
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 380105, 8 pages
http://dx.doi.org/10.1155/2013/380105

Research Article
Automatic Offline Formulation of Robust Model Predictive
Control Based on Linear Matrix Inequalities Method

Longge Zhang1,2

1 Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
2 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University,
Beijing 102206, China

Correspondence should be addressed to Longge Zhang; longgexd@163.com

Received 9 January 2013; Revised 29 March 2013; Accepted 29 March 2013

Academic Editor: Josef Dibĺık
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Two automatic robust model predictive control strategies are presented for uncertain polytopic linear plants with input and output
constraints. A sequence of nested geometric proportion asymptotically stable ellipsoids and controllers is constructed offline first.
Then the feedback controllers are automatically selected with the receding horizon online in the first strategy. Finally, a modified
automatic offline robust MPC approach is constructed to improve the closed system’s performance. The new proposed strategies
not only reduce the conservatism but also decrease the online computation. Numerical examples are given to illustrate their
effectiveness.

1. Introduction

Over the last several decades, model predictive control
(MPC), for its ability to handle multivariable systems and
constraints, has attracted notable attention in chemicals,
food, automotive, aerospace applications, and other fields
[1, 2]. MPC consists of a step-by-step optimization technique.
It calculates more than one step control signal, but only the
first one is implemented, and it repeats these calculations
with the new measurements at the next sampling time. Since
models used in MPC are only an approximation of the real
process, it is extremely important for MPC to be robust
to model uncertainty, and for this reason robust MPC is
still under investigation [3, 4]. In this issue, most published
research findings are based on the min-max approach, where
the performance index to be minimized is computed over
the worst case. However, the prohibitive online computation
burden limits its application to relatively slow dynamics
and small-scale processes. For this reason, the research on
reducing the online computation is still a hot topic.

Generally, there are three kinds of strategies to reduce
the online computation. One is based on the subdividing of
the characteristic regions [5–7]. The second is to design the
invariant ellipsoids offline [8, 9], and the third is reducing the

free variables in the optimization progress [10–13]. In the first
method, the parameter space is systematically subdivided
into characteristic regions, piecewise-affine feedback laws
are computed offline, and a robust MPC is obtained using
multiparametric quadratic programming [5–7]. In the second
strategy, a sequence of explicit control laws corresponding
to a sequence of asymptotically stable invariant ellipsoids is
constructed offline [8]. It only performs the bisection search
to find the smallest ellipsoid which contains the current state
and applies the designed controller online. Based on the
same philosophy, this offline approach is directly extended to
the nominal system [9]. The closed-loop system’s feasibility
and optimality are improved. Both of the offline methods in
[8, 9] are only for uncertain polytopic linear plants in the
absence of external disturbance. A family of ellipsoidal sets
is precomputed offline by exploiting the viability arguments
for uncertain polytopic linear plants subject to persistent
disturbance. The ellipsoidal sets are designed from the inner
to outer layer, and the proposed procedure is robust in
several senses and numerically affordable. The above two
methods share the common feature of removing the online
computation to offline. In the last method, an efficient robust
predictive control (ERPC) is proposed [10] using the degrees
of freedom on the control horizon to find large invariant
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ellipsoids for an augmented system offline, which leaves
only a simple optimization problem to be solved online. An
improved method for synthesizing the constrained robust
model predictive controller is proposed in [12–14]. They not
only dramatically reduce the online computation burden, but
also guarantee the control performance by reserving at least
one free control move in the whole process. However, the
conservative results are usually obtained, due to the fact that
almost all the existing methods are based on the known state,
andmost of system’s states are unknown or only partly known
in practice. This can hamper the application of robust MPC.

In order to reduce the conservativeness, the output feed-
back control has been widely investigated.The state feedback
robust MPC is combined with a state observer in [15], and
the controller gain is obtained by a bisection search in a
lookup table online. The system with saturated at transient
or steady state is investigated in [16], and an MPC robust
stability algorithm is proposed. The synthesis approach for
output robust MPC with input/state constraints is proposed
followed by the study of the quasi-linear parameter varying
system [17, 18]. The output feedback controllers can reduce
the system’s conservatism. However, they may increase the
online computational burden. So it is important to design
a robust MPC method with low computational burden only
based on the known initial state.

In this paper, we propose an offline MPC strategy for
uncertain polytopic linear plants in the presence of input and
output constraints. A nest of geometric proportion asymp-
totically stable ellipsoids is constructed which can assure the
fixed convergence speed.The nested ellipsoids share the same
character if the state is in an ellipsoid at the current; it must
be shrinking into the inner ellipsoid with the designed con-
troller. Moreover, an automatic offline formulation of robust
constrainedMPC is proposed, which not only almost reduces
the online computation to zero, but is also only based on the
known initial states at the expense of a possible reduction
of the performance or the memory space requirements for
storing the exact regions. Finally, the modified automatic
offline robust MPC is proposed to improve the performance.

The rest of this paper is organized as follows. Section 2
gives the problem description and early results. In Section 3,
the main results of this contribution are proposed. To illus-
trate the performance of the proposed controllers, simulation
examples are presented in Section 4, and some conclusions
are drawn in Section 5.

Notation. The notation used is fairly standard. 𝑅𝑛 is the n-
dimensional space of real valued vectors. For a matrix 𝑄
and a vector 𝑥 ∈ 𝑅

𝑛

, ‖𝑥‖
2

𝑄
= 𝑥
𝑇

𝑄𝑥. The matrix inequality
𝐴 > 𝐵 (𝐴 ≥ 𝐵) means that 𝐴 and 𝐵 are square symmetric
matrices and𝐴−𝐵 is (semi)positive definite.𝑥(𝑘) (or𝑥(𝑘 | 𝑘))
denotes themeasured or actual value of variable 𝑥 at real time
𝑘, 𝑘 ∈ {0, 1, 2, . . .}; 𝑥(𝑘+ 𝑖 | 𝑘), 𝑖 ∈ {0, 1, 2, . . .}, is the predicted
value of 𝑥 at a future prediction time 𝑘 + 𝑖 predicted at real
time 𝑘. I is the identity matrix with proper dimension. The
symbol ∗ denotes the corresponding transpose of the lower
block part of symmetric matrices. For a real number 𝑎, [𝑎] is
the biggest integer not more than 𝑎. {𝑧

𝑖
} is the sequence with

nonnegative integer 𝑖.

2. Problem Description and Early Results

Consider the following time-varying uncertain system [4]

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝐵 (𝑘) 𝑢 (𝑘) , 𝑘 ≥ 0

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(1)

where 𝑥 ∈ 𝑅
𝑛 is the state of the plant, 𝑢 ∈ 𝑅𝑚 is the control

input, and 𝑦 ∈ 𝑅𝑙 is the plant output. Assume [𝐴(𝑘), 𝐵(𝑘)] ∈
Ω = Co{[𝐴

1
, 𝐵
1
], [𝐴
2
, 𝐵
2
], . . . , [𝐴

𝐿
, 𝐵
𝐿
]} for every 𝑘 ≥ 0; that

is, there exist 𝐿 nonnegative coefficients 𝑤
𝑗
(𝑘), ∑𝐿

𝑗=1
𝑤
𝑙
(𝑘) =

1, such that [𝐴(𝑘), 𝐵(𝑘)] = ∑
𝐿

𝑗=1
𝑤
𝑗
(𝑘)[𝐴

𝑗
, 𝐵
𝑗
]. The con-

straints are
󵄨󵄨󵄨󵄨𝑢𝑟 (𝑘 + 𝑖 | 𝑘)

󵄨󵄨󵄨󵄨 ≤ 𝑢𝑟,max, 𝑖 ≥ 0, 𝑟 = 1, 2, . . . , 𝑚,

󵄨󵄨󵄨󵄨𝑦𝑟 (𝑘 + 𝑖 | 𝑘)
󵄨󵄨󵄨󵄨 ≤ 𝑦𝑟,max, 𝑖 ≥ 1, 𝑟 = 1, 2, . . . , 𝑙.

(2)

The purpose is to design a controller that drives the
system (1) with constraints (2) to the equilibrant state and
minimize the worst case infinite horizon quadratic objective
function:

min
𝑢(𝑘+𝑖|𝑘)=𝐹(𝑘)𝑥(𝑘+𝑖|𝑘)

max
[𝐴(𝑘+𝑖),𝐵(𝑘+𝑖)]∈Ω,𝑖≥0

𝐽
∞
(𝑘) (3)

𝐽
∞
(𝑘) =

∞

∑

𝑖=0

[𝑥(𝑘 + 𝑖 | 𝑘)
𝑇

K𝑥 (𝑘 + 𝑖 | 𝑘)

+𝑢(𝑘 + 𝑖 | 𝑘)
𝑇

𝑅𝑢 (𝑘 + 𝑖 | 𝑘)]

(4)

with K > 0, 𝑅 > 0. The following conditions are satisfied:

𝑥 (𝑘 + 𝑖 + 1 | 𝑘) = 𝐴 (𝑘 + 𝑖) 𝑥 (𝑘 + 𝑖 | 𝑘)

+ 𝐵 (𝑘 + 𝑖) 𝑢 (𝑘 + 𝑖 | 𝑘) ,

𝑥 (𝑘 | 𝑘) = 𝑥 (𝑘) , ∀𝑖 ≥ 0

(5)

‖𝑥 (𝑘 + 𝑖 + 1 | 𝑘)‖
2

𝑃(𝑘)
− ‖𝑥 (𝑘 + 𝑖 | 𝑘)‖

2

𝑃(𝑘)

≤ −‖𝑥(𝑘 + 𝑖 | 𝑙)‖
2

K − ‖𝑢 (𝑘 + 𝑖 | 𝑘)‖
2

𝑅

∀ [𝐴 (𝑘 + 𝑖) , 𝐵 (𝑘 + 𝑖)] ∈ Ω,

𝑖 ≥ 0, 𝑃 (𝑘) > 0,

(6)

where 𝐹(𝑘) is the state feedback gain. Condition (6) should
guarantee cost monotone decreasing and the system’s robust
stability. Summing (6) from 𝑖 = 0 to 𝑖 = ∞ the result of
max
[𝐴(𝑘+𝑖),𝐵(𝑘+𝑖)]∈Ω,𝑖≥0

𝐽
∞
(𝑘) ≤ ‖𝑥(𝑘)‖

2

𝑃(𝑘)
≤ 𝛾 can be obtained.

With the definitions 𝑄 = 𝛾𝑃(𝑘)
−1 and 𝐹(𝑘) = 𝑌𝑄

−1, (6) and
‖𝑥(𝑘)‖

2

𝑃(𝑘)
≤ 𝛾 are equivalent to the following LMIs:

[
[
[

[

𝑄 ∗ ∗ ∗

𝐴
𝑗
𝑄 + 𝐵

𝑗
𝑌 𝑄 ∗ ∗

K1/2𝑄 0 𝛾𝐼 ∗

𝑅
1/2

𝑌 0 0 𝛾𝐼

]
]
]

]

≥ 0, 𝑗 ∈ {1, . . . , 𝐿}

[
1 ∗

𝑥 (𝑘) 𝑄
] ≥ 0, 𝑄 > 0.

(7)
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The input and output constraints are satisfied if there
exists symmetric matrix𝑋 and 𝑌 such that

[
𝑋 ∗

𝑌
𝑇

𝑄
] ≥ 0 with 𝑋

𝑟𝑟
≤ 𝑢
2

𝑟,max, 𝑟 = 1, 2, . . . , 𝑚,

[

𝑍 ∗

(𝐴
𝑗
𝑄 + 𝐵

𝑗
𝑌)
𝑇

𝐶
𝑇

𝑄
] ≥ 0, 𝑗 = 1, . . . , 𝐿

with 𝑍
𝑟𝑟
≤ 𝑦
2

𝑟,max, 𝑟 = 1, 2, . . . , 𝑙.

(8)

Thus, the problem can be solved by

min
𝛾,𝑄,𝑋,𝑌,𝑍

𝛾,

s.t. (7)-(8) .
(9)

The aforementioned method is computationally pro-
hibitive for fast and/or high-dimensional dynamic systems.
Wan and Kothare [8] proposed the offline robust MPC
strategy to reduce the online computation. They defined
the asymptotically stable invariant ellipsoid and designed
a sequence of invariant ellipsoids one inside another. A
set of stabilizing state feedback laws corresponding to the
ellipsoids is computed offline, so no optimization is involved
online. The online computation is only the selecting of the
proper feedback law using bisection search. This method
supposes the state to be known, but in practice the state
is usually unknown or partly known. So we propose our
automatic offlineMPCwhich only supposes the initial state is
known.

3. Automatic Offline Robust MPC

In this section, we define the geometric proportion asymp-
totically stable ellipsoid and present an automatic offline
approach based on it.The proposedmethod not only reduces
the online computation dramatically, but also decreases the
conservativeness.

Definition 1. Given a discrete dynamical system 𝑥(𝑘 + 1) =

𝑓(𝑥(𝑘)), a subset E = {𝑥 ∈ 𝑅
𝑛

| 𝑥
𝑇

𝑄
−1

𝑥 ≤ 1} of the space
𝑅
𝑛 is said to be a geometric proportion asymptotically stable

ellipsoid (GPASE), if it has the property that, whenever𝑥(𝑘) ∈
E, then 𝑥(𝑘 + 1) ∈ E

𝜌
, where E

𝜌
= {𝑥 ∈ 𝑅

𝑛

| 𝑥
𝑇

𝑄
−1

𝑥 ≤

𝜌
2

}, 0 < 𝜌 < 1.

Remark 2. If the state of a system is in GPASE, the slowest
convergence speed is more than 𝜌.

Remark 3. Thecondition of system’s state in GPASE increases
the conservatism, but it can be decreased through selecting a
bigger 𝜌 near to 1.

The speed of the closed-loop convergence can be influ-
enced by specifying a minimum decay rate on the state
𝑥(‖𝑥(𝑘)‖ ≤ 𝜌

𝑘

‖𝑥(0)‖, 0 < 𝜌 < 1) as follows:

𝑥(𝑘 + 𝑖 + 1 | 𝑘)
𝑇

𝑄
−1

𝑥 (𝑘 + 𝑖 + 1 | 𝑘)

≤ 𝜌
2

𝑥(𝑘 + 𝑖 | 𝑘)
𝑇

𝑄
−1

𝑥 (𝑘 + 𝑖 | 𝑘)

(10)

for any [𝐴(𝑘 + 𝑖), 𝐵(𝑘 + 𝑖)] ∈ Ω.

Lemma 4 (see [4]). For system (1), if it has a minimum delay
rate of (10), the following LMI must be satisfied:

[
𝜌
2

𝑄 ∗

𝐴
𝑖
𝑄 + 𝐵

𝑖
𝑌 𝑄

] ≥ 0, 𝑖 = 1, . . . , 𝐿. (11)

Algorithm 5 (automatic offline robust MPC). Consider the
uncertain system (1) subject to input and output constraints
(2). A sequence of minimizers 𝛾

𝑖
, 𝑄
𝑖
, 𝑋
𝑖
, 𝑌
𝑖
, and 𝑍

𝑖
are

generated based on the sufficient large feasible initial state 𝑥
1

offline as follows:
Set 𝑖 := 1.

(1) Compute the minimizer 𝛾
𝑖
, 𝑄
𝑖
, 𝑋
𝑖
, 𝑌
𝑖
, 𝑍
𝑖
at 𝑥
𝑖
by (9),

with additional LMIs (11) and 𝜌2𝑄
𝑖
< 𝑄
𝑖+1

< 𝑄
𝑖
, store

𝐹
𝑖
.

(2) If 𝑖 < 𝑁, choose a state 𝑥
𝑖+1

satisfying 𝑥𝑇
𝑖+1
𝑄
−1

𝑖
𝑥
𝑖+1

=

𝜌
2

𝑥
𝑇

𝑖
𝑄
−1

𝑖
𝑥
𝑖
. Let 𝑖 := 𝑖 + 1; go to step 1.

Suppose the given initial state 𝑥
0
satisfying ‖𝑥

𝑗+1
‖
𝑄
−1

𝑗

≤

‖𝑥
0
‖
𝑄
−1

𝑗

≤ ‖𝑥
𝑗
‖
𝑄
−1

𝑗

, 𝑗 ∈ {1, . . . , 𝑁}. Let the state be 𝑥(𝑘) at time
𝑘, and apply the control law

𝑢 (𝑘) = {
𝐹
𝑘+𝑗
𝑥 (𝑘) 𝑘 + 𝑗 ≤ 𝑁

𝐹
𝑁
𝑥 (𝑘) 𝑘 + 𝑗 > 𝑁

(12)

online.

Remark 6. Algorithm 5 is independent of the state. The
control law is not optimal as it can be applied to all the states
within the ellipsoid. The information of the exact smallest
ellipsoid containing the current state is not needed before the
application of the controller compared with the method in
paper [8].

Lemma 7. Suppose the positive matrices satisfy the following
condition: 0 < 𝜌

2

𝑄
𝑖
< 𝑄
𝑖+1

< 𝑄
𝑖
(0 < 𝜌 < 1); then E

𝑖,𝜌
⊂

E
𝑖+1

⊂ E
𝑖
, where E

𝑖
= {𝑥 ∈ 𝑅

𝑛

| 𝑥
𝑇

𝑄
−1

𝑖
𝑥 ≤ 1} and E

𝑖,𝜌
=

{𝑥 ∈ 𝑅
𝑛

| 𝑥
𝑇

𝑄
−1

𝑖
𝑥 ≤ 𝜌

2

}.

Proof. If 𝑥 ∈ E
𝑖,𝜌
, then 𝑥𝑇𝑄−1

𝑖
𝑥 < 𝜌

2. As 0 < 𝜌2𝑄
𝑖
< 𝑄
𝑖+1

, it
follows 𝜌2𝑄−1

𝑖+1
< 𝑄
−1

𝑖
and 𝜌2𝑥𝑇𝑄−1

𝑖+1
𝑥 < 𝑥

𝑇

𝑄
−1

𝑖
𝑥 < 𝜌

2. Hence
𝑥
𝑇

𝑄
−1

𝑖+1
𝑥 < 1 so that 𝑥 ∈ E

𝑖+1
and therefore E

𝑖,𝜌
⊂ E
𝑖+1

;
If 𝑥 ∈ E

𝑖+1
, then 𝑥𝑇𝑄−1

𝑖+1
𝑥 < 1. Because 0 < 𝑄

𝑖+1
< 𝑄
𝑖
,

it follows 𝑄−1
𝑖
< 𝑄
−1

𝑖+1
. Hence 𝑥𝑇𝑄−1

𝑖
𝑥 < 𝑥

𝑇

𝑄
−1

𝑖+1
𝑥 < 1 so that

𝑥 ∈ E
𝑖
and therefore E

𝑖+1
⊂ E
𝑖
.

From above, it is easy to get E
𝑖,𝜌
⊂ E
𝑖+1

⊂ E
𝑖
.
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Figure 1: Relationship between E
𝑖
, E
𝑖,𝜌
, and E

𝑖+1
.

Theorem8. Given a dynamical system (1) and a feasible initial
state 𝑥

0
satisfying ‖𝑥

𝑗+1
‖
𝑄
−1

𝑗

≤ ‖𝑥
0
‖
𝑄
−1

𝑗

≤ ‖𝑥
𝑗
‖
𝑄
−1

𝑗

, 𝑗 ∈

{1, . . . , 𝑁}, the automatic offline robust MPC Algorithm 5
robustly asymptotically stabilizes the closed-loop system.

Proof. For the offline minimization at 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, the

LMI (11) ensures that its convergence speed is not less than 𝜌.
So, if 𝑥(𝑘) ∈ E

𝑖
= {𝑥 ∈ 𝑅

𝑛

| 𝑥
𝑇

𝑄
−1

𝑖
𝑥 ≤ 1}, then 𝑥(𝑘 + 1) ∈

E
𝑖,𝜌
= {𝑥 ∈ 𝑅

𝑛

| 𝑥
𝑇

𝑄
−1

𝑖
𝑥 ≤ 𝜌

2

}. From Lemma 7, the control
law corresponding to the ellipsoid E

𝑖
is guaranteed to keep

the state within E
𝑖
and converge into the ellipsoid E

𝑖+1
, and

so on. Lastly, 𝑢
𝑁
= 𝐹
𝑁
𝑥(𝑘) is guaranteed to keep the state

within E
𝑁
and converge to the origin.

Compared with the strategy in paper [8], the proposed
algorithm reduces the conservatism but may sacrifice some
optimality. For example, according to Algorithm 5, the state
is in a smaller ellipsoid, but the feedback control law may
be computed based on a larger ellipsoid, which is showed in
Figure 1. So we propose a modified algorithm.

Algorithm 9 (modified automatic offline robust MPC). Con-
sider the same system as Algorithm 5. Given a sufficiently
large feasible state 𝑥

1
, generate a sequence of minimizers

𝛾
𝑖
, 𝑄
𝑖
, 𝑋
𝑖
, 𝑌
𝑖
, and 𝑍

𝑖
as follows offline. Let 𝑖 := 1.

(1) Compute the minimizer 𝛾
𝑖
, 𝑄
𝑖
, 𝑋
𝑖
, 𝑌
𝑖
, 𝑍
𝑖
at 𝑥
𝑖
by

solving the problem (9) with additional LMIs (11) and
𝜌
2

𝑄
𝑖
< 𝑄
𝑖+1

< 𝑄
𝑖
, store 𝐹

𝑖
. If 𝑖 = [𝑁/2]; store 𝑄−1

𝑖
.

(2) If 𝑖 < 𝑁, choose a state 𝑥
𝑖+1

satisfying 𝑥𝑇
𝑖+1
𝑄
−1

𝑖
𝑥
𝑖+1

=

𝜌
2

𝑥
𝑇

𝑖
𝑄
−1

𝑖
𝑥
𝑖
. Let 𝑖 := 𝑖 + 1; go to step 1.

The modified control strategy is selected online. Suppose
the initial state 𝑥

0
satisfying ‖𝑥

𝑗+1
‖
2

𝑄
−1

𝑗

≤ ‖𝑥
0
‖
2

𝑄
−1

𝑗

≤

‖𝑥
𝑗
‖
2

𝑄
−1

𝑗

, 𝑗 ∈ {1, . . . , 𝑁}. Let the state be 𝑥(𝑘) at time 𝑘.
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Figure 2:The ellipsoids defined by𝑄−1
𝑖
for all 150 discrete points for

Example 12.
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Figure 3:The ellipsoids defined by𝑄−1
𝑖
for every other ten ellipsoids

discrete points for Example 12.

Table 1: The corresponding average computation time.

Algorithm On-line average computation time
TMPC 2.84
OLMPC 0.011
AOLMPC 0.004

Case 1. If 𝑗 ≥ 𝑁/2, apply the control law

𝑢 (𝑘) = {
𝐹
𝑘+𝑗
𝑥 (𝑘) 𝑘 + 𝑗 ≤ 𝑁

𝐹
𝑁
𝑥 (𝑘) 𝑘 + 𝑗 > 𝑁.

(13)

Case 2. If 𝑗 < 𝑁/2,

(1) select 𝑢(𝑘) = 𝐹
𝑘+𝑗
𝑥(𝑘);

(2) compute 𝑥(𝑘 + 1)𝑇𝑄−1
[𝑁/2]

𝑥(𝑘 + 1);

if 𝑥(𝑘 + 1)𝑇𝑄−1
[𝑁/2]

𝑥(𝑘 + 1) > 1, 𝑘 := 𝑘 + 1; go to step 1;
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Figure 4: The offline control law F for Example 12.
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Figure 5: Closed-loop responses for Example 12.

Table 2: The convergence speed.

𝑘 1 10 20 30
𝑥 (𝑘) [0.500; 0] [0.2254; −0.1997] [0.0651; −0.1038] [−0.0004; −0.0054]

Φ (𝑘) = 𝑥(𝑘)
𝑇

𝑄
−1

𝑘
𝑥 (𝑘) 0.2499 0.0876 0.0152 2.3162𝑒 − 005

Φ (𝑘 + 1) /Φ (𝑘) 0.3504 0.1964 0.0019 0.0306
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if 𝑥(𝑘 + 1)𝑇𝑄−1
[𝑁/2]

𝑥(𝑘 + 1) ≤ 1, select the following
controller 𝑢(𝑘) = 𝐹

[𝑁/2]
𝑥(𝑘), 𝑘󸀠 := 𝑘; go to step 3;

(3) 𝑘 := 𝑘 + 1, select

𝑢 (𝑘) =

{{{{

{{{{

{

𝐹
[𝑁/2]+𝑘−𝑘

󸀠𝑥 (𝑘) [
𝑁

2
] + 𝑘 − 𝑘

󸀠

≤ 𝑁

𝐹
𝑁
(𝑘) [

𝑁

2
] + 𝑘 − 𝑘

󸀠

> 𝑁.
(14)

Remark 10. Algorithm 9 enforces the optimality an as it sets
observation point. It ought to set more points to get more
points to get the better performance. But the added points
may increase the online computation and need more infor-
mation of the system. The number of the observation points
depends on the real system. How to select the proper number
of observation points depends on the control engineering
practice.

Remark 11. The online execution time for Algorithm 5 does
not depend on the size of the system, so it has constant time
(also written as O (1) time). For the method in paper [8], the
total number of flops required to calculate an input move is
𝑂(𝑛
2

𝑠
log
2
𝐾) for a sequence of𝐾, with 𝑛

𝑠
being the number of

state variables. So we can conclude that this offline approach
can dramatically reduce the online computational burden.

4. Numerical Example

In this section, two examples are presented to illustrate the
effectiveness of the automatic offline approach. The simula-
tions were performed on a Sony PC with an Intel Core i5
3317U processor (1.7 GHz, memory 4GB) and using the soft-
ware LMI control Toolbox in the MATLAB 7.0 environment
to compute the solution of the linear minimization problem.

Example 12. Consider the system in [8] represented as

𝑥 (𝑘 + 1) = [

[

𝑥
1
(𝑘 + 1)

𝑥
2
(𝑘 + 1)

]

]

= [
1 0.1

0 1 − 0.1𝛼 (𝑘)
] 𝑥 (𝑘) + [

0

0.1𝜅
] 𝑢 (𝑘)

≜ 𝐴 (𝑘) 𝑥 (𝑘) + 𝐵 (𝑘) 𝑢 (𝑘)

𝑦 (𝑘) = [1 0] 𝑥 (𝑘) ≜ 𝐶𝑥 (𝑘) ,

(15)

where 𝜅 = 0.787, 0.1 ≤ 𝛼 ≤ 10, 𝐴(𝑘) ∈ Ω = Co{𝐴
1
, 𝐴
2
},

𝐴
1
= [
1 0.1

0 0.99
], and 𝐴

2
= [
1 0.1

0 0
].

The robust performance objective function (3) is subject
to |𝑢(𝑘 + 𝑖 | 𝑘)| ≤ 2, 𝑖 ≥ 0. Here 𝐽

∞
(𝑘) is given by (4) with

K = [
1 0

0 0
] , 𝑅 = 0.00002. (16)

We choose the 𝑥
1
-axis as the one-dimensional subspace and

discretize it according to the fixed geometric proportion, for
example, with 𝜌 = 0.96.That is 𝑥set

1
= {𝑧
𝑖
}, with 𝑧

1
= 1, 𝑧

𝑖+1
=

0 1 2 3 4 5 6
2.35

2.4
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‖𝐹
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Figure 6: Feedback matrix norm for Example 13.

𝜌𝑧
𝑖
, 𝑖 = 1, 2, 3, . . .. Figure 2 shows the ellipsoids defined by

𝑄
−1

𝑖
for all 150 discrete points. As it is too dense, an ellipsoid

every other ten ellipsoids is selected and it is illustrated in
Figure 3.

Figure 4 shows the computed offline control law along
the 𝑥
1
-axis. Both plots are obtained using the offline part

of Algorithm 5. As the step 𝑖 increases, the feedback almost
keeps constant (𝑖 > 90). This is corresponding to the system’s
unconstrained control.

Given the initial state 𝑥(0) = [0.5 0]
𝑇, Figure 5

shows the closed-loop responses of the system under the
traditional model predictive control [4] (TMPC), offline
model predictive control (OLMPC) [8], and automatic offline
model predictive control (AOMPC) respectively. It shows
that the AOLMPC, as it is based on the geometric proportion
asymptotically stable ellipsoid, has the less overshoot. The
average online computation time of the proposed algorithm
compared with the other two methods is listed in Table 1.

The system’s convergence speed at step 𝑘 = 1, 10, 20, 30 is
shown in Table 2. As 0.9610 = 0.6648, it is concluded that the
average convergence rate is more than 0.96 from Table 2.

Example 13. Consider the two-mass-spring benchmark prob-
lem [19] represented as

[
[
[

[

𝑥̇
1

𝑥̇
2

𝑥̇
3

𝑥̇
4

]
]
]

]

=

[
[
[
[
[
[
[

[

0 0 1 0

0 0 0 1

−𝑘

𝑚
1

𝑘

𝑚
1

0 0

𝑘

𝑚
2

−𝑘

𝑚
2

0 0

]
]
]
]
]
]
]

]

[
[
[

[

𝑥
1

𝑥
2

𝑥
3

𝑥
4

]
]
]

]

+

[
[
[
[

[

0

0

1

𝑚
1

0

]
]
]
]

]

𝑢

𝑦 = 𝑥
2
,

(17)

where 𝑚
1
= 𝑚
2
= 1, 0.5 ≤ 𝑘 ≤ 1.2, and |𝑢| ≤ 1.

Using Algorithm 5 and choosing the initial state 𝑥(0) =

[−1 − 1 0 0]
𝑇, K = diag(0, 1, 0, 0), 𝑅 = 0.1, we can get the

GPASE using Algorithm 5. The norm of the feedback matrix
and the states are exhibited in Figures 6 and 7, respectively.
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Figure 7: State trajectory for Example 13.

5. Conclusions

An automatic stable closed-loop robust MPC strategy for
uncertainty system with input and output constraints has
been developed. This method not only reduces the conser-
vativeness dramatically, but also reduces the online com-
putation. The stability of this technique is proved based
on GPASE. Two examples indicate the effectiveness of this
method.
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