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Let A be a closed linear operator on a Banach space E. We study periodic
solutions of the differential equation dNu(t)/dtN = Au(t) with an arbitrary
integer N ≥ 1.

Let E be a Banach space and let A be a closed linear operator on E with domain
D(A) (not necessarily dense in E). Given a number T > 0 and an integer N ≥ 1,
we consider the problem

dN

dtN
u(t) = Au(t), u(t +T ) = u(t), −∞ < t < ∞. (1)

A function u : R → E is a classical solution of (1) if u ∈ CN(R,E), u(t) ∈
D(A) for −∞ < t < ∞, and (1) is satisfied. Each classical solution of (1) is a
smooth T -periodic function on R. Therefore, (1) is called a periodic problem.

The equivalent boundary value problem on the finite interval [0,T ] is

dN

dtN
u(t) = Au(t), 0 ≤ t ≤ T ,

u(j)(0) = u(j)(T ), j = 0, . . . ,N −1,

(2)

where classical solutions belong to CN([0,T ],E). We deal mainly with problem
(1) taking into account (2).

These problems and their modifications (cf. (30) below) have been treated
often for the case N = 1 under some special assumptions. We refer to several
examples in the literature:

(i) A is bounded [2].
(ii) A is the infinitesimal generator of a C0 semigroup [5, 8].
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(iii) E is a Hilbert space and A is normal [11].
(iv) A is a differential operator of a prescribed structure [3, 9, 11].
There are more general problems of such kind, see for instance [4, 6, 9, 11].

Extensive bibliography of the subject can be found in [11]. Arguments of the
periodicity are very useful also for the spectral theory of C0 semigroups [1, 8].

The aim of this paper is to show that the periodic problem (1) may be studied
by elementary approach, without loss of generality. It is clear that (1) has always
the trivial solution u(t) ≡ 0. We first consider the question: are there other
classical solutions? A result similar to Theorem 1 is given in [6, page 65] for
the case N = 1 (see also [4, Theorem 4.3]).

Theorem 1. Let A be a closed linear operator on a Banach space E. Then the
periodic problem (1) has exactly one classical solution u(t) ≡ 0 if and only if
none of the numbers λk = (2πik/T )N , k ∈ Z, is an eigenvalue of A.

Proof. If Afk = λkfk for some λk = (2πik/T )N with eigenvector fk �= 0 then
the function u(t) = exp(2πikt/T )fk is a nontrivial classical solution of (1). In
the case of a real E and an eigenvalue λk with k �= 0 the corresponding real
solution of (1) is obtained by the real (or the imaginary) part of the function
u(t) = exp(2πikt/T )fk .

Assume now that none of the λk = (2πik/T )N , k ∈ Z, is an eigenvalue of A.
Let u(t) be a classical solution of (1). Its Fourier coefficients are defined by

fk = 1

T

∫ T

0
u(t)e−2πikt/T dt. (3)

Then fk ∈ D(A) and

Afk = 1

T

∫ T

0
Au(t)e−2πikt/T dt = 1

T

∫ T

0
u(N)(t)e−2πikt/T dt

= 1

T

(
2πik

T

)N ∫ T

0
u(t)e−2πikt/T dt = λkfk.

(4)

By the assumption we obtain fk = 0 for all k ∈ Z, that is,

∫ T

0
u(t)e−2πikt/T dt = 0, k ∈ Z. (5)

For a functional f ∗ ∈ E∗ the scalar T -periodic function f ∗(u(t)) is continuous
on R and orthogonal to all exp(2πikt/T ) on [0,T ]. Hence f ∗(u(t)) ≡ 0 for
−∞ < t < ∞. By the Hahn-Banach theorem u(t) ≡ 0. �

Remark 2. The proof remains true under the assumptions that E is a sequentially
complete locally convex space and A is a sequentially closed linear operator on
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E (i.e., from {gn} ⊂ D(A), gn → g, and Agn → h, it follows that g ∈ D(A)

and Ag = h).

Thus, if none of the λk = (2πik/T )N , k ∈ Z, is an eigenvalue of A then
a solution of the periodic problem (1) must be trivial. Suppose now that there
exist eigenvalues of A among the numbers λk . It is clear that the function

u(t) = u
(
t;fk

) ≡ exp

(
2πikt

T

)
fk, with Afk =

(
2πik

T

)N

fk, (6)

is a classical solution of (1) (nontrivial if fk �= 0). We will show that every clas-
sical solution of (1) can be expressed by linear combinations of the elementary
solutions (6). The next result implies also Theorem 1.

Theorem 3. Let A be a closed linear operator on a Banach space E and let
u(t) be a classical solution of the periodic problem (1). Then u(t) is represented
by the Fourier series

u(t) =
∞∑

k=−∞
e2πikt/T fk (7)

with elements fk ∈ D(A) such that Afk = (2πik/T )Nfk . The series (7) con-
verges to u(t) in the norm of E uniformly on R, that is, for every ε > 0 there
exists an integer nε such that

∥∥∥∥∥u(t)−
n∑

k=−n

e2πikt/T fk

∥∥∥∥∥ < ε (8)

for n > nε and −∞ < t < ∞.

Proof. For k ∈ Z we define fk by (3). Since u(t) is a smooth T -periodic function
on R, its Fourier series (7) converges in E to u(t) uniformly on R. The relations
Afk = (2πik/T )Nfk follow from (4). �

Remark 4. The uniform convergence of the Fourier series can be shown in the
usual way using Dirichlet integral. The proof in detail is given in [10] for the
case of vector T -periodic Hölder continuous functions.

Remark 5. Let N ≥ 2 and u(t) be a classical solution of (1). Since

fk = 1

T

∫ T

0
u(t)e−2πikt/T dt = 1

T

(
T

2πik

)2 ∫ T

0
u′′(t)e−2πikt/T dt, (9)
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we have ‖fk‖ = O(1/k2), and the Fourier series (7) converges absolutely, that is,

∞∑
k=−∞

∥∥fk

∥∥ < ∞. (10)

This fact yields an elementary proof of the uniform convergence of (7) in the case
N ≥ 2. However, for N = 1 the Fourier series (7) may be only conditionally
convergent in contrast to the classical numerical case (cf. [12, Chapter VI.3,
Theorem 3.8]).

Example 6. Let E = c0 and Ax = (ix1,2ix2,3ix3, . . . ) with domain

D(A) = {(
x1,x2,x3, . . .

) ∈ c0 : kxk −→ 0 as k −→ ∞}
. (11)

For the equation du/dt = Au(t) we consider the 2π -periodic classical solution

u(t) =
(

0,
e2it

2log2
,

e3it

3log3
, . . .

)
=

∞∑
k=2

eiktfk, (12)

where

fk =
(

. . .0,
1

k logk
,0 . . .

)
. (13)

The Fourier series converges in c0 uniformly on R, but
∑‖fk‖ = ∑

(k logk)−1

= ∞.

Theorems 1 and 3 point out the main property of classical periodic solutions
that their Fourier coefficients (3) satisfy the relations Afk = (2πik/T )Nfk ,
k ∈ Z. We now define a weak solution of the periodic problem (1) as follows.

Definition 7. A function u : R → E is a weak solution of (1) if u ∈ C(R,E),
u(t +T ) = u(t) for −∞ < t < ∞, and its Fourier coefficients (3) satisfy the
relations fk ∈ D(A), Afk = (2πik/T )Nfk for all k ∈ Z.

Clearly, if none of the numbers λk = (2πik/T )N , k ∈ Z, is an eigenvalue of
A then the periodic problem (1) has exactly one weak solution u(t) ≡ 0 (which
is the unique classical solution, too). In the general case, a weak solution of (1)
is a continuous T -periodic function u : R → E with the Fourier series

u(t) ∼
∞∑

k=−∞
e2πikt/T fk (14)

consisting of the elementary solutions (6). Note that this Fourier series may be
divergent in E for each t ∈ R.
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Example 8. Let E = BU(R) be the Banach space of bounded uniformly contin-
uous complex-valued functions on R with the supremum norm. Define Af = f ′
on D(A) = {f ∈ E : f ′ exists and f ′ ∈ E}. It is well known that there exists
a scalar 2π -periodic function ϕ(τ) which is continuous on R but its Fourier
series diverges in some points τ ∈ R (see [12, Chapter VIII.1]). Choosing such
a function ϕ(τ) with the Fourier series

∑∞
−∞ cke

ikτ we set U(x, t) = ϕ(x + t)

for −∞ < x,t < ∞. Then U(·, t) ∈ E for each t ∈ R and u(t) ≡ U(·, t) is a
vector function of R to E. Evidently, u ∈ C(R,E) and u(t + T ) = u(t) with
T = 2π . Computing for T = 2π the vector Fourier coefficients of u(t) we have

fk = 1

2π

∫ 2π

0
u(t)e−ikt dt = 1

2π

∫ 2π

0
ϕ(x + t)e−ikt dt

= 1

2π

∫ 2π+x

x

ϕ(τ)e−ik(τ−x)dτ = 1

2π
eikx

∫ 2π+x

x

ϕ(τ)e−ikτ dτ

= cke
ikx,

(15)

whence fk ∈ D(A) and Afk = ikfk . Accordingly, the function u(t) is a weak
solution of 2π -periodic problem for the equation du/dt = Au(t) in the space
E = BU(R). The Fourier series of u(t) has the form

u(t) ∼
∞∑

k=−∞
eiktfk =

∞∑
k=−∞

eikt
(
cke

ikx
) =

∞∑
k=−∞

cke
ik(x+t). (16)

This series diverges in E = BU(R) for each t = t0 since
∑∞

−∞ cke
ik(x+t0) is the

Fourier series of the function ϕ(x + t0).

So, if u(t) is a weak solution of (1) then the sequence of the partial sums

sn(t) ≡
n∑

k=−n

e2πikt/T fk, fk = 1

T

∫ T

0
u(τ)e−2πikτ/T dτ, (17)

may be divergent in E for each t ∈ R. But we can always approximate a weak
solution u(t) by means of the Fejer sums

σn(t) ≡ 1

n

(
s0(t)+s1(t)+·· ·+sn−1(t)

) = 1

T

∫ T

0
Kn(t −τ)u(τ)dτ, (18)

where

Kn(t) ≡ 1

n

(
sin(πnt/T )

sin(πt/T )

)2

. (19)

The positivity of the Fejer kernels Kn(t) allows to adapt for a vector case
the usual proof of the fact that σn(t) → u(t) as n → ∞ uniformly on R
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(see [12, pages 84–92]). Thus for every ε > 0 there exists an integer nε > 0
such that ‖u(t)−σn(t)‖ < ε for n > nε and −∞ < t < ∞.

We now consider the question of the connection between weak and classical
solutions of the periodic problem (1). This verifies our definition of a weak
solution. Evidently, each classical solution of (1) is a weak solution, too. A
more general assertion is the following.

Theorem 9. If u(t) is a classical solution of the periodic problem (1) then
the functions u(t), u′(t), . . . , u(N)(t) are also weak solutions. Conversely, an
arbitrary weak solution of (1), say ũ(t), is represented in the form ũ(t) =
u(N)(t)+ f̃0, where u(t) is a classical solution of (1) and f̃0 is the zero Fourier
coefficient of ũ(t), that is, an element of D(A) such that Af̃0 = 0. In other
words, each weak solution of (1) is the N th derivative of a classical solution up
to an addition of an element from the kernel of A. The Fourier coefficients of
these solutions ũ(t) and u(t) are related as follows:

f̃k =
(

2πik

T

)N

fk for k �= 0, (20)

and for k = 0 the connection between f̃0 and f0 is missing (so it can be defined
at will).

Proof. Let u(t) be a classical solution of (1). Given m ∈ {1, . . . ,N}, we consider
the function u(m)(t). Clearly, u(m) ∈ C(R,E) and u(m)(t + T ) = u(m)(t) for
−∞ < t < ∞. Computing the Fourier coefficients of u(m)(t) we have

f
(m)
k ≡ 1

T

∫ T

0
u(m)(t)e−2πikt/T dt

= 1

T

(
2πik

T

)m ∫ T

0
u(t)e−2πikt/T dt =

(
2πik

T

)m

fk.

(21)

The elements fk are the Fourier coefficients of the classical solution u(t). Since
fk ∈ D(A) and Afk = (2πik/T )Nfk , the coefficients f

(m)
k satisfy the same

relations. Thus u(m)(t) is a weak solution of (1).
Let now ũ(t) be an arbitrary weak solution of (1), that is, a continuous T -

periodic function of R to E with the Fourier coefficients f̃k ∈ D(A) such that
Af̃k = (2πik/T )N f̃k . Setting

v0(t) ≡ ũ(t)− f̃0;

vj (t) ≡
∫ t

0
vj−1(τ )dτ − 1

T

∫ T

0
(T −τ)vj−1(τ )dτ, j = 1, . . . ,N,

(22)
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we obtain
∫ T

0
vj (t)dt = 0, vj (t +T ) = vj (t), v

(j)
j (t) = v0(t) = ũ(t)− f̃0.

(23)
Put u(t) ≡ vN(t). Then u(t) is T -periodic on R, u ∈ CN(R,E), and u(N)(t) =
ũ(t)− f̃0. Consider the Fourier coefficients fk of u(t). By construction, we have
f0 = 0 and for k �= 0,

fk ≡ 1

T

∫ T

0
u(t)e−2πikt/T dt

= 1

T

(
T

2πik

)N ∫ T

0
u(N)(t)e−2πikt/T dt

= 1

T

(
T

2πik

)N ∫ T

0

(
ũ(t)− f̃0

)
e−2πikt/T dt

=
(

T

2πik

)N

f̃k,

(24)

whence Afk = f̃k . This implies that Aσn(t) = σ̃n(t) − f̃0 for the Fejer sums
σn(t), σ̃n(t) of the functions u(t), ũ(t), respectively. But σn(t) → u(t) and
σ̃n(t) → ũ(t) in every t ∈ R as n → ∞. Since A is closed, u(t) ∈ D(A) and
Au(t) = ũ(t)− f̃0 = u(N)(t) for −∞ < t < ∞. Thus u(t) is a classical solution
of (1) and ũ(t) = u(N)(t)+ f̃0. The relations (20) were also shown. �

Remark 10. Theorem 9 shows that the space of all classical solutions of (1) is
isomorphic to the space of all weak solutions. For example, such isomorphism
may be defined in terms of the Fourier-series expansions

u(t) =
∞∑

k=−∞
e2πikt/T fk ←→ ũ(t) ∼

∞∑
k=−∞

e2πikt/T f̃k (25)

by the relations f̃k = (2πik/T )Nfk for k �= 0 and f̃0 = f0. Here u(t) is a
classical solution of (1) and ũ(t) is the corresponding weak solution.

We now examine the space of all weak solutions of the periodic problem (1).

Theorem 11. The collection of all weak solutions of (1) is a Banach space
under the norm ∥∥∣∣u(t)

∥∥∣∣
0 ≡ max−∞<t<∞

∥∥u(t)
∥∥. (26)

The set of all finite linear combinations of elementary solutions (6) is dense in
this space with respect to the norm (26).
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Proof. It is clear that the collection of all weak solutions of (1) is a linear normed
space under the norm (26). Let {un(t)} be a Cauchy sequence of weak solutions
relative to this norm. Since E is complete, there is a limit function u(t) such that
‖|un(t)−u(t)‖|0 → 0 as n → ∞. Evidently, u(t) is continuous and T -periodic
on R. For the Fourier coefficients we have

fk,n≡ 1

T

∫ T

0
un(t)e

−2πikt/T dt −→ 1

T

∫ T

0
u(t)e−2πikt/T dt≡fk as n −→ ∞,

(27)
and Afk,n = (2πik/T )Nfk,n → (2πik/T )Nfk as n → ∞. Since A is closed,
fk ∈ D(A) and Afk = (2πik/T )Nfk . This implies that the limit function u(t)

is a weak solution of (1) and the space of all weak solutions is complete with
respect to the norm (26).

Let now u(t) be an arbitrary weak solution of (1). Each Fejer sum σn(t) of
u(t) is a finite linear combinations of elementary solutions (6) and σn(t) tends
to u(t) in the norm (26) as n → ∞. This completes the proof. �

It follows from Theorem 11 that the function u : R → E is a weak solution of
(1) if and only if there is a sequence of classical solutions of (1) which converges
to u(t) in the norm (26). A similar concept of weak solutions for the abstract
Cauchy problem may be found in [7].

We now give a self-contained description for the space of all classical solu-
tions of (1).

Theorem 12. The collection of all classical solutions of (1) is a Banach space
under the norm

∥∥∣∣u(t)
∥∥∣∣

1 ≡ max−∞<t<∞
∥∥u(t)

∥∥
D(A)

≡ max−∞<t<∞
(∥∥u(t)

∥∥+∥∥Au(t)
∥∥)

. (28)

The set of all finite linear combinations of elementary solutions (6) is dense in
this space with respect to the norm (28).

Proof. Let {un(t)} be a sequence of classical solutions of (1) which is a Cauchy
sequence relative to the norm (28). Then there exist two continuous T -periodic
functions u(t) and ũ(t) such that ‖un(t)−u(t)‖ → 0 and ‖Aun(t)− ũ(t)‖ → 0
uniformly on R as n → ∞. Since A is closed, u(t) ∈ D(A) and Au(t) = ũ(t)

for −∞ < t < ∞. So, ‖Aun(t)−Au(t)‖ → 0 uniformly on R and the Cauchy
sequence {un(t)} converges to u(t) in the norm (28). We will show that u(t) is
a classical solution of (1). Note at first that u(t) is a weak solution, since this
function is a limit relative to the norm (26) of the sequence of classical solutions
un(t). This implies Afk = (2πik/T )Nfk for the Fourier coefficients of u(t).
Similarly, the function ũ(t) = Au(t) is a limit with respect to the norm (26)
of the sequence of weak solutions u

(N)
n (t) = Aun(t), whence ũ(t) is a weak
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solution, too. Computing the Fourier coefficients of ũ(t) we obtain

f̃k ≡ 1

T

∫ T

0
ũ(t)e−2πikt/T dt = 1

T

∫ T

0
Au(t)e−2πikt/T dt

= Afk =
(

2πik

T

)N

fk, k ∈ Z.

(29)

It follows from (20) that the Fourier coefficients of u(t) are the same as the
coefficients of the classical solution of (1) which was constructed in Theorem 9
for a weak solution ũ(t). Thus u(t) coincides with the classical solution and the
space of all classical solutions is complete with respect to the norm (28).

It remains to show that linear combinations of the elementary solutions (6) is
dense in this space with respect to (28). To this end suppose now u(t) is an arbi-
trary classical solution of (1) with the Fourier series

∑∞
k=−∞ exp(2πikt/T )fk .

The Fourier coefficients of Au(t) are equal to Afk and each Fejer sum for the
function Au(t) has the form Aσn(t), where σn(t) is the Fejer sum for the func-
tion u(t). Since σn(t) → u(t) and Aσn(t) → Au(t) as n → ∞ uniformly on R,
the sequence {σn(t)} converges to u(t) in the norm (28). Every function σn(t) is
a linear combination of elementary solutions (6). This completes the proof. �

Theorems 11 and 12 may be treated as follows. In the space of all continuous
T -periodic functions u : R → E we select the linear subspace spanned by the
elementary solutions (6). Then the closure of this subspace with respect to the
norm (26) is the set of all weak solutions of (1), and the closure of this subspace
with respect to the norm (28) is the set of all classical solutions of (1).

We supplement the paper with a uniqueness theorem for the boundary value
problem on the finite interval [0,T ]. Let p : ]0,T [→ E be a continuous function
on the open interval ]0,T [, and u0, . . . ,uN−1 any elements of E. Consider the
problem (cf. (2))

dN

dtN
u(t) = Au(t)+p(t), 0 < t < T,

u(j)(0)−u(j)(T ) = uj , j = 0, . . . ,N −1.

(30)

A function u : [0,T ] → E is a strong solution of (30) if u ∈ CN(]0,T [,E)∩
CN−1([0,T ],E), u(t) ∈ D(A) for 0 < t < T , and (30) is satisfied. We stress
that the differential equation of (30) holds in the open interval ]0,T [.

Theorem 13. Let A be a closed linear operator on a Banach space E. Given
p(t) and u0, . . . ,uN−1 ∈ E, suppose that problem (30) has a strong solution
u(t). This solution is unique if and only if none of the numbers λk ≡ (2πik/T )N ,
k ∈ Z, is an eigenvalue of A.
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Proof. The necessary part can be shown as in Theorem 1 by means of the ele-
mentary solutions (6). For the proof of sufficiency, the immediate application of
Theorem 1 is impossible because of the distinction between strong and classical
solutions. The reasoning of Theorem 1 requires a small modification. Assume
that none of the λk ≡ (2πik/T )N , k ∈ Z is an eigenvalue of A. Let ũ(t) be
another strong solution of (30) with the same p(t), u0, . . . ,uN−1. The function
v(t) ≡ u(t)− ũ(t) satisfies the equation dNv/dtN = Av(t) for 0 < t < T , and
v(0) = v(T ), . . . , v(N−1)(0) = v(N−1)(T ). Choosing ε > 0 and letting ε → 0+
we obtain the relations

gk(ε) ≡
∫ T −ε

ε

v(t)e−2πikt/T dt −→
∫ T

0
v(t)e−2πikt/T dt ≡ gk, (31)

Agk(ε) =
∫ T −ε

ε

Av(t)e−2πikt/T dt

=
∫ T −ε

ε

v(N)(t)e−2πikt/T dt

=
(

vN−1(t)+·· ·+
(

2πik

T

)N−1

v(t)

)
e−2πikt/T

∣∣∣∣
T −ε

ε

+
(

2πik

T

)N

gk(ε) −→
(

2πik

T

)N

gk.

(32)

Since A is closed, gk ∈ D(A) and Agk = (2πik/T )Ngk . By assumption, gk = 0
for all k ∈ Z and hence v(t) ≡ 0 on [0,T ]. Hence u(t) ≡ ũ(t). �
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