z2) · 1
m1 + z1

· 1
m2 + z2

.

(3.24)

Thus, we have TξpgTξpf = TξpfTξpg .
(ii) Can also be proved in the same way.

In [6], Čučković and Rao showed that if f, g ∈ L∞(D) and g is a nonconstant radial
function, then TfTg = TgTf implies that f is a radial function. However, this is not true
if f, g ∈ L∞(Dn), where n ≥ 2. For example, g(z) = g(z1, . . . , zj−1, |zj |, zj+1, . . . , zn) and
f(z) = f(|z1|, . . . , |zn|) only for |zj |, and it is clear that TgTf = TfTg , but g(z) may not
be a radial function. Let G = {g ∈ L∞(Dn) : g is radial and for f ∈ L∞(Dn), TfTg =
TgTf implies that f is radial}(if n = 1, this set is exactly the set of all non-constant bounded
radial functions). In the following, we can give a complete description of G.

Theorem 3.5. G = {g(z) is a bounded radial function: for each k = (k1, . . . , kn)/= 0, a(2z)ĝ(2z)/=
a(2z+2k)ĝ(2z + 2k), where z ∈ In and z + k ∈ In}.
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Proof. Suppose that f(z) =
∑

k∈Zn ξkfk(r1, . . . , rn) ∈ L∞(Dn) and g is a radial function.
Lemma 2.2 shows that

TfTg(zα) =
∑

k∈Zn

2naα+�1ĝ
(
2α + �2

)
Ckf̂k

(
2α + k + �2

)
zα+k,

TgTf(zα) =
∑

k∈Zn

Ckf̂k
(
2α + k + �2

)
2naα+k+�1ĝ

(
2α + 2k + �2

)
zα+k,

(3.25)

where α ∈ N
n and

Ck =

⎧
⎨

⎩

0 if α �
 k−,

2naα+k+�1 if α 
 k−.
(3.26)

It follows that TfTg = TgTf if and only if

aα+�1ĝ
(
2α + �2

)
Ckf̂k

(
2α + k + �2

)
= Ckf̂k

(
2α + k + �2

)
aα+k+�1ĝ

(
2α + 2k + �2

)
, (3.27)

for any k ∈ Z
n. Let E1 = {α : (aα+�1g − aα+k+�1rkg)∧(2α + �2) = 0} and E2 = {α : r̂kfk(2α + �2) =

0}. Then E1 ∪ E2 = {α;α 
 k−}. The commutativity of Tf and Tg is equivalent to that at
least one of E1 and E2 does not have property (P); then, Lemma 2.3 shows that fk ≡ 0 or
a(2z)ĝ(2z)/=a(2z+2k)ĝ(2z+2k), where z ∈ In and z+k ∈ In. The rest of the proof is obvious.

Remark 3.6. In Theorem 3.5, particularly if g is a radial function such that g(z) =
∏n

j=1gj(zj)
or g(z) =

∑n
j=1 gj(zj), where each gj(zj)(1 ≤ j ≤ n) is a non-constant radial function, then

for each k = (k1, · · · , kn)/= 0, a(2z)ĝ(2z)/=a(2z+2k)ĝ(2z + 2k), where z ∈ In and z + k ∈ In,
so g ∈ G. It follows that G is nonempty.

4. Finite Rank Semicommutators and Commutators

Recall that Čučković and Louhichi (see [5]) have found some nonzero finite rank semi-
commutators of quasihomogeneous symbol Toeplitz operators on the Bergman space of unit
disk. In this section, we will show that the finite rank semicommutators and commutators of
Toeplitz operators with quasihomogeneous symbols must be zero on A2(Dn)with n ≥ 2. Our
idea is mainly from [17].

Theorem 4.1. Let k, l ∈ Z
n with n ≥ 2, k+ l = m, and let ϕ, ψ be radial functions such that f1 = ξkϕ,

f2 = ξlψ, and ξmϕψ are all T -functions. If the semicommutator (Tf1 , Tf2] has finite rank, then it must
be zero.

Proof. Let S denote the semicommutator (Tf1 , Tf2]. For α ∈ N
n, if S is finite rank, by equality

(2.9), we have that there exists α0 
 k− + l− such that

S(zα) = 2naα+m+�1

(
2naα+l+�1ψ̂

(
2α + l + �2

)
ϕ̂
(
2(α + l) + k + �2

)

−ϕ̂ψ
(
2α +m + �2

))
= 0 for α 
 α0,

(4.1)
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which is equivalent to

(
rk

++l+ϕ
)∧(

2α + l − k− − l− + �2
)(
rk

−+l−ψ
)∧(

2α + l − k− − l− + �2
)

=
(
rl

++l−
)∧(

2α + l − k− − l− + �2
)(
rkϕψ

)∧(
2α + l − k− − l− + �2

)
,

(4.2)

for α 
 α0. Combining this with Lemma 2.3, we get

(
rk

++l+ϕ
)∧

(z)
(
rk

−+l−ψ
)∧

(z) =
(
rl

++l−
)∧

(z)
(
rkϕψ

)∧
(z), for z ∈ In. (4.3)

Hence,

S(zα) = 0 ∀α ∈ E2. (4.4)

In the following, we only need to prove that ϕ̂ψ(α) = 0 for all α ∈ Ec1 ∩ Ec2.
If Ec1 ∩ Ec2 /= ∅, there is a j (0 ≤ j ≤ n) such that m−

j < l−j . Without loss of generality,
assume that j = 1. Then, {(α1, m2 + α2, . . . , mn + αn) : m−

1 ≤ α1 ≤ l−1 , αj ≥ 0, j = 2, . . . , n} ⊆ E2.
For each m−

1 ≤ α1, let Fa1(r2, . . . , rn) =
∫1
0 (ϕψ)(r1, r1, . . . , rn)r

a1−1
1 dr1. Since Z(F̂a1) ⊇ {(m2 +

α2, . . . , mn +αn) : (α2, . . . , αn) ∈Nn−1} does not have property (P), we have F̂a1 ≡ 0. Therefore,
ϕ̂ψ(a1, a2, . . . , an) = 0 form−

1 ≤ a1 ≤ l−1 and aj ≥ m−
j , j = 2, . . . , n. So S(zα) = 0 for α ∈ Ec1 ∩ Ec2.

This completes the proof.

We now pass to the commutator of two quasihomogeneous Toeplitz operators. Here
the situation is the same as for the semicommutator.

Theorem 4.2. Let k, l ∈ Z
n with n ≥ 2, and let ϕ, ψ be radial functions such that f1 = ξkϕ and

f2 = ξlψ are both T -functions. The commutator [Tf1 , Tf2] has finite rank if and only if it is a zero
operator.

Proof. Let S denote the commutator [Tf1 , Tf2]. For α ∈ N
n, if S has finite rank N, by equality

(2.10), we have that there exists α0 
 k− + l− such that

S(zα) = 4naα+k+l+�1
(
aα+l+�1ψ̂

(
2α + l + �2

)
ϕ̂
(
2(α + l) + k + �2

)

−aα+k+�1ϕ̂
(
2α + k + �2

)
ψ̂
(
2(α + k) + l + �2

))
(zα) = 0

(4.5)

for α 
 α0. As in the proof of Theorem 4.1, the above equation implies that

(
χ[0,1]n

)∧(2α + 2k + �2
)
ψ̂
(
2α + l + �2

)
ϕ̂
(
2(α + l) + k + �2

)

=
(
χ[0,1]n

)∧(2α + 2l + �2
)
ϕ̂
(
2α + k + �2

)
ψ̂
(
2(α + k) + l + �2

) (4.6)
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for α ∈ F1 ∩ F2. Hence,

S(zα) = 0 ∀α ∈ F4. (4.7)

For α ∈ F1 ∩ Fc2 or α ∈ Fc1 ∩ F2, following the same way as above, we can also prove that
S(zα) = 0.

This completes the proof.

5. Finite Rank Products of Toeplitz Operators

In [17], the author showed that under certain conditions on the bounded operators S1 and
S2 on A2(Bn), if f ∈ L2(Bn), such that S2TfS1 is a finite-rank operator, then f must be zero
almost everywhere on Bn. On the Bergman space of the polydisk, using the same method
as in [17], we can prove Theorem 5.1. Using Theorem 5.1, we get two useful theorems for
Toeplitz operators with quasihomogeneous symbols.

Theorem 5.1. Let S1, S2 be two bounded operators on A2(Dn). Suppose that there is a set S ⊆ N
n

which has property (P), such that ker(S2) ⊆ M and N ⊆ ran(S1). Here, M (resp., N) is the linear
subspace of A2(Dn) spanned by {zm,m ∈ S} (resp., {zm,m ∈ N

n \ S}). Suppose that f ∈ L2(Dn)
such that the operator S2TfS1 has finite rank; then f is the zero function.

Theorem 5.2. Let M and W be two positive integers. Let f1, . . . , fM and g1, . . . , gW be
quasihomogeneous functions, none of which is the zero function. If f ∈ L2 such that the operator
TfM · · · Tf1TfTgW · · · Tg1 has finite rank, then f is the zero function.

Proof. Let S2 = TfM · · · Tf1 and S1 = TgW · · · Tg1 . Suppose that fj = ξpjϕj(r), 1 ≤ j ≤ M, and
gl = ξqlψl(r), 1 ≤ l ≤W , where pj , ql ∈ Z

n. By Lemma 2.2, for α 
∑w
l=1 q

−
l
, we have

S1(zα) =

⎛

⎝22nW
W∏

j=1

a
α+
∑j

l=1 ql+�1
ψ̂j

(

2

(

α +
j∑

l=1

ql

)

− qj + �2
)⎞

⎠zα+
∑W

j=1 qj . (5.1)

Define J = {α ∈ N
n : α �


∑W
l=1 q

−
l
}⋃(⋃W

j=1{α ∈ N
n : ψ̂j(2(α+

∑j

l=1 ql)−qj +�2) = 0}). Since none
of the functions ψ1, . . . , ψW is the zero function, the set J has property (P).

For α ∈ N
n \ J, we see that S1(zα)/= 0. Suppose that ϕ ∈ A2

α such that S1(ϕ) = 0; then,

0 = S1
(
ϕ
)
= S1

(
∑

α∈Nn

〈
ϕ, zα

〉
zα
)

=
∑

α∈Nn

〈
ϕ, zα

〉
S1z

α. (5.2)

So (5.1) implies that for any α ∈ N
n \ J, 〈ϕ, zα〉 = 0. Therefore ker(S1) is contained in the

closure of the linear span of {zα : α ∈ J} in A2
α. Now suppose that

I =

{

α : α �

W∑

l=1

q−l

}
⋃
⎛

⎝N
n
⋂
⎛

⎝J +
W∑

j=1

qj

⎞

⎠

⎞

⎠. (5.3)
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Then the set I has property (P) and, for any α ∈ N
n \ I, β = α −∑W

j=1 qj belongs to N
n \ J.

Equality (5.1) implies that zα = zβ+
∑W

j=1 qj is a multiple of S1z
β. So the linear span of {zα :

α ∈ N
n \ I} is contained in the range of S1. So there exist subsets J and I of N

n that have
property (P) such that ker(S2) is contained in the closure in A2

α of Span({zα : α ∈ J}) and
Span({zα : α ∈ N

n \ I} is a subspace of S1(A2
α). Let S = I⋃J; then, Theorem 5.1 implies that

f is the zero function.

Theorem 5.3. Suppose that the function f(z) ∈ L2(Dn) has the expansion

f(z) =
∑

k�M
ξkfk(r1, . . . , rn), (5.4)

and f̂M(l)/= 0 for all l 
 l0, where l0 ∈ N
n, if there is a function g(z) ∈ L2(Dn), such that TgTf has

finite rank; then g = 0.

Proof. For α ∈ N
n,

Tf(zα) =
∑

M
k
−α
2naα+k+�1f̂k

(
2α + k + �2

)
zα+k

= 2naα+M+�1f̂M
(
2α +M + �2

)
zα+M +

∑

M
k
−α, k /=M
2naα+k+�1f̂k

(
2α + k + �2

)
zα+k.

(5.5)

By hypothesis, there exists α0 ∈ N
n, such that, for any α 
 α0, f̂M(2α + M + �2)/= 0; then,

f̂M(2α0 +M + �2)/= 0. Thus, we have

zα0+M ∈ Span
{
Tf(zα0), zα : 0 � α � α0 +M,α/=α0 +M

}
. (5.6)

Considering the same argument, we get, for all l 
 0,

zα0+M+l ∈ Span
{
Tf
(
zβ
)
, zα : α0 � β � α0 + l, 0 � α � α0 +M,α/=α0 +M

}
. (5.7)

Now suppose that TgTf has finite rank, and let {ϕ1, . . . , ϕN} be the set that spans
TgTf(P), where P is the space of all holomorphic polynomials in the variable z. Then, for
any l ∈ N

n, we see that Tgzα0+M+l is a linear combination of {ϕ1, . . . , ϕN}⋃{Tg(zα),where 0 �
α � α0 +M and α/=α0 +M}, and it follows that Tg is a finite-rank operator. By Theorem 2.4,
we conclude that g is the zero function.
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