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We mainly study the fractional evolution equation in an ordered Banach space X CDa
0 + u(t) +

Au(t) = f(t, u(t), Gu(t)), 1 < α < 2, u(0) = x ∈ X, u′(0) = θ. Using the monotone iterative
technique based on lower and upper solutions, the existence and uniqueness results are obtained.
The necessary perturbation results for accomplishing this approach are also developed.

1. Introduction

In this paper, we use the perturbation theory and the monotone iterative technique based on
lower and upper solutions to investigate the existence and uniqueness of mild solutions for
the fractional evolution equation in an ordered Banach space X:

CDα
0+u(t) +Au(t) = f(t, u(t), Gu(t)), t ∈ I = [0, T],

u(0) = x ∈ X, u′(0) = θ,
(1.1)

where CDα
0+ is the Caputo fractional derivative, 1 < α < 2, A : D(A) ⊂ X → X is a linear

closed densely defined operator, f : I ×X ×X → X is continuous, θ is the zero element of X,
and

Gu(t) =
∫ t

0
K(t, s)u(s)ds (1.2)

is a Volterra integral operator with integral kernel K ∈ C(Δ,R+), Δ = {(t, s) | 0 ≤ s ≤ t ≤ T}.
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In particular, when f(t, u(t), Gu(t)) = f(t, u(t)), we study the existence and uniqueness
of mild solutions for the fractional evolution equation in an ordered Banach space X:

CDα
0+u(t) +Au(t) = f(t, u(t)), t ∈ I,

u(0) = x ∈ X, u′(0) = θ,
(1.3)

where CDα
0+ is the Caputo fractional derivative, 1 < α < 2, A : D(A) ⊂ X → X is a linear

closed densely defined operator, f : I ×X → X is continuous, and θ is the zero element of X.
The fractional calculus (i.e., calculus of integrals and derivatives of any arbitrary real

or complex order) goes back to Newton and Leibnitz in the seventieth century. It has gained
considerable popularity and importance during the past three decades or so, due mainly to
its demonstrated applications in numerous seemingly diverse and widespread fields such as
physics, chemistry, aerodynamics, viscoelasticity, porous media, electrodynamics of complex
medium, and electrochemistry, control, electromagnetic. For instance, fractional calculus
concepts have been used in the modeling of transmission lines [1], neurons [2], viscoelastic
materials [3], and electrical capacitors [4]. Other examples from fractional order dynamics
can be found in [5, 6] and the references therein.

One of the branches of fractional calculus is the theory of fractional evolution
equations, that is evolution equations where the integer derivative with respect to time is
replaced by a derivative of any order. Also, in recent years, fractional evolution equations
have attracted increasing attention; see [7–21].

The monotone iterative technique based on lower and upper solutions is an effective
and a flexible mechanism that offers theoretical as well as constructive existence results in
a closed set. It yields monotone sequences of lower and upper approximate solutions that
converge to the minimal and maximal solutions between the lower and upper solutions.
Since under suitable conditions each member of the sequences happens to be the unique
solution of a certain nonlinear problem, the advantage and importance of the technique is
remarkable. For differential equations of integer order, many papers used the monotone
iterative technique based on lower and upper solutions; see [22–24] and the references
therein. Recently, there have been some papers which deal with the existence of the solutions
of initial value problems or boundary value problems for fractional ordinary differential
equations by using this method; see [25–31]. They mainly involve Riemann-Liouville
fractional derivatives.

However, to the best of the authors’ knowledge, no results yet exist for the fractional
evolution equations by using the monotone iterative technique based on lower and upper
solutions. Our results can be considered as a contribution to this emerging field.

In comparison with fractional ordinary differential equations, we have great difficulty
in using the monotone iterative technique for the fractional evolution equations. Firstly,
how to introduce a suitable concept of a mild solution for fractional evolution equations
based on the corresponding solution operator? A pioneering work has been reported by
El-Borai [10, 11]. Later on, some authors introduced the definitions of mild solutions for
fractional evolution equations. Wang and Zhou [17], Wang et al. [16, 18], and Zhou and
Jiao [20, 21] also introduced a suitable definition of the mild solutions based on the well-
known theory of Laplace transform and probability density functions. Moreover, Hernández
et al. [12] used an approach to treat abstract equations with fractional derivatives based on
the well-developed theory of resolvent operators for integral equations. Shu et al. [15] give
the definition of a mild solution by investigating the classical solutions of the corresponding
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system. Secondly, do the solution operators for fractional evolution equations have the
perturbation properties analogous to those for the C0-semigroup? For evolution equations of
integer order, perturbation properties play a significant role in monotone iterative technique;
see [24].

Our paper copes with the above difficulties, and the new features of this paper mainly
include the following aspects. We firstly introduce a new concept of a mild solution based
on the well-known theory of Laplace transform, and the form is very easy. Secondly, we
discuss the perturbation properties for the corresponding solution operators. Thirdly, by the
monotone iterative technique based on lower and upper solutions, we obtain results on the
existence and uniqueness of mild solutions for problem (1.1) and (1.3).

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper.

Definition 2.1 (see [5]). The Riemann-Liouville fractional integral operator of order α > 0 of
function f ∈ L1(R+) is defined as

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s)ds, (2.1)

where Γ(·) is the Euler gamma function.

Definition 2.2 (see [5]). The Caputo fractional derivative of order α > 0, n − 1 < α < n, is
defined as

CDα
0+f(t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1f(s)ds, (2.2)

where the function f(t) has absolutely continuous derivatives up to order n − 1. If f is an
abstract function with values in X, then the integrals and derivatives which appear in (2.1)
and (2.2) are taken in Bochner sense.

Proposition 2.3. For α, β > 0 and f as a suitable function (e.g., [5]) one has the following:

(i) Iα0+I
β

0+f(t) = I
α+β
0+ f(t);

(ii) Iα0+I
β

0+f(t) = I
β

0+I
α
0+f(t);

(iii) Iα0+(f(t) + g(t)) = Iα0+f(t) + Iα0+g(t);

(iv) CDα
0+I

α
0+f(t) = f(t);

(v) CDα
0+

CD
β

0+f(t)/=
CD

α+β
0+ f(t);

(vi) CDα
0+

CD
β

0+f(t)/=
CD

β

0+

C
Dα

0+f(t).

We observe from the above that the Caputo fractional differential operators do not
possess neither semigroup nor commutative properties, which are inherent to the derivatives
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on integer order. For basic facts about fractional integrals and fractional derivatives one can
refer to the books [5, 32–34].

Let X be an ordered Banach space with norm ‖ · ‖ and partial order ≤, whose positive
cone P = {y ∈ X | y ≥ θ} (θ is the zero element of X) is normal with normal constant N.
Let C(I, X) be the Banach space of all continuous X-value functions on interval I with norm
‖u‖c = maxt∈I‖(t)‖. For u, v ∈ C(I, X), u ≤ v ⇔ u(t) ≤ v(t) for all t ∈ I. For v,w ∈ C(I, X),
denote the ordered interval [v,w] = {u ∈ C(I, X) | v ≤ u ≤ w}, and [v(t), w(t)] = {y ∈ X |
v(t) ≤ y ≤ w(t)}, t ∈ I. By B(X) we denote the space of all bounded linear operators from X
to X.

Definition 2.4. If CDα
0+v0, Av0, v

′
0 ∈ C(I, X), and v0 satisfies

CDα
0+v0(t) +Av0(t) ≤ f(t, v0(t), Gv0(t)), t ∈ I,

v0 ≤ x ∈ X, v′
0(0) ≤ θ,

(2.3)

then ṽ0 is called a lower solution of problem (1.1); if all inequalities of (2.3) are inverse, we
call it an upper solution of problem (1.1).

Similarly, we give the definitions of lower and upper solutions of problem (1.3).

Definition 2.5. If CDα
0+ṽ0, Aṽ0, ṽ

′
0 ∈ C(I, X), and ṽ0 satisfy

CDα
0+ṽ0(t) +Aṽ0(t) ≤ f(t, ṽ0(t)), t ∈ I,

ṽ0(0) ≤ x ∈ X, ṽ′
0(0) ≤ θ,

(2.4)

then ṽ0 is called a lower solution of problem (1.3); if all inequalities of (2.4) are inverse, we
call it an upper solution of problem (1.3).

Consider the following problem:

CDα
0+u(t) +Au(t) = θ, t ∈ I,

u(0) = x, u′(0) = θ.
(2.5)

Definition 2.6 (see [9]). A family {Sα(t)}t≥0 ⊂ B(X) is called a solution operator for (2.5) if the
following conditions are satisfied:

(1) Sα(t) is strongly continuous for t ≥ 0 and Sα(0) = I;

(2) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for all x ∈ D(A), t ≥ 0;

(3) Sα(t) is a solution of

u(t) = x − 1
Γ(α)

∫ t

0
(t − s)α−1Au(s)ds, (2.6)

for all x ∈ D(A), t ≥ 0.

In this case, −A is called the generator of the solution operator Sα(t) and Sα(t) is called
the solution operator generated by −A.
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Definition 2.7 (see [9]). The solution operator Sα(t) is called exponentially bounded if there
are constants M ≥ 1 and ω ≥ 0 such that

‖Sα(t)‖ ≤ Meωt, t ≥ 0. (2.7)

An operator −A is said to belong to C(X;M,ω), or Cα(M,ω) for short, if problem (2.5)
has a solution operator Sα(t) satisfying (2.7). Denote Cα(ω) = ∪{Cα(M,ω) | M ≥ 1}, Cα =
∪{Cα(ω) | ω ≥ 0}. In these notations C1 and C2 are the sets of all infinitesimal generators ofC0-
emigroups and cosine operator families (COF), respectively. Next, we give a characterization
of Cα(M,ω).

Lemma 2.8 (see [9]). Let 1 < α < 2, −A ∈ Cα(M,ω) and let Sα(t) be the corresponding solution
operator. Then for λ > ω, one has λα ∈ ρ(−A) and

λα−1R(λα,−A)x =
∫+∞

0
e−λtSα(t)xdt, x ∈ X. (2.8)

Lemma 2.9 (see [9]). Let 1 < α < 2 and −A ∈ Cα. Then the corresponding solution operator is given
by

Sα(t)x = lim
n→∞

1
n!

n+1∑
k=1

bαk,n+1

(
I +

(
t

n

)α

A

)−k
x = lim

n→∞
1
n!

n+1∑
k=1

bαk,n+1

[(n
t

)α
R

((n
t

)α
,−A

)]k
x,

(2.9)

where bαk,n are given by the recurrence relations:

bα1,1 = 1,
bα
k,n

= (n − 1 − ka)bα
k,n−1 + α(k − 1)bα

k−1,n−1, 1 ≤ k ≤ n, n = 2, 3, . . .,
bα
k,n

= 0, k > n, n = 1, 2, . . ..

The convergence is uniform on bounded subsets of [0,+∞) for any fixed x ∈ X.

Lemma 2.10 (see [9]). Let 1 < α < 2. Then −A ∈ Cα(M,ω) if and only if (ωα,∞) ⊂ ρ(−A) and

∥∥∥∥ ∂n

∂λn

(
λα−1R(λα,−A)

)∥∥∥∥ ≤ Mn!

(λ −ω)n+1
λ > ω, n = 0, 1, . . . . (2.10)

Lemma 2.11. Assume h ∈ C(I, X). For the linear Cauchy problem

CDα
0+u(t) +Au(t) = h(t), t ∈ I,

u(0) = x ∈ X, u′(0) = θ,
(2.11)

u(t) has the form

u(t) = Sα(t)x +
∫ t

0
Tα(t − s)h(s)ds, (2.12)

where Sα(t) is the solution operator generated by −A, and Tα(t) = Iα−10+ Sα(t).
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Proof. For λ > ω, applying the Laplace transform to (2.11), we have that

λαLu(λ) − λα−1u(0) − λα−2u′(0) +ALu(λ) = λαLu(λ) − λα−1x +ALu(λ) = Lh(λ). (2.13)

By Lemma 2.8, λα ∈ ρ(−A), from the above equation, we obtain

Lu(λ) = λα−1(λαI +A)−1x + λ1−αλα−1(λαI +A)−1Lh(λ). (2.14)

Since L[tα−2/Γ(α − 1)](λ) = λ1−α, by Lemma 2.8 and the inverse Laplace transform, we have
that

u(t) = Sα(t)x +
∫ t

0
Tα(t − s)h(s)ds, (2.15)

where

Tα(t) =
1

Γ(α − 1)

∫ t

0
(t − s)α−2Sα(s)ds = Iα−10+ Sα(t). (2.16)

Remark 2.12. IfA = a (a is a constant), we know that u(t) = Eα(−atα)x+
∫ t
0(t− s)α−1Eα,α(−a(t−

s)α)h(s)ds is the solution of (2.11) by [5, Example 4.10], where Eα(−atα) and Eα,α(−a(t − s)α)
are the Mittag-Leffler functions. We also find that Eα(−atα)x is the solution of the problem
(2.5), and tα−1Eα,α(−atα) = Iα−10+ Eα(−atα); see [5].

Definition 2.13. A function u : I → X is called a mild solution of (2.11) if u ∈ C(I, X) and
satisfies the following equation:

u(t) = Sα(t)x +
∫ t

0
Tα(t − s)h(s)ds, (2.17)

where Sα(t) is the solution operator generated by −A, and Tα(t) = Iα−10+ Sα(t).

Remark 2.14. It is easy to verify that a classical solution of (2.11) is a mild solution of the same
system.

Lemma 2.15. If 1 < α < 2, −A ∈ Cα(M,ω), Sα(t) is the solution operator generated by −A, and
Tα(t) = Iα−10+ Sα(t), then one has that

‖Tα(t)‖ ≤ M

Γ(α)
eωttα−1, t ≥ 0. (2.18)



Abstract and Applied Analysis 7

Proof. By (2.7), for s ≥ 0, we have that ‖Sα(s)‖ ≤ Meωs. Thus,

‖Tα(t)‖ =

∥∥∥∥∥
1

Γ(α − 1)

∫ t

0
(t − s)α−2Sα(s)ds

∥∥∥∥∥

≤ M

∥∥∥∥∥
1

Γ(α − 1)

∫ t

0
(t − s)α−2eωsds

∥∥∥∥∥

= Meωt

∥∥∥∥∥
1

Γ(α − 1)

∫ t

0
(t − s)α−2ds

∥∥∥∥∥

= Meωt t
α−1

Γ(α)
.

(2.19)

Now, we discuss the perturbation properties of the solution operators.

Definition 2.16. An operator S(t) : X → X(t ≥ 0) is called a positive operator in X if u ∈ P
and t ≥ 0 such that S(t) u ≥ θ.

From Definition 2.1, we can easily obtain the following result.

Lemma 2.17. Assume that Sα(t) is the solution operator generated by −A and Tα(t) = Iα−10+ Sα(t).
Then Sα(t)(t ≥ 0) is a positive operator if and only if Tα(t)(t ≥ 0) is a positive operator.

By Lemmas 2.8 and 2.9 and the closedness of the positive cone, we can obtain the
following result.

Lemma 2.18. Assume that −A ∈ Cα(M,ω) and Sα(t) is the solution operator generated by −A. The
following results are true.

(i) If Sα(t)(t ≥ 0) is a positive solution operator, then for any λ > ω and u ∈ P , we have
R(λα,−A)u ≥ θ.

(ii) If there is a λ0 > ω, for any λ > λ0 and u ∈ P such that R(λα,−A)u ≥ θ, then Sα(t)(t ≥ 0)
is a positive solution operator.

Lemma 2.19. Assume C > 0, 1 < α < 2, −A ∈ Cα(M,ω); then the following results hold.

(i) −(A + CI) ∈ Cα(MEα(MCTα), ω), where Eα(MCTα) is the Mittag-Leffler function.

(ii) If λ > ω and u ∈ P such that R(λα,−A)u ≥ θ, then for λ > ω + CMω1−α and u ∈ P , one
has R(λα,−(A + CI))u ≥ θ.

Proof. (i) If S̃α(t) is the solution operator generated by −(A+CI), in view of [9, Theorem2.26],
we have that

∥∥∥S̃α(t)
∥∥∥ ≤ MEα(MCTα)eωt, t ≥ 0. (2.20)

That is, −(A + CI) ∈ Cα(MEα(MCTα), ω).
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(ii) If λ > ω, by (i) and Lemma 2.8, we have λα ∈ ρ(−A), λα ∈ ρ(−(A + CI)). Then by
Lemma 2.10,

∥∥∥λα−1R(λα,−A)
∥∥∥ ≤ M

λ −ω
. (2.21)

When λ > ω + CMω1−α,

‖CR(λα,−A)‖ ≤ CMλ1−α

λ −ω
≤ CMω1−α

λ −ω
< 1. (2.22)

Therefore, for such λ the operator I + CR(λα,−A) is invertible and

R(λα,−(A + CI)) = R(λα,−A)(I + CR(λα,−A))−1

= R(λα,−A)
∞∑
n=0

(−1)n(CR(λα,−A))n.
(2.23)

For any u ∈ P , in view of R(λα,−A)u ≥ θ, C > 0 and (2.22), then

R(λα,−(A + CI))u ≥ θ. (2.24)

Remark 2.20. If α ∈ (0, 1), Lemma 2.19 (i) is not true; see [9, Example 2.24]. However, a
classical perturbation result for C1 or C2 (see [35, 36]) is as follows: if A is the generator
of C0-semigroup (or COF) and B ∈ B(X), then A + B is again a generator of a C0-semigroup
(or COF).

By Definition 2.13, we can obtain the following result.

Lemma 2.21. The linear Cauchy problem

CDα
0+u(t) +Au(t) + Cu(t) = h(t), t ∈ I,

u(0) = x ∈ X, u′(0) = θ,
(2.25)

where C > 0, h ∈ C(I, X), has the unique mild solution given by

u(t) = S̃α(t)x +
∫ t

0
T̃α(t − s)h(s)ds, (2.26)

where S̃α(t) is the solution operator generated by −(A + CI), and T̃α(t) = Iα−10+ S̃α(t).

By Lemmas 2.17, 2.18, and 2.19, the following result holds.

Lemma 2.22. Assume that Sα(t) and S̃α(t) are the solution operators generated by −A and −(A+CI),
respectively, and T̃α(t) = Iα−10+ S̃α(t). Then Sα(t) is a positive operator ⇒ S̃α(t) and T̃α(t) are positive
operators.
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Now, we recall some properties of the measure of noncompactness that will be used
later. Let μ(·) denote the Kuratowski measure of noncompactness of the bounded set. For the
details of the definition and properties of the measure of noncompactness, see [37]. For any
B ⊂ C(I, X) and t ∈ I, set B(t) = {u(t) | u ∈ B}. If B is bounded in C(I, X), then B(t) is
bounded in X, and μ(B(t)) ≤ μ(B).

Lemma 2.23 (see [38]). Let B = {un} ⊂ C(I, X)(n = 1, 2, . . .) be a bounded and countable set. Then
μ(B(t)) is Lebesgue integral on I, and

μ

({∫
I

un(t)dt | n = 1, 2, . . .
})

≤ 2
∫
I

μ(B(t))dt. (2.27)

3. Main Results

Theorem 3.1. Let X be an ordered Banach space, whose positive cone P is normal with normal
constant N, f : I × X × X → X is continuous, and A : D(A) ⊂ X → X is a linear closed densely
defined operator. Assume that −A ∈ Cα(M,ω), Sα(t) is the positive solution operator generated by
−A, the Cauchy problem (1.1) has a lower solution v0 ∈ C(I, X) and an upper solutionw0 ∈ C(I, X)
with v0 ≤ w0, and the following conditions are satisfied.

(H1) There exists a constant C ≥ 0 such that

f
(
t, x2, y2

) − f
(
t, x1, y1

) ≥ −C(x2 − x1), (3.1)

for any t ∈ I, v0(t) ≤ x1 ≤ x2 ≤ w0(t), and Gv0(t) ≤ y1 ≤ y2 ≤ Gw0(t).

(H2) There exists a constant L ≥ 0 such that

μ
({

f
(
t, xn, yn

)}) ≤ L
(
μ({xn}) + μ

({
yn

}))
, (3.2)

for any t ∈ I, and increasing or decreasing monotonic sequences {xn} ⊂ [v0(t), w0(t)] and
{yn} ⊂ [Gv0(t), Gw0(t)].

Then the Cauchy problem (1.1) has the minimal and maximal mild solutions between v0 and w0,
which can be obtained by a monotone iterative procedure starting from v0 and w0, respectively.

Proof. Since −A ∈ Cα(M,ω), by Lemmas 2.15 and 2.19, we have that

∥∥∥S̃α(t)
∥∥∥ ≤ MEα(MCTα)eωt, t ≥ 0,

∥∥∥T̃α(t)
∥∥∥ ≤ M

Γ(α)
Eα(MCTα)eωttα−1, t ≥ 0.

(3.3)
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Set

M̃T = max
t∈I

∥∥∥T̃α(t)
∥∥∥. (3.4)

Since Sα(t) is the positive solution operator generated by −A, by Lemma 2.22, S̃α(t) and T̃α(t)
are positive operators.

Let D = [v0, w0]; we define a mapping Q : D → C(I, X) by

Qu(t) = S̃α(t)x +
∫ t

0
T̃α(t − s)

(
f(s, u(s), Gu(s)) + Cu(s)

)
ds, t ∈ I. (3.5)

By Lemma 2.21, u ∈ D is a mild solution of problem (1.1) if and only if

u = Qu. (3.6)

By (H1), for u1, u2 ∈ D and u1 ≤ u2, we have that

Qu1 ≤ Qu2. (3.7)

That is, Q is an increasing monotonic operator. Now, we show that v0 ≤ Qv0, Qw0 ≤ w0.
Let σ(t) � CDα

0+v0(t)+Av0(t)+Cv0(t); by Definition 2.1, Lemma 2.21, and the positivity
of operators S̃α(t) and T̃α(t), we have that

v0(t) = S̃α(t)v0(0) +
∫ t

0
T̃α(t − s)σ(s)ds

≤ S̃α(t)x +
∫ t

0
T̃α(t − s)

(
f(s, v0(s), Gv0(s)) + Cv0(s)

)
ds

= Qv0(t), t ∈ I,

(3.8)

namely, v0 ≤ Qv0. Similarly, we can show that Qw0 ≤ w0. For u ∈ D, in view of (3.7), then
v0 ≤ Qv0 ≤ Qu ≤ Qw0 ≤ w0. Thus, Q : D → D. We can now define the sequences

vn = Qvn−1, wn = Qwn−1, n = 1, 2, . . . , (3.9)

and it follows from (3.7) that

v0 ≤ v1 ≤ · · ·vn ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0. (3.10)

For convenience, by (1.2), we can denote

K0 = max
(t,s)∈Δ

K(t, s). (3.11)
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Let B = {vn}(n = 1, 2, . . .) and B0 = {vn−1}(n = 1, 2, . . .). It follows from B0 = B ∪ {v0} that
μ(B(t)) = μ(B0(t)) for t ∈ I. Let

ϕ(t) = μ(B(t)) = μ(B0(t)), t ∈ I. (3.12)

In view of (3.10), since the positive cone P is normal, then B0 and B are bounded inC(I, X). By
Lemma 2.23 and (3.12), ϕ(t) is Lebesgue integrable on I. For t ∈ I, by (3.11) and Lemma 2.23,
we have that

μ(GB0(t)) = μ

({∫ t

0
K(t, s)vn−1(s) | n = 1, 2, . . .

})
≤ 2K0

∫ t

0
ϕ(s)ds, (3.13)

and therefore,

∫ t

0
μ(GB0(s))ds ≤ 2TK0

∫ t

0
ϕ(s)ds. (3.14)

For t ∈ I, from Lemma 2.23, (H2), (3.4), (3.5), (3.9), (3.12), (3.14), and the positivity of
operator T̃α(t), we have that

ϕ(t) = μ(B(t)) = μ(QB0(t))

= μ

({∫ t

0
T̃α(t − s)

(
f(s, vn−1(s), Gvn−1(s)) + Cvn−1(s)

)
ds | n = 1, 2, . . .

})

≤ 2
∫ t

0
μ
({

T̃α(t − s)
(
f(s, vn−1(s), Gvn−1(s)) + Cvn−1(s)

) | n = 1, 2, . . .
})

ds

≤ 2M̃T

∫ t

0
L
(
μ(B0(s)) + μ(GB0(s))

)
+ Cμ(B0(s))ds

= 2M̃T (L + 2LTK0 + C)
∫ t

0
ϕ(s)ds.

(3.15)

By (3.15) and the Gronwall inequality, we obtain that ϕ(t) ≡ 0 on I. This means that vn(t)(n =
1, 2, . . .) is precompact in X for every t ∈ I. So, vn(t) has a convergent subsequence in X.
In view of (3.7), we can easily prove that vn(t) itself is convergent in X. That is, there exist
u(t) ∈ X such that vn(t) → u(t) as n → ∞ for every t ∈ I. By (3.5) and (3.9), for any t ∈ I, we
have that

vn(t) = S̃α(t)x +
∫ t

0
T̃α(t − s)

(
f(s, vn−1(s), Gvn−1(s)) + Cvn−1(s)

)
ds. (3.16)

Let n → ∞; then by Lebesgue-dominated convergence theorem, for any t ∈ I, we have that

u(t) = S̃α(t)x +
∫ t

0
T̃α(t − s)

(
f
(
s, u(s), Gu(s)

)
+ Cu(s)

)
ds, (3.17)
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and u ∈ C(I, X). Then u = Qu. Similarly, we can prove that there exists u ∈ C(I, X) such that
u = Qu. By (3.7), if u ∈ D, and u is a fixed point of Q, then v1 = Qv0 ≤ Qu = u ≤ Qw0 = w1.
By induction, vn ≤ u ≤ wn. By (3.10) and taking the limit as n → ∞, we conclude that
v0 ≤ u ≤ u ≤ u ≤ w0. That means that u, u are the minimal and maximal fixed points of Q
on [v0, w0], respectively. By (3.6), they are the minimal and maximal mild solutions of the
Cauchy problem (1.1) on [v0, w0], respectively.

Remark 3.2. Even if A = 0, our results are also new.

Corollary 3.3. LetX be an ordered Banach space, whose positive cone P is regular, f : I×X×X → X
is continuous, and A : D(A) ⊂ X → X is a linear closed densely defined operator. Assume that
−A ∈ Cα(M,ω), Sα(t) is the positive solution operator generated by −A, the Cauchy problem (1.1)
has a lower solution v0 ∈ C(I, X) and an upper solution w0 ∈ C(I, X) with v0 ≤ w0, and (H1)
holds. Then the Cauchy problem (1.1) has the minimal and maximal mild solutions between v0 and
w0, which can be obtained by a monotone iterative procedure starting from v0 and w0, respectively.

Proof. Since (H1) is satisfied, then (3.10) holds. In regular positive cone P , any monotonic
and ordered-bounded sequence is convergent. Then there exist u ∈ C(I, E), u ∈ C(I, E) and
limn→∞vn = u, limn→∞wn = u. Then by the proof of Theorem 3.1, the proof is then complete.

Corollary 3.4. Let X be an ordered and weakly sequentially complete Banach space, whose positive
cone P is normal with normal constant N, f : I × X × X → X is continuous, and A : D(A) ⊂
X → X is a linear closed densely defined operator. Assume that −A ∈ Cα(M,ω), Sα(t) is the positive
solution operator generated by −A, the Cauchy problem (1.1) has a lower solution v0 ∈ C(I, X) and
an upper solution w0 ∈ C(I, X) with v0 ≤ w0, and (H1) holds. Then the Cauchy problem (1.1) has
the minimal and maximal mild solutions between v0 and w0, which can be obtained by a monotone
iterative procedure starting from v0 and w0, respectively.

Proof. Since X is an ordered and weakly sequentially complete Banach space, then the
assumption (H2) holds. In fact, by [39, Theorem 2.2], any monotonic and ordered-bounded
sequence is precompact. Let xn and yn be two increasing or decreasing sequences. By (H1),
{f(t, xn, yn) + Cxn} is monotonic and ordered-bounded sequence. Then, by the properties of
the measure of noncompactness, we have

μ
({

f
(
t, xn, yn

)}) ≤ μ
(
f
(
t, xn, yn

)
+ Cxn

)
+ Cμ({xn}) = 0. (3.18)

So, (H2) holds. By Theorem 3.1, the proof is then complete.

Theorem 3.5. Let X be an ordered Banach space, whose positive cone P is normal with normal
constant N, f : I × X × X → X is continuous, A : D(A) ⊂ X → X is a linear closed densely
defined operator. Assume −A ∈ Cα(M,ω), Sα(t) is the positive solution operator generated by −A,
the Cauchy problem (1.1) has a lower solution v0 ∈ C(I, X) and an upper solutionw0 ∈ C(I, X) with
v0 ≤ w0, (H1) holds, and the following condition is satisfied:

(H3) There are constants S1, S2 ≥ 0 such that

f
(
t, x2, y2

) − f
(
t, x1, y1

) ≤ S1(x2 − x1) + S2
(
y2 − y1

)
, (3.19)
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for any t ∈ I, v0(t) ≤ x1 ≤ x2 ≤ w0(t), and Gv0(t) ≤ y1 ≤ y2 ≤ Gw0(t).

Then the Cauchy problem (1.1) has the unique mild solution between v0 andw0, which can be
obtained by a monotone iterative procedure starting from v0 or w0.

Proof. We can find that (H1) and (H3) imply (H2). In fact, for t ∈ I, let {xn} ⊂ [v0(t), w0(t)]
and {yn} ⊂ [Gv0(t), Gw0(t)] be two increasing or decreasing monotonic sequence. Form,n =
1, 2, . . . withm > n, by (H1) and (H3), we have that

θ ≤ f
(
t, xm, ym

) − f
(
t, xn, yn

)
+ C(xm − xn) ≤ (S1 + C)(xm − xn) + S2

(
ym − yn

)
. (3.20)

By (3.20) and the normality of positive cone P , we have

∥∥f(t, xm, ym

) − f
(
t, xn, yn

)∥∥ ≤ (NS1 +NC + C)‖xm − xn‖ +NS2
∥∥ym − yn

∥∥. (3.21)

From (3.21) and the definition of the measure of noncompactness, we have that

μ
({

f
(
t, xn, yn

)}) ≤ (NS1 +NC + C)μ({xn}) +NS2μ
({

yn

}) ≤ L
(
μ({xn}) + μ

({
yn

}))
, (3.22)

where L = NS1 +NC + C +NS2. Hence, (H2) holds.
Therefore, by Theorem 3.1, the Cauchy problem (1.1) has the minimal solution u and

the maximal solution u on D = [v0, w0]. In view of the proof of Theorem 3.1, we show that
u = u. For t ∈ I, by (3.4), (3.5), (3.6), (3.11), (H3), and the positivity of operator T̃α(t), we have
that

θ ≤ u(t) − u(t) = Qu(t) −Qu(t)

=
∫ t

0
T̃α(t − s)

[
f(s, u(s), Gu(s)) − f

(
s, u(s), Gu(s)

)
+ C

(
u(s) − u(s)

)]
ds

≤
∫ t

0
T̃α(t − s)

[
(S1 + C)

(
u(s) − u(s)

)
+ S2

(
Gu(s) −Gu(s)

)]
ds

≤ M̃T (S1 + C + S2K0T)
∫ t

0
u(s) − u(s)ds.

(3.23)

By (3.23) and the normality of the positive cone P , for t ∈ I, we obtain that

∥∥u(s) − u(s)
∥∥ ≤ NM̃T (S1 + C + S2K0T)

∫ t

0

∥∥u(s) − u(s)
∥∥ds. (3.24)

By the Gronwall inequality, then u(t) ≡ u(t) on I. Hence u = u is the the unique mild solution
of the Cauchy problem (1.1) on [v0, w0]. By the proof of Theorem 3.1, we know that it can be
obtained by a monotone iterative procedure starting from v0 or w0.

By Corollaries 3.3 and 3.4, and Theorem 3.5, we have the following results.
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Corollary 3.6. Let f : I × X × X → X be continuous, and let A : D(A) ⊂ X → X be a linear
closed densely defined operator. Assume that −A ∈ Cα(M,ω), Sα(t) is the positive solution operator
generated by −A, the Cauchy problem (1.1) has a lower solution v0 ∈ C(I, X) and an upper solution
w0 ∈ C(I, X) with v0 ≤ w0, (H1) and (H3) hold, and one of the following conditions is satisfied:

(i) X is an ordered Banach space, whose positive cone P is regular;

(ii) X is an ordered and weakly sequentially complete Banach space, whose positive cone P is
normal with normal constantN.

Then the Cauchy problem (1.1) has the unique mild solution between v0 andw0, which can be
obtained by a monotone iterative procedure starting from v0 or w0.

Next, we consider the existence and uniqueness results of the Cauchy problem
(1.3). Substituting f(t, , u(t)) for f(t, u(t), Gu(t)) in Theorem 3.1, Corollaries 3.3 and 3.4, and
Theorem 3.5, we can obtain the following results.

Corollary 3.7. Let X be an ordered Banach space, whose positive cone P is normal with normal
constant N, f : I × X → X is continuous, A : D(A) ⊂ X → X is a linear closed densely
defined operator. Assume −A ∈ Cα(M,ω), Sα(t) is the positive solution operator generated by −A,
the Cauchy problem (1.3) has a lower solution ṽ0 ∈ C(I, X) and an upper solution w̃0 ∈ C(I, X) with
ṽ0 ≤ w̃0, and the following conditions are satisfied.

(H̃1) There exists a constant C̃ ≥ 0 such that

f(t, x2) − f(t, x1) ≥ −C̃(x2 − x1), (3.25)

for any t ∈ I, and ṽ0(t) ≤ x1 ≤ x2 ≤ w̃0(t);

(H̃2) There exists a constant L̃ ≥ 0 such that

μ
({

f(t, xn)
}) ≤ L̃μ({xn}), (3.26)

for any t ∈ I, and increasing or decreasing monotonic sequence {xn} ⊂ [ṽ0(t), w̃0(t)].
Then the Cauchy problem (1.3) has the minimal and maximal mild solutions between ṽ0 and

w̃0, which can be obtained by a monotone iterative procedure starting from ṽ0 and w̃0, respectively.

Corollary 3.8. Let X be an ordered Banach space, whose positive cone P is regular, f : I ×X → X
is continuous, and A : D(A) ⊂ X → X is a linear closed densely defined operator. Assume that
−A ∈ Cα(M,ω), Sα(t) is the positive solution operator generated by −A, the Cauchy problem (1.3)
has a lower solution ṽ0 ∈ C(I, X) and an upper solution w̃0 ∈ C(I, X) with ṽ0 ≤ w̃0, and (H̃1)
holds. Then the Cauchy problem (1.3) has the minimal and maximal mild solutions between ṽ0 and
w̃0, which can be obtained by a monotone iterative procedure starting from ṽ0 and w̃0, respectively.

Corollary 3.9. Let X be an ordered and weakly sequentially complete Banach space, whose positive
cone P is normal with normal constant N, f : I × X → X is continuous, and A : D(A) ⊂ X →
X is a linear closed densely defined operator. Assume that −A ∈ Cα(M,ω), Sα(t) is the positive
solution operator generated by −A, the Cauchy problem (1.3) has a lower solution ṽ0 ∈ C(I, X) and
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an upper solution w̃0 ∈ C(I, X) with ṽ0 ≤ w̃0, and (H̃1) holds. Then the Cauchy problem (1.3) has
the minimal and maximal mild solutions between ṽ0 and w̃0, which can be obtained by a monotone
iterative procedure starting from ṽ0 and w̃0, respectively.

Corollary 3.10. Let X be an ordered Banach space, whose positive cone P is normal with normal
constant N, f : I × X → X is continuous, and A : D(A) ⊂ X → X is a linear closed densely
defined operator. Assume that −A ∈ Cα(M,ω), Sα(t) is the positive solution operator generated by
−A, the Cauchy problem (1.3) has a lower solution ṽ0 ∈ C(I, X) and an upper solution w̃0 ∈ C(I, X)
with ṽ0 ≤ w̃0, (H̃1) holds, and the following condition is satisfied.

(H̃3) There exists a constant S̃1 ≥ 0 such that

f(t, x2) − f(t, x1) ≤ S̃1(x2 − x1), (3.27)

for any t ∈ I, and ṽ0(t) ≤ x1 ≤ x2 ≤ w̃0(t).
Then the Cauchy problem (1.3) has the unique mild solution between ṽ0 and w̃0, which can be obtained
by a monotone iterative procedure starting from ṽ0 or w̃0.

By Corollaries 3.8, 3.9, and 3.10, we have the following results.

Corollary 3.11. Let f : I × X → X be continuous, and let A : D(A) ⊂ X → X be a linear
closed densely defined operator. Assume that −A ∈ Cα(M,ω), Sα(t) is the positive solution operator
generated by −A, the Cauchy problem (1.3) has a lower solution ṽ0 ∈ C(I, X) and an upper solution
w̃0 ∈ C(I, X) with ṽ0 ≤ w̃0, (H̃1) and (H̃3) hold, and one of the following conditions is satisfied:

(i) X is an ordered Banach space, whose positive cone P is regular;

(ii) X is an ordered and weakly sequentially complete Banach space, whose positive cone P is
normal with normal constantN.

Then the Cauchy problem (1.3) has the unique mild solution between ṽ0 and w̃0, which can be obtained
by a monotone iterative procedure starting from ṽ0 or w̃0.

4. Examples

Example 4.1. In order to illustrate our main results, we consider the Cauchy problem in X =
R

n (n-dimensional Euclidean space and ‖y‖ = (
∑n

i=1 y
2
i )

1/2):

CDα
0+u(t) +Au(t) = f(t, u(t), Gu(t)), t ∈ I = [0, T],

u(0) = x ∈ X, u′ = θ,
(4.1)

where CDα
0+ is the Caputo fractional derivative, 1 < α < 2,A = (aij)n×n(aij ≤ 0) is a real matrix,

f : I ×X ×X → X is continuous, θ = (0, 0, . . . , 0) is the zero element of X, and

Gu(t) =
∫ t

0
K(t, s)u(s)ds (4.2)

is a Volterra integral operator with integral kernel K ∈ C(Δ,R+), Δ = {(t, s) | 0 ≤ s ≤ t ≤ T}.
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For y = (y1, y2, . . . , yn), and z = (z1, z2, . . . , zn), we define the partial order y ≤ z ⇔
yi ≤ zi(i = 1, 2, . . . , n). Set P = {y ∈ X | y ≥ θ}; then P is a normal cone in X and normal
constant N = 1. It is easy to verify that −A generates a uniformly continuous positive cosine
operator family S2(t):

S2(t) =
∞∑
n=0

t2n(−A)n

2n!
, t ≥ 0. (4.3)

By [9, Theorem 3.1], there exist M ≥ 1 and ω ≥ 0 such that −A ∈ Cα(M,ω2/α), and the
corresponding solution operator is

Sα(t) =
∫∞

0
ϕt,α/2(s)S2(s)ds, t > 0, (4.4)

where ϕt,α/2(s) = t−α/2Φα/2(st−α/2), Φα/2(τ) is a probability density function, Φα/2(τ) ≥ 0,
τ > 0, and

∫∞
0 Φα/2(τ)dτ = 1. Thus, Sα(t) is the positive solution operator generated by −A.

In order to solve the problem (4.1), we give the following assumptions.

(O1) x ≥ θ, f(t, θ, θ) ≥ θ for t ∈ I.

(O2) There exist x ≤ x ∈ X such that Ax ≥ f(t, x, Gx) for t ∈ I.

(O3) The partial derivative f ′
u(t, u, v) is continuous on any bounded domain and

f ′
v(t, u, v) has upper bound.

Theorem 4.2. If (O1), (O2), and (O3) are satisfied, then the problem (4.1) has the unique mild solution
u(t), and θ ≤ u ≤ x.

Proof. From (O1) and (O2), we obtain that θ is a lower solution of (4.1), and x is an upper
solution of (4.1). Form (O3), it is easy to verify that (H1) and (H3) are satisfied. Therefore, by
Theorem 3.5, the problem (4.1) has the unique solution u(t), and θ ≤ u ≤ x.
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