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UsingKrein-Rutman theorem, topological degree theory, and bifurcation techniques, this paper investigates the existence of positive
solutions for a class of boundary value problems of fractional differential inclusions.

1. Introduction

Fractional differential equations have been of great interest
recently. Engineers and scientists have developed newmodels
that involve fractional differential equations. These models
have been applied successfully, for example, in mechanics
(theory of viscoelasticity and viscoplasticity), (bio)chemistry
(modelling of polymers and proteins), electrical engineering
(transmission of ultrasound waves), medicine (modelling of
human tissue under mechanical loads), and so forth. For
details, see [1–7] and references therein. For example, in [5],
Qiu and Bai considered the existence of positive solutions to
BVP of the nonlinear fractional differential equation

𝐶
𝐷
𝛼

0
+ 𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢


(1) = 𝑢


(0) = 0,

(1)

where 2 < 𝛼 ≤ 3, 𝑓 : (0, 1] × [0, +∞) → [0, +∞), and
𝐶

𝐷
𝛼

0
+ is the Caputo’s fractional derivatives. They obtained

the existence of at least one positive solution by using
Krasnoselskii’s fixed point theorem and nonlinear alternative
of Leray-Schauder type in a cone.

In [8], Tian and Liu investigated the following singular
fractional boundary value problem (BVP, for short) of the
form

𝐶
𝐷
𝛼

0
+ 𝑢 (𝑡) + 𝜆𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢
(𝑗)

(0) = 0, 0 ≤ 𝑗 ≤ 𝑛 − 1, 𝑗 ̸= 2,

𝑢


(1) = 0,

(2)

where 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ≥ 4, and 𝑓 : (0, 1) × (0, +∞) →

[0, +∞) is continuous; that is, 𝑓(𝑡, 𝑢) may be singular at 𝑡 =

0, 1 and 𝑢 = 0. By constructing a special cone, under some
suitable assumptions, they obtained that there exist positive
numbers 𝜆

∗ and 𝜆
∗∗ with 𝜆

∗
< 𝜆
∗∗ such that the above

system has at least two positive solutions for 𝜆 ∈ (0, 𝜆
∗

) and
no solution for 𝜆 > 𝜆

∗∗.
In this paper, we consider the following boundary value

problem of fractional differential inclusions of the form

𝐶
𝐷
𝛼

0
+ 𝑢 (𝑡) ∈ −𝐹 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝑢
(𝑗)

(0) = 0, 0 ≤ 𝑗 ≤ 𝑛 − 1, 𝑗 ̸= 2,

𝑢


(1) = 0,

(3)

where 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ≥ 4, 𝐶𝐷𝛼
0
+ is the Caputo’s fractional

derivatives, and 𝐹 : 𝐽 × R+ → 2
R+ .

As mentioned in [9], the field of differential inclusions
is a versatile and general area of mathematics that pro-
vides a framework for modelling physical processes that
feature discontinuities. Examples of such phenomena include
mechanical systems with Coulomb friction modeled as a
force proportional to the sign of a velocity and systems whose
control laws have discontinuities [10]. In addition, differential
inclusions are a useful format for treating differential equa-
tions where the right-hand side may be inaccurately known
[11]. Differential inclusions are also employed in the dynamic
modelling of economic processes and game theory [12],
control theory, optimization, partial differential equations,
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and the study of general evolution processes [13].The types of
the aforementioned applications naturally motivate a deeper
theoretical analysis of the subject.

Also there are some papers concerned with initial or
boundary value problems of fractional differential inclusions
(see, for instance, [9, 14–20] and references therein). The
method used in these references is fixed point theorem.
However, to the best of our knowledge, there is no paper
studying such problems using bifurcation ideas. As we know,
the bifurcation technique is widely used in solving boundary
value problems (see, for instance, [21–24] and references
therein). The purpose of present paper is to fill this gap. By
using Krein-Rutman theorem, topological degree theory, and
bifurcation techniques, the existence of positive solutions of
BVP (3) is investigated.

Thepaper is organized as follows. Section 2 contains some
preliminaries. In Section 3, by using bifurcation techniques,
Krein-Rutman theorem, and topological degree theory, bifur-
cation results from infinity and trivial solution are estab-
lished. Finally, in Section 4, the main results of the present
paper are given and proved.

2. Preliminaries

For convenience, we present some necessary definitions and
results from fractional calculus theory (see [6]).

Definition 1. The fractional (arbitrary) order integral of the
function ℎ ∈ 𝐿

1
([𝑎, 𝑏]) of order 𝛼 ∈ R+ is defined by

𝐼
𝛼

𝑎
ℎ (𝑡) = ∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
ℎ (𝑠) d𝑠, (4)

where Γ is the gamma function. When 𝑎 = 0, we write
𝐼
𝛼

ℎ(𝑡) = [ℎ ∗ 𝜑
𝛼

](𝑡), where 𝜑
𝛼

(𝑡) = 𝑡
𝛼−1

/Γ(𝛼) for 𝑡 > 0, and
𝜑
𝛼

(𝑡) = 0 for 𝑡 ≤ 0 and 𝜑
𝛼

→ 𝛿(𝑡) as 𝛼 → 0, where 𝛿 is the
delta function.

Definition 2. For a function ℎ given on the interval [𝑎, 𝑏], the
𝛼th Caputo fractional-order derivative of ℎ is defined by

(
𝐶

𝐷
𝛼

𝑎+
ℎ) (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

ℎ
(𝑛)

(𝑠) d𝑠. (5)

Here 𝑛 is the smallest integer greater than or equal 𝛼.

Lemma 3. Let 𝛼 > 0, then the differential equation
𝐶

𝐷
𝛼

0
+𝑢 (𝑡) = 0 (6)

has solutions 𝑢(𝑡) = 𝑐
0

+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛−1

𝑡
𝑛−1, for some

𝑐
𝑖

∈ R, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1, where 𝑛 is the smallest integer
greater than or equal to 𝛼.

Lemma4. Assume that 𝑢 ∈ 𝐶(0, 1)∩𝐿
1
[0, 1]with a derivative

of order 𝑛 that belongs to 𝐶(0, 1) ∩ 𝐿
1
[0, 1]. Then

𝐼
𝛼

0
+

𝐶
𝐷
𝛼

0
+𝑢 (𝑡) = 𝑢 (𝑡) + 𝑐

0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛−1

𝑡
𝑛−1

. (7)

for some 𝑐
𝑖

∈ R, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1, where 𝑛 is the smallest
integer greater than or equal 𝛼.

Lemma 5. The relation

𝐼
𝛼

0
+𝐼
𝛽

0
+
𝜑 = 𝐼
𝛼+𝛽

0
+

𝜑 (8)

is valid in the following case:

Re𝛽 > 0, Re (𝛼 + 𝛽) > 0, 𝜑 ∈ 𝐿
1

[𝑎, 𝑏] . (9)

For more detailed results of fractional calculus, we refer
the reader to [6]. In addition, we need the following prelimi-
naries on multivalued operators.

Let (𝑋, ‖ ⋅ ‖) be a Banach space. Then a multivalued map
Θ : 𝑋 → 2

𝑋 is convex (closed) valued if Θ(𝑥) is convex
(closed) for all 𝑥 ∈ 𝑋. Θ is bounded if Θ(𝐵) = ⋃

𝑥∈𝐵
Θ(𝑥) is

bounded in 𝑋 for any bounded set 𝐵 of 𝑋.
Θ : 𝐷 → 2

𝑋 is said to be lower semicontinuous, l.s.c.
for short, if Θ

−1
(𝑉) is open in 𝐷 whenever 𝑉 ⊂ 𝑋 is open.

Let Θ : 𝐷 → 2
𝑋 be a multivalued map and 𝜃 : 𝐷 →

𝑋 a single-valued function; if for all𝑥 ∈ 𝐷, 𝜃(𝑥) ∈ Θ(𝑥),
then 𝜃 is called a selection function of Θ. If in addition 𝜃 is
continuous, then 𝜃 is called a continuous selection.

The following lemmas are crucial in the proof of ourmain
result.

Lemma 6. [25, Lemma 2.1, page 14]. Let 𝐷 ̸= 0 be a subset of a
Banach space 𝑋, and Θ : 𝐷 → 2

𝑋 a l.s.c. with closed convex
values. Then, given (𝑤0, 𝑥0) ∈ 𝑔𝑟𝑎𝑝ℎ(Θ), Θ has a continuous
selection 𝜃 such that 𝜃(𝑤0) = 𝑥0.

For more details on multivalued maps, see the books of
Deimling [25].

Finally in this section, we list the following results on
topological degree of completely operators.

Lemma 7 (Schmitt and Thompson [26]). Let 𝑉 be a real
reflexive Banach space. Let 𝐺 : R × 𝑉 to 𝑉 be completely
continuous such that 𝐺(𝜆, 0) = 0, 𝑓𝑜𝑟𝑎𝑙𝑙 𝜆 ∈ R. Let 𝑎, 𝑏 ∈

R (𝑎 < 𝑏) be such that 𝑢 = 0 is an isolated solution of the
equation

𝑢 − 𝐺 (𝜆, 𝑢) = 0, 𝑢 ∈ 𝑉, (10)

for 𝜆 = 𝑎 and 𝜆 = 𝑏, where (𝑎, 0), (𝑏, 0) are not bifurcation
points of (10). Furthermore, assume that

deg (𝐼 − 𝐺 (𝑎, ⋅) , 𝐵
𝑟 (0) , 0) ̸= deg (𝐼 − 𝐺 (𝑏, ⋅) , 𝐵

𝑟 (0) , 0) ,

(11)

where 𝐵
𝑟
(0) is an isolating neighborhood of the trivial solution.

Let

T = {(𝜆, 𝑢) : (𝜆, 𝑢) 𝑖𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 (2.1) 𝑤𝑖𝑡ℎ 𝑢 ̸= 0}

∪ ([𝑎, 𝑏] × 0) .

(12)

Then there exists a connected componentC ofT containing
[𝑎, 𝑏] × 0 in R × 𝑉, and either

(i) C is unbounded in R × 𝑉 or
(ii) C ∩ [(R \ [𝑎, 𝑏]) × 0] ̸= 0.
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Lemma 8 (Schmitt [27]). Let 𝑉 be a real reflexive Banach
space. Let 𝐺 : R × 𝑉 to 𝑉 be completely continuous, and let
𝑎, 𝑏 ∈ R (𝑎 < 𝑏) be such that the solution of (10) is, a priori,
bounded in 𝑉 for 𝜆 = 𝑎 and 𝜆 = 𝑏; that is, there exists an 𝑅 > 0

such that

𝐺 (𝑎, 𝑢) ̸= 𝑢 ̸= 𝐺 (𝑏, 𝑢) (13)

for all 𝑢 with ‖𝑢‖ ≥ 𝑅. Furthermore, assume that

deg (𝐼 − 𝐺 (𝑎, ⋅) , 𝐵
𝑅 (0) , 0) ̸= deg (𝐼 − 𝐺 (𝑏, ⋅) , 𝐵

𝑅 (0) , 0) ,

(14)

for sufficiently large𝑅 > 0.Then there exists a closed connected
set C of solutions of (10) that is unbounded in [𝑎, 𝑏] × 𝑉, and
either

(i) C is unbounded in 𝜆 direction or
(ii) there exists an interval [𝑐, 𝑑] such that (𝑎, 𝑏)∩(𝑐, 𝑑) = 0

andC bifurcates from infinity in [𝑐, 𝑑] × 𝑉.

Lemma 9 (Guo [28]). Let Ω be a bounded open set of infinite-
dimensional real Banach space 𝐸, and let 𝐴 : Ω → 𝐸 be
completely continuous. Suppose that

(i) inf𝑥∈𝜕Ω‖𝐴𝑥‖ > 0;
(ii) 𝐴𝑥 = 𝜇𝑥, 𝑥 ∈ 𝜕Ω ⇒ 𝜇 ∉ (0, 1].

Then

deg (𝐼 − 𝐴, Ω, 𝜃) = 0. (15)

3. Bifurcation Results

3.1. Assumptions and Conversion of BVP (3). Suppose that the
following two assumptions hold throughout the paper.

(H1) Let 𝐹 : 𝐽 × R+ → 2
R+ be a nonempty, closed and

convex multivalued map such that 𝐹 is l.s.c., where 𝐽 = [0, 1].
(H2) There exist functions 𝑎0, 𝑎

0
, 𝑏∞, 𝑏

∞
∈ 𝐶(𝐽,R+)

with 𝑎0(𝑡), 𝑎
0
(𝑡), 𝑏∞(𝑡), 𝑏

∞
(𝑡) ̸≡ 0 in any subinterval of [0, 1]

such that

𝐹 (𝑡, 𝑢)

⊂ [𝑎
0 (𝑡) 𝑢 − 𝜉

1 (𝑡, 𝑢) , 𝑎
0

(𝑡) 𝑢 + 𝜉
2 (𝑡, 𝑢)]

∩ [𝑏
∞ (𝑡) 𝑢 − 𝜁

1 (𝑡, 𝑢) , 𝑏
∞

(𝑡) 𝑢 + 𝜁
2 (𝑡, 𝑢)] ,

(16)

for all (𝑡, 𝑢) ∈ 𝐽 × R+, where 𝜉
𝑖
, 𝜁
𝑖

∈ 𝐶(𝐽 × R+) with 𝜉
𝑖
(𝑡, 𝑢) =

𝑜(𝑢) as 𝑢 → 0 uniformly with respect to 𝑡 ∈ [0, 1], (𝑖 = 1, 2),
and 𝜁𝑖(𝑡, 𝑢) = 𝑜(𝑢) as 𝑢 → +∞ uniformly with respect to
𝑡 ∈ [0, 1], (𝑖 = 1, 2).

The basic space used in this paper is 𝐶[0, 1]. Obviously,
𝐶[0, 1] is a Banach space with norm ‖𝑢‖ = max𝑡∈𝐽|𝑢(𝑡)|

(for all 𝑢 ∈ 𝐶[0, 1]). Let

𝑄 := {𝑢 ∈ 𝐶 [𝐽,R
+

] : 𝑢 (𝑡) ≥ 𝑡
2
𝑢 (𝑠) , ∀𝑡, 𝑠 ∈ 𝐽} . (17)

It is easy to see that 𝑄 is a cone of 𝐸. Moreover, from (17), we
have for all 𝑢 ∈ 𝑄,

𝑢 (𝑡) ≥ 𝑡
2

‖𝑢‖ , ∀𝑡 ∈ 𝐽. (18)

We first consider the following linear boundary problem
of fractional differential equation:

𝐶
𝐷
𝛼

0
+ 𝑢 (𝑡) + 𝑔 (𝑡) = 0, 0 < 𝑡 < 1,

𝑢
(𝑗)

(0) = 0, 0 ≤ 𝑗 ≤ 𝑛 − 1, 𝑗 ̸= 2,

𝑢


(1) = 0,

(19)

where 𝑔 ∈ 𝐶[0, 1].

Lemma 10 (Tian and Liu [8]). Given 𝑔 ∈ 𝐶[0, 1], the unique
solution of (19) is

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) d𝑠, (20)

where

𝐺 (𝑡, 𝑠)

=
1

Γ (𝛼)

{{{

{{{

{

(𝛼 − 1) (𝛼 − 2)

2
𝑡
2
(1 − 𝑠)

𝛼−3
− (𝑡 − 𝑠)

𝛼−1
, 𝑠 ≤ 𝑡;

(𝛼 − 1) (𝛼 − 2)

2
𝑡
2
(1 − 𝑠)

𝛼−3
, 𝑡 ≤ 𝑠.

(21)

Lemma 11 (Tian and Liu [8]). The function 𝐺(𝑡, 𝑠) defined by
(21) has the following properties:

(i) 𝐺 (𝑡, 𝑠) > 0, ∀𝑡, 𝑠 ∈ [0, 1] ;

(ii) 𝐺 (𝑡, 𝑠) ≤ 𝐻 (𝑠) ≤
(1 − 𝑠)

𝛼−3

2Γ (𝛼 − 2)
,

(22)

where

𝐻 (𝑠)

=
1

Γ (𝛼)

{{{

{{{

{

(𝛼 − 1) (𝛼 − 2)

2
𝑠
2
(1 − 𝑠)

𝛼−3
− (1 − 𝑠)

𝛼−1
, 𝑠 ≤ 𝑡,

(𝛼 − 1) (𝛼 − 2)

2
𝑠
2
(1 − 𝑠)

𝛼−3
, 𝑡 ≤ 𝑠;

(iii) 𝐺 (𝑡, 𝑠) ≥ 𝑡
2
𝐺 (𝜏, 𝑠) , ∀𝑡, 𝑠, 𝜏 ∈ [0, 1] .

(23)

For the sake of using bifurcation technique to investigate
BVP (3), we study the following fractional boundary value
problem with parameters:

𝐶
𝐷
𝛼

0
+ 𝑢 (𝑡) ∈ −𝜆𝐹 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝑢
(𝑗)

(0) = 0, 0 ≤ 𝑗 ≤ 𝑛 − 1, 𝑗 ̸= 2,

𝑢


(1) = 0.

(24)

A function (𝜆, 𝑢) is said to be a solution of BVP (24) if
(𝜆, 𝑢) satisfies (24). In addition, if 𝜆 > 0, 𝑢(𝑡) > 0 for 𝑡 ∈

(0, 1), then (𝜆, 𝑢) is said to be a positive solution of BVP (24).
Obviously, if 𝜆 > 0, 𝑢 ∈ 𝑄 \ {𝜃} is a solution of BVP (24), then
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by (18) we know that (𝜆, 𝑢) is a positive solution of BVP (24),
where 𝜃 denotes the zero element of Banach space 𝐸.

For 𝑎 ∈ 𝐶(𝐽,R+) with 𝑎(𝑡) ̸≡ 0 in any subinterval of 𝐽,
define the linear operator 𝐿

𝑎
: 𝐶(𝐽) → 𝐶(𝐽) by

𝐿
𝑎
𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑢 (𝑠) d𝑠, (25)

where 𝐺(𝑡, 𝑠) is defined by (21).
From Lemmas 10, 11, and the well-known Krein-Rutman

Theorem, one can obtain the following lemma.

Lemma 12. The operator defined by (25) has a unique charac-
teristic value 𝜆1(𝑎), which is positive, real, and simple and the
corresponding eigenfunction 𝜙(𝑡) is of one sign in (0, 1); that is,
we have 𝜙(𝑡) = 𝜆

1
(𝑎)𝐿
𝑎
𝜙(𝑡).

Notice that the operator 𝐿
𝑎
can be regarded as 𝐿

𝑎
:

𝐿
2
[0, 1] → 𝐿

2
[0, 1].This together with Lemma 12 guarantees

that 𝜆
1
(𝑎) is also the characteristic value of 𝐿

∗

𝑎
, where 𝐿

∗

𝑎
is

the conjugate operator of 𝐿
𝑎
. Let 𝜑

∗ denote the nonnegative
eigenfunction of 𝐿

∗

𝑎
corresponding to 𝜆

1
(𝑎). Then we have

𝜑
∗

(𝑡) = 𝜆1 (𝑎) 𝐿
∗

𝑎
𝜑
∗

(𝑡) , ∀𝑡 ∈ 𝐽. (26)
Note that condition (H1) implies that 𝐹(𝑡, 𝑢) is lower

semicontinuous. Then, from Lemma 6, there exists a contin-
uous function𝑓 : 𝐽×R+ → R+ such that𝑓(𝑡, 𝑢) ∈ 𝐹(𝑡, 𝑢) for
all (𝑡, 𝑢) ∈ 𝐽 × R+. Therefore, to solve BVP (24), we consider
the problem

𝐶
𝐷
𝛼

0
+ 𝑢 (𝑡) + 𝜆𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢
(𝑗)

(0) = 0, 0 ≤ 𝑗 ≤ 𝑛 − 1, 𝑗 ̸= 2,

𝑢


(1) = 0.

(27)

Define

𝑓 (𝑡, 𝑢) = {
𝑓 (𝑡, 𝑢) , (𝑡, 𝑢) ∈ 𝐽 × R+,

𝑓 (𝑡, 0) , (𝑡, 𝑢) ∈ 𝐽 × (−∞, 0) .
(28)

Then 𝑓(𝑡, 𝑢) ≥ 0 on 𝐽 × R. From Lemma 10, the solution of
𝐶

𝐷
𝛼

0
+ 𝑢 (𝑡) + 𝜆𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢
(𝑗)

(0) = 0, 0 ≤ 𝑗 ≤ 𝑛 − 1, 𝑗 ̸= 2,

𝑢


(1) = 0

(29)

is equivalent to the fixed point of operator

𝐴
𝜆
𝑢 (𝑡) = 𝜆 ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) d𝑠, ∀𝑢 ∈ 𝐶 [0, 1] . (30)

Let Σ ⊂ R+ × 𝐶[0, 1] be the closure of the set of positive
solutions of BVP (27). From Lemma 11 and the definitions of
𝑓 and the cone 𝑄, it is easy to see Σ ⊂ 𝑄 and 𝐴𝜆 : 𝐶[0, 1] →

𝑄. Moreover, we have the following conclusion.

Lemma 13. For 𝜆 > 0, (𝜆, 𝑢) is a positive solution of BVP (27)
if and only if (𝜆, 𝑢) is a nontrivial solution of BVP (29); that is,
𝑢 is a nontrivial fixed point of operator 𝐴

𝜆
in 𝑄. Therefore, the

closure of the set of nontrivial solutions (𝜆, 𝑢) of BVP (29) in
R+ × 𝑄 is exactly Σ.

3.2. Bifurcation from Infinity and Trivial Solution

Lemma 14. Let [𝑐, 𝑑] ⊂ R+ be a compact interval with
[𝜆1(𝑏
∞

), 𝜆1(𝑏∞)] ∩ [𝑐, 𝑑] = 0. Then there exists 𝑅1 > 0 such
that

𝑢 ̸= 𝐴
𝜆
𝑢, ∀𝜆 ∈ [𝑐, 𝑑] , ∀𝑢 ∈ 𝐶 [0, 1]

𝑤𝑖𝑡ℎ ‖𝑢‖ ≥ 𝑅1.

(31)

Proof. Suppose, on the contrary, that there exist {(𝜇
𝑛, 𝑢𝑛)} ⊂

[𝑐, 𝑑] × 𝐶[0, 1] with ‖𝑢𝑛‖ → ∞(𝑛 → +∞) such that 𝑢𝑛 =

𝐴𝜇
𝑛

𝑢𝑛. Without loss of generality, assume 𝜇𝑛 → 𝜇 ∈ [𝑐, 𝑑].
Notice that 𝑢𝑛 ∈ 𝑄. By Lemma 13, (17), and (18), we have
𝑢𝑛(𝑡) > 0 in (0, 1]. Set V𝑛 = 𝑢𝑛/‖𝑢𝑛‖. Then V𝑛 = 𝐴𝜇

𝑛

𝑢𝑛/‖𝑢𝑛‖.
From the continuity of 𝑓(𝑡, 𝑢), it is easy to see that {V𝑛}
is relatively compact in 𝐶[0, 1]. Taking a subsequence and
relabeling if necessary, suppose V𝑛 → V in 𝐶[0, 1]. Then
‖V‖ = 1 and V ∈ 𝑄.

On the other hand, from (H2) we know

𝑓 (𝑡, 𝑢) ∈ [𝑏∞ (𝑡) 𝑢 − 𝜁
1 (𝑡, 𝑢) , 𝑏

∞
(𝑡) 𝑢 + 𝜁

2 (𝑡, 𝑢)] ,

∀ (𝑡, 𝑢) ∈ 𝐽 × R
+

.

(32)

Therefore, by virtue of (30), we know

V
𝑛 (𝑡) ≤ 𝜇

𝑛 ∫

1

0

𝐺 (𝑡, 𝑠) (𝑏
∞

(𝑠) V𝑛 (𝑠) +
𝜁
2

(𝑠, 𝑢
𝑛 (𝑠))

𝑢
𝑛



) d𝑠,

(33)

V
𝑛 (𝑡) ≥ 𝜇

𝑛 ∫

1

0

𝐺 (𝑡, 𝑠) (𝑏
∞ (𝑠) V𝑛 (𝑠) −

𝜁
1

(𝑠, 𝑢
𝑛 (𝑠))

𝑢
𝑛



) d𝑠.

(34)

Let 𝜓
∗ and 𝜓∗ be the positive eigenfunctions of 𝐿

∗

𝑏
∞ , 𝐿
∗

𝑏
∞

corresponding to𝜆
1
(𝑏
∞

) and𝜆
1
(𝑏
∞

), respectively.Then from
(33), it follows that

⟨V
𝑛
, 𝜓
∗

⟩

≤ 𝜇𝑛 ⟨𝐿𝑏∞V𝑛, 𝜓
∗

⟩

+ 𝜇
𝑛 ∫

1

0

𝜓
∗

(𝑡) ∫

1

0

𝐺 (𝑡, 𝑠)
𝜁
2

(𝑠, 𝑢
𝑛 (𝑠))

𝑢
𝑛



d𝑠 d𝑡.

(35)

Letting 𝑛 → +∞ and using condition (H2), we have

⟨V, 𝜓
∗

⟩ ≤ 𝜇 ⟨𝐿
𝑏
∞V, 𝜓
∗

⟩ = 𝜇 ⟨V, 𝐿
∗

𝑏
∞𝜓
∗

⟩ = 𝜇 ⟨V,
𝜓
∗

𝜆
1 (𝑏∞)

⟩ ,

(36)

which implies 𝜇 ≥ 𝜆
1
(𝑏
∞

). Similarly, one can deduce from
(34) that 𝜇 ≤ 𝜆

1
(𝑏
∞

).
To sum up, 𝜆

1
(𝑏
∞

) ≤ 𝜇 ≤ 𝜆
1
(𝑏
∞

), which contradicts with
𝜇 ∈ [𝑐, 𝑑]. The conclusion of this lemma follows.

Lemma 15. For 𝜇 ∈ (0, 𝜆
1
(𝑏
∞

)), there exists 𝑅
1

> 0 such that

deg (𝐼 − 𝐴
𝜇, 𝐵𝑅, 0) = 1, ∀𝑅 ≥ 𝑅1. (37)
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Proof. Notice that [0, 𝜇] ∩ [𝜆
1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)] = 0. From
Lemma 14, there exists 𝑅

1
> 0 such that

𝑢 ̸= 𝐴
𝜆
𝑢, ∀𝜆 ∈ [0, 𝜇] , ∀𝑢 ∈ 𝐶 [0, 1] with ‖𝑢‖ ≥ 𝑅

1
,

(38)

which means

𝑢 ̸= 𝜏𝐴
𝜇
𝑢, ∀𝜏 ∈ [0, 1] , ∀𝑢 ∈ 𝐶 [0, 1] with ‖𝑢‖ ≥ 𝑅

1
.

(39)

Therefore, by the homotopy invariance of topological
degree, we have

deg (𝐼 − 𝐴
𝜇
, 𝐵
𝑅

, 0) = deg (𝐼, 𝐵
𝑅

, 0) = 1, ∀𝑅 ≥ 𝑅
1
. (40)

Lemma 16. For 𝜆 > 𝜆1(𝑏∞), there exists 𝑅2 > 0 such that

deg (𝐼 − 𝐴
𝜆
, 𝐵
𝑅

, 0) = 0, ∀𝑅 ≥ 𝑅
2
. (41)

Proof. We first prove that for 𝜆 > 𝜆
1
(𝑏
∞

), there exists 𝑅
2

> 0

such that

𝐴
𝜆
𝑢 ̸= 𝜇𝑢, ∀𝜇 ∈ (0, 1] , ∀𝑢 ∈ 𝐶 [0, 1] with ‖𝑢‖ ≥ 𝑅

2
.

(42)

Suppose, on the contrary, that there exist {(𝜇𝑛, 𝑢𝑛)} ⊂

(0, 1] × 𝐶[0, 1] with ‖𝑢𝑛‖ → ∞ (𝑛 → +∞) such that
𝐴𝜆𝑢𝑛 = 𝜇𝑛𝑢𝑛.

By Lemma 13, 𝑢𝑛(𝑡) > 0 in (0, 1]. Set V𝑛 = 𝑢𝑛/‖𝑢𝑛‖; that is,
𝜇𝑛V𝑛 = 𝐴𝜆𝑢𝑛/‖𝑢𝑛‖. Without loss of generality, assume 𝜇𝑛 →

𝜇 ∈ [0, 1]. First we show𝜇 ̸= 0. From (32) and the continuity of
𝑓(𝑡, 𝑢), it is easy to see that𝐴𝜆𝑢𝑛/‖𝑢𝑛‖ is relatively compact in
𝐶[0, 1]. Suppose (𝐴𝜆𝑢𝑛/‖𝑢

𝑛
‖) → 𝑦. Notice that V

𝑛
∈ 𝑄 and

‖V
𝑛
‖ = 1. Therefore, V

𝑛
(𝑡) ≥ 𝑡

2 for 𝑡 ∈ (0, 1]. Consequently,

𝜇
𝑛
V
𝑛 (𝑡)

=
𝐴𝜆𝑢𝑛 (𝑡)

𝑢
𝑛



≥ 𝜆 ∫

1

0

𝐺 (𝑡, 𝑠) (𝑏
∞ (𝑠) V𝑛 (𝑠) −

𝜁
1 (𝑠, 𝑢𝑛 (𝑠))

𝑢
𝑛



) d𝑠

≥ 𝜆𝑡
2max
𝜏∈𝐽

∫

1

0

𝑠
2
𝐺 (𝜏, 𝑠) 𝑏

∞ (𝑠) d𝑠

− 𝜆 ∫

1

0

𝐺 (𝑡, 𝑠)
𝜁
1

(𝑠, 𝑢
𝑛 (𝑠))

𝑢
𝑛



d𝑠.

(43)

From (H2) and Lemma 11, it is easy to see max
𝜏∈𝐽

∫
1

0
𝑠
2
𝐺(𝜏, 𝑠)𝑏

∞
(𝑠)d𝑠 > 0. If 𝜇 = 0, letting 𝑛 → +∞ in

the above inequality, we can obtain a contradiction. So 𝜇 ∈

(0, 1] and it is reasonable to suppose V
𝑛

→ V (relabeling if
necessary) in 𝐶[0, 1]. By virtue of (32), we know

⟨V
𝑛
, 𝜓
∗

⟩ ≥ ⟨𝜇
𝑛
V
𝑛
, 𝜓
∗

⟩

=
1

𝑢
𝑛



⟨𝐴
𝜆
𝑢
𝑛
, 𝜓
∗

⟩

≥ 𝜆 ⟨𝐿
𝑏
∞

V
𝑛
, 𝜓
∗

⟩

− 𝜆 ∫

1

0

𝜓
∗ (𝑡) ∫

1

0

𝐺 (𝑡, 𝑠)
𝜁
1

(𝑠, 𝑢
𝑛 (𝑠))

𝑢
𝑛



d𝑠 d𝑡.

(44)

Letting 𝑛 → +∞ and using condition (H2), we obtain
that

⟨V, 𝜓
∗⟩ ≥ 𝜆 ⟨𝐿𝑏

∞

V, 𝜓∗⟩

= 𝜆 ⟨V, 𝐿
∗

𝑏
∞

𝜓
∗

⟩ = 𝜆 ⟨V,
𝜓
∗

𝜆
1

(𝑏
∞

)
⟩ ,

(45)

which implies 𝜆 ≤ 𝜆
1
(𝑏
∞

). This is a contradiction.Therefore,
(42) holds. By Lemma 9, for each 𝜆 > 𝜆1(𝑏∞), there exists
𝑅2 > 0 such that

deg (𝐼 − 𝐴
𝜆
, 𝐵
𝑅

, 0) = 0, ∀𝑅 ≥ 𝑅
2
. (46)

The conclusion of this lemma follows.

Theorem 17. [𝜆
1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)] is a bifurcation interval of
positive solutions from infinity for BVP (27), and there exists
no bifurcation interval of positive solutions from infinity which
is disjoint with [𝜆

1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)]. More precisely, there exists
an unbounded component C∞ of solutions of BVP (27) which
meets [𝜆

1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)] × ∞ and is unbounded in 𝜆 direction.

Proof. From Lemma 13, we need only to prove that the
conclusion holds for (29).

For fixed 𝑛 ∈ N with 𝜆1(𝑏
∞

) − 1/𝑛 > 0, by Lemmas 15,
16, and their proof, there exists 𝑅 > 0 such that all of the
conditions of Lemma 8 are satisfied with 𝐺(𝜆, 𝑢) = 𝐴𝜆𝑢, 𝑎 =

𝜆1(𝑏
∞

) − 1/𝑛, and 𝑏 = 𝜆1(𝑏∞) + 1/𝑛. So, there exists a closed
connected set C𝑛 of solutions of (29), which is unbounded
in [𝜆1(𝑏

∞
) − 1/𝑛, 𝜆1(𝑏∞) + 1/𝑛] × 𝐶[0, 1]. From Lemma 14,

the case (ii) of Lemma 8 cannot occur. Thus, C𝑛 bifurcates
from infinity in [𝜆1(𝑏

∞
) − 1/𝑛, 𝜆1(𝑏∞) + 1/𝑛] × 𝐶[0, 1] and is

unbounded in 𝜆 direction. In addition, for any closed interval
[𝑐, 𝑑] ⊂ [𝜆

1
(𝑏
∞

) − 1/𝑛, 𝜆
1
(𝑏
∞

) + 1/𝑛] \ [𝜆
1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)], by
Lemma 14, the set {𝑢 ∈ 𝐶[0, 1] : (𝜆, 𝑢) ∈ Σ, 𝜆 ∈ [𝑐, 𝑑]} is
bounded in 𝐶[0, 1]. Therefore, C

𝑛
must be bifurcated from

infinity in [𝜆
1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)] × 𝐶[0, 1], which implies thatC
𝑛

can be regarded as C∞. Consequently, C∞ is unbounded in
𝜆 direction.

By a process similar to the above, one can obtain the
following conclusions.

Lemma 18. Let [𝑐, 𝑑] ⊂ R+ be a compact interval with
[𝜆
1
(𝑎
0
), 𝜆
1
(𝑎
0
)] ∩ [𝑐, 𝑑] = 0. Then there exists 𝛿

1
> 0 such

that

𝑢 ̸= 𝐴
𝜆
𝑢, ∀𝜆 ∈ [𝑐, 𝑑] , ∀𝑢 ∈ 𝐶 [0, 1] with 0<‖𝑢‖≤𝛿

1
.

(47)
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Lemma 19. For 𝜇 ∈ (0, 𝜆
1
(𝑎
0
)), there exists 𝛿

1
> 0 such that

deg (𝐼 − 𝐴
𝜇
, 𝐵
𝛿
, 0) = 1, ∀𝛿 ∈ (0, 𝛿

1
] . (48)

Lemma 20. For 𝜆 > 𝜆
1
(𝑎
0
), there exists 𝛿

2
> 0 such that

deg (𝐼 − 𝐴
𝜆
, 𝐵
𝛿
, 0) = 0, ∀𝛿 ∈ (0, 𝛿

2
] . (49)

Finally, using Lemmas 18–20, Lemma 7, and the similar
method used in the proof of Theorem 17, the following
conclusion can be proved.

Theorem 21. [𝜆
1
(𝑎
0
), 𝜆
1
(𝑎
0
)] is a bifurcation interval of

positive solutions from the trivial solution for BVP (27); that is,
there exists an unbounded component C

0
of positive solutions

of BVP (27), which meets [𝜆
1
(𝑎
0
), 𝜆
1
(𝑎
0
)] × {0}. Moreover,

there exists no bifurcation interval of positive solutions from
the trivial solution which is disjointed with [𝜆

1
(𝑎
0
), 𝜆
1
(𝑎
0
)].

4. Main Results

The main results of this paper are the following two conclu-
sions.

Theorem 22. Suppose that (H1) and (H2) hold. In addition,
suppose either

(i) 𝜆
1
(𝑏
∞

) < 1 < 𝜆
1
(𝑎
0
) or

(ii) 𝜆1(𝑎0) < 1 < 𝜆1(𝑏
∞

).

Then BVP (3) has at least one positive solution.

Proof. We need only to prove that there is a component of Σ

that crosses the hyperplane {1} × 𝐶(𝐽), whereΣ ⊂ R+×𝐶[0, 1]

is the closure of the set of positive solutions of BVP (27).
Notice that (0, 0) is the only solution of (27) with 𝜆 = 0.
By Lemmas 14 and 18, for any component C of Σ, we have
C ∩ ({0} × 𝐶(𝐽)) = 0.

Case (i). Consider 𝜆1(𝑏∞) < 1 < 𝜆1(𝑎
0
).

FromTheorem 17, there exists an unbounded component
C∞ of solutions of (27), which meets [𝜆

1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)] × ∞

and is unbounded in 𝜆 direction.
If C∞ ∩ (R+ × {0}) = 0, by C∞ ∩ ({0} × 𝐶(𝐽)) = 0 and

Theorem 17, we know that C∞ must cross the hyperplane
{1} × 𝐶(𝐽).

If C∞ ∩ (R+ × {0}) ̸= 0, by Theorem 21, we know C∞ ∩

(R+ × {0}) ∈ [𝜆
1
(𝑎
0
), 𝜆
1
(𝑎
0
)] × {0}. Therefore, C∞ joins

[𝜆
1
(𝑎
0
), 𝜆
1
(𝑎
0
)] × {0} to [𝜆

1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)] × ∞. This together
with 𝜆

1
(𝑏
∞

) < 1 < 𝜆
1
(𝑎
0
) guarantees that C∞ crosses the

hyperplane {1} × 𝐶(𝐽).

Case (ii). Consider 𝜆
1
(𝑎
0
) < 1 < 𝜆

1
(𝑏
∞

).
From Theorem 21, there exists an unbounded compo-

nent C
0
of positive solutions of BVP (27), which meets

[𝜆
1
(𝑎
0
), 𝜆
1
(𝑎
0
)] × {0}. Moreover, there exists no bifurcation

interval of positive solutions from the trivial solution, which
is disjointed with [𝜆

1
(𝑎
0
), 𝜆
1
(𝑎
0
)].

We show that C
0 must cross the hyperplane {1} × 𝐶(𝐽).

Suppose, on the contrary,C
0

∩ {1} × 𝐶(𝐽) = 0. From 𝜆
1
(𝑎
0
) <

1, we knowC
0

⊂ [0, 1] × 𝐶(𝐽). Notice thatC
0
is unbounded.

Then C
0
must joint [0, 1] × {∞}. By Theorem 17, it is a

contradiction with 𝜆
1
(𝑏
∞

) > 1. Thus the result follows.

Theorem 23. Suppose that (H1), (H2), and the following
assumption holds.

(H3) There exist 𝑅 > 0 and ℎ ∈ 𝐿[0, 1] such that for 𝑡 ∈ 𝐽,

sup
𝑡
2
𝑅≤𝑢≤𝑅

𝐹 (𝑡, 𝑢) ≤ ℎ (𝑡) , max
𝑡∈𝐽

∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) d𝑠 < 𝑅.

(50)

In addition, suppose

𝜆
1

(𝑎
0
) < 1, 𝜆

1
(𝑏
∞

) < 1. (51)

Then BVP (3) has at least two positive solutions.

Proof. FromTheorems 17 and 21, there exist two unbounded
components C

0
and C∞ of solutions of (27), which meet

[𝜆
1
(𝑎
0
), 𝜆
1
(𝑎
0
)] × {0} and [𝜆

1
(𝑏
∞

), 𝜆
1
(𝑏
∞

)] × ∞, respectively.
It is sufficient to show thatC

0
andC∞ are disjoint in [0, 1] ×

𝐶(𝐽) and both cross the hyperplane {1} × 𝐶(𝐽).
For this sake, from assumption (H3), there exists 𝜀 > 0

such that

(1 + 𝜀)max
𝑡∈𝐽

∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) d𝑠 < 𝑅. (52)

Now we show Σ ∩ ([0, 1 + 𝜀] × 𝜕𝐵
𝑅) = 0, where 𝐵𝑅 = {𝑢 ∈

𝐶(𝐽) : ‖𝑢‖ < 𝑅}. Suppose that, on the contrary, (𝜆, 𝑢) is a
solution of (27) such that 0 ≤ 𝜆 ≤ 1 + 𝜀 and ‖𝑢‖ = 𝑅. Then
by Lemma 13, we know 𝑢 ∈ 𝑄. Therefore, 𝑢(𝑡) ∈ [𝑡

2
𝑅, 𝑅] for

𝑡 ∈ 𝐽. From (H3), (30), and Lemma 13, it follows that

𝑅 = ‖𝑢‖ = max
𝑡∈𝐽

𝜆 ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) d𝑠

≤ (1 + 𝜀)max
𝑡∈𝐽

∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) d𝑠 < 𝑅,

(53)

which is a contradiction. Thus, Σ ∩ ([0, 1 + 𝜀] × 𝜕𝐵
𝑅

) = 0,
which implies

C0 ∩ ([0, 1 + 𝜀] × 𝜕𝐵𝑅) = 0,

C
∞

∩ ([0, 1 + 𝜀] × 𝜕𝐵
𝑅

) = 0.

(54)

Immediately,C0 andC∞ are disjoint in [0, 1] × 𝐶(𝐽).
Notice that C0 and C∞ are both unbounded. Moreover,

C0 ∩ ({0} × 𝐶(𝐽)) = 0, C∞ ∩ ({0} × 𝐶(𝐽)) = 0, and C∞

is unbounded in 𝜆 direction. So C
0
and C∞ both cross the

hyperplane {1}×𝐶(𝐽).Thismeans that there exist (1, 𝑢
1
) ∈ C
0

and (1, 𝑢
2
) ∈ C∞ with ‖𝑢

1
‖ < 𝑅 and ‖𝑢

2
‖ > 𝑅.

Consequently, BVP (3) has at least two positive solutions.
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5. An Example

Let 𝜌 be the unique characteristic value of 𝐿1 corresponding
to positive eigenfunctions with 𝑎(𝑡) ≡ 1 in (25). From
Lemma 12 it follows that 𝜌 exists.

Example 24. Consider the following boundary value problem
of fractional differential inclusions

𝐶

𝐷
3.5

0
+ 𝑢 (𝑡) ∈ −𝐹 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝑢
(𝑗)

(0) = 0, 0 ≤ 𝑗 ≤ 3, 𝑗 ̸= 2,

𝑢


(1) = 0,

(55)

where

𝐹 (𝑡, 𝑢) = [
𝜌

4
𝑢 − 𝜉 (𝑡, 𝑢) ,

𝜌

2
𝑢 + 𝜉
2 (𝑡, 𝑢)]

∩ [2𝜌𝑢 − 𝜁
1 (𝑡, 𝑢) , 3𝜌𝑢 + 𝜉 (𝑡, 𝑢)] ,

𝜉 (𝑡, 𝑢) =

{{{

{{{

{

𝜌

4
𝑡
2
𝑢
3
, 𝑡 ∈ 𝐽, 𝑢 ∈ [0, 1] ,

𝜌

4
𝑡
2
√𝑢, 𝑡 ∈ 𝐽, 𝑢 ∈ [1, +∞) ,

𝜁
1 (𝑡, 𝑢) =

{{

{{

{

2𝜌𝑢, 𝑡 ∈ 𝐽, 𝑢 ∈ [0, 1] ,

2𝜌√𝑢, 𝑡 ∈ 𝐽, 𝑢 ∈ [1, +∞) ,

𝜉2 (𝑡, 𝑢) =
5𝜌

2
𝑢 + 𝜉 (𝑡, 𝑢) .

(56)

Then BVP (55) has at least one positive solution.

Proof. BVP (55) can be regarded as the form (3). From (56),
one can see that (H1) and (H2) are satisfied with 𝑎

0
(𝑡) = 𝜌/4,

𝑏
∞(𝑡) = 2𝜌, 𝑎

0
(𝑡) = 𝜌/2, 𝑏

∞
(𝑡) = 3𝜌, and 𝜉1(𝑡, 𝑢) = 𝜁2(𝑡, 𝑢) =

𝜉(𝑡, 𝑢).
By the definition of 𝜌, it is easy to see 𝜆

1
(𝑏
∞

) = 1/2 < 1 <

2 = 𝜆
1
(𝑎
0
).

Therefore, by Theorem 22, BVP (55) has at least one
positive solution.
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