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The problem ẋ = f (t,x), x(−∞) = x(+∞), where x(±∞) := limt→±∞ x(t) ∈ Rn,
is considered. Some existence results for this problem are established using the
fixed point method and topological degree theory.

1. Introduction

Let f : R × Rn → Rn be a continuous function; consider the boundary value
problem

ẋ = f (t,x), x(−∞) = x(+∞), (1.1)

where

x(±∞) := lim
t→±∞

x(t) ∈ R
n. (1.2)

The solutions of problem (1.1) are often called, by Poincaré, homoclinic solu-
tions. They appear in certain celeste mechanics and cosmogony problems.

Problem (1.1) can be considered as a generalization of the boundary value
problem

ẋ = f (t,x), x(a) = x(b), (1.3)

when a→−∞ and b→ +∞.
The boundary value problems on compact intervals have been studied in nu-

merous papers but the boundary value problems on noncompact intervals have
been less studied. A first substantial approach of these problems, using func-
tional methods are due to Kartsatos [8]. Last time, this type of results has been
published in [2, 3, 4, 5, 6].

For problem (1.3), Mawhin obtained many existence results through topolog-
ical degree theory; in [9, 10, 11] the reader can find the fundamental ideas of the
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method developed by Mawhin, the main results, and a rich bibliography in this
field. Some approaches of Mawhin dedicated to problem (1.3) can be adjusted
for problem (1.1).

The present paper is dedicated to the existence of solutions for problem (1.1);
the used method will be the reduction of problem (1.1) to a fixed point problem
for a convenient operator defined in a suitable functional space. Such a space is

Cl :=
{
x : R −→ R

n, ∃x(±∞) ∈ R
n}. (1.4)

Section 2 deals especially to praise the main properties of the space Cl. The
specified isomorphism between Cl and C([a,b],Rn) permits to obtain a com-
pactness criterion in Cl (see [1]). We define in Cl the notion of an associated
operator to problem (1.1) and indicate the construction method of such opera-
tor together with its main properties. An associated operator for problem (1.1)
is an operator whose fixed points are solutions for (1.1).

In Section 3, assuming the existence and uniqueness on R of the solutions for
the problem

ẋ = f (t,x), x(0) = y, (1.5)

one builds up associated operators mapping in Rn; consequently, their topolog-
ical degree will be a Brouwer one.

In Section 4, the continuation method is presented (see Proposition 4.1).
Through this method we obtain existence results for perturbed equations. The
starting equation is chosen such that the topological degree of its associated op-
erator is easy to be evaluated, and the perturbation is done through homoge-
neous or “small” functions.

For further details about the construction of the associated operators, the
reader can consult [12]. For the topological degree theory we recommend the
delightful book [13].

2. General hypotheses and preliminary results

2.1. Introduction. Let f : R × Rn → Rn be a continuous mapping; consider
problem (1.1) where x(±∞) := limt→±∞ x(t) ∈ Rn (notation used throughout
this paper).

It is clear from the introduction that the aim of this paper is to find sufficient
conditions to assure the existence of solutions for problem (1.1). The method
will be the reduction of the existence solutions for problem (1.1) to the existence
of fixed points for an adequate operator which maps in an adequate functional
space.

In this section, we present the principal function spaces, their main proper-
ties, the notations, and the principal theoretical results needed in what follows.
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2.2. Function spaces. Denote by | · | an arbitrary norm in Rn and

Cc :=
{
x : R −→ R

n, x continuous
}
. (2.1)

As is well known, Cc is a Fréchet space endowed with the uniform conver-
gence on compact subsets of R with the usual topology. Let C1

c denote the linear
subspace of C1 functions in Cc.

The principal function spaces are

Cl : =
{
x ∈ Cc, ∃x(±∞) ∈ R

n},
Cll : =

{
x ∈ Cl, x(−∞) = x(+∞)

}
,

(2.2)

where Cl and Cll are Banach spaces with respect to the norm

‖x‖∞ := sup
t∈R

{∣∣x(t)
∣∣}, (2.3)

where Rn will be identified naturally with the constant functions subspace. Con-
sider C1

l := Cl ∩C1
c , C1

ll := Cll∩C1
c .

Another function space, interesting only as linear space, is the space of all
Riemann integrable functions on R,

CR :=
{
x ∈ Cc;

∫+∞

−∞
x(t)dt < +∞

}
, (2.4)

where ∫+∞

−∞
x(t)dt := lim

A→−∞

∫0

A
x(t)dt+ lim

A→+∞

∫A

0
x(t)dt. (2.5)

Remark 2.1. A function x of class C1 belongs to Cl if and only if ẋ belongs
to CR.

Finally, we use the spaces

C(a,b) :=
{
x : [a,b] −→ R

N , x continuous
}
,

C[a,b] :=
{
x ∈ C(a,b), x(a) = x(b)

}
,

(2.6)

endowed with the usual norm

‖x‖ := sup
t∈[a,b]

{∣∣x(t)
∣∣}. (2.7)

In the case of a Banach space X , where X = Cl or X = Cll, set

B(ρ) :=
{
x ∈ X, ‖x‖∞ < ρ

}
, Σ(ρ) :=

{
x ∈ R

n, |x| < ρ}. (2.8)
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2.3. Properties of the space Cl. We state certain properties of the space Cl.

Proposition 2.2. The spaces Cl and C(a,b) are isomorphic.

Proof. Indeed, consider ϕ : (a,b) → R a continuous and bijective mapping; de-
fine the mapping Φ : Cl → C(a,b) by the equality

(Φx)(t) :=



x
(
ϕ(t)

)
, if t ∈ (a,b),

x(−∞), if t = a,

x(+∞), if t = b.

(2.9)

It is clear that Φ is an isometric isomorphism and the proof ends. �

Remark 2.3. The same mapping Φ is an isomorphism between Cll and C[a,b].

The property in Proposition 2.2 allows us to obtain a compactness criterion
in Cl; obviously, it will work in Cll too, since Cll is a closed subspace of Cl.

Definition 2.4. A family A ⊂ Cl is called equiconvergent if and only if

∀ε > 0, ∃T = T(ε) > 0, ∀x ∈ A, ∀t1, t2 ∈ R, t1t2 > 0,∣∣ti∣∣ > T(ε),
∣∣x(t1)−x(t2)∣∣ < ε. (2.10)

Proposition 2.5. A family A ⊂ Cl is relatively compact if and only if the following
three conditions are fulfilled:

(i) A is uniformly bounded on R;
(ii) A is equicontinuous on every compact interval of R;

(iii) A is equiconvergent.

Proposition 2.5 results immediately from the fact that the isomorphism Φ
given by (2.9) transforms a set A, satisfying conditions (i), (ii), and (iii), into an
equicontinuous and uniformly bounded set in C(a,b).

Definition 2.6. A family A ⊂ Cc is called CR-bounded if and only if there exists a
function α : R → R, α(t) ≥ 0 for every t ∈ R, α ∈ CR, such that

∀x ∈ A, t ∈ R,
∣∣x(t)

∣∣ ≤ α(t). (2.11)

Corollary 2.7. A family A ⊂ Cl∩C1
c , uniformly bounded on R having the family

of derivatives CR-bounded, is relatively compact in Cl.

2.4. Operators. The first operator is the Nemitzky operator, F : Cc → Cc gener-
ated by the continuous function f : R×Rn → Rn and defined by
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(Fx)(t) := f
(
t,x(t)

)
. (2.12)

Taking into account Remark 2.1, it results that for every solution x of (1.1) it
holds

x ∈ Cl ⇐⇒ Fx ∈ CR. (2.13)

Similarly, for every solution x of (1.1),

x ∈ Cll ⇐⇒
∫+∞

−∞
(Fx)(s)ds = 0. (2.14)

In what follows, X ⊆ Cl denotes a closed subspace of Cl and D ⊂ X is a void
set. Define on D an important category of operators called associated.

Definition 2.8. The operator U : D ⊂ X → X is associated to problem (1.1) on
the set D if and only if every fixed point of U is a solution for problem (1.1).

By using the formula of a solution for (1.1), it is naturally, in the building of
the operator U , to admit

FD ⊂ CR. (2.15)

Remark, in addition, that if U maps in Cl, then only the fixed points satisfy
condition (1.1) and if D ⊂ Cll then we have UD ⊂ Cll.

By Remark 2.1, we can easily obtain associated operators to problem (1.1).
Such an operator is, for example,

(Ux)(t) := x(b)+α(t)
∫+∞

−∞
(Fx)(s)ds+

∫+∞

b
(Fx)(s)ds, (2.16)

where b ∈ R̄, and α : R → R is an arbitrary continuous function with α(b) �= 0,
and α ∈ Cl; this operator maps in Cl. If, in addition, α(−∞) = α(+∞), thenUCl ⊂
Cll.

Another possibility to construct associated operators in Cll is the next: we
search a linear and continuous operator T : Cll → Cll such that the operator
Lx := ẋ+Tx is invertible; then

U = L−1(F+T). (2.17)

Examples of such operators T are Tx = θ(·)x(0) or T = θ(·)x, where θ : R → R

is a continuous and strictly positive mapping with
∫+∞
−∞ θ(t)dt = 1.

There exist general procedures to build up the associated operators, like the
one from below having a pure algebraic character.

Let X and Z be two linear spaces, L : D(L) ⊂ X → Z a linear operator, and
N : D(N) ⊂ X → Z an arbitrary operator.
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If dimN(L) = codimR(L) <∞ and P : X → X , Q : Z → Z are two projectors
such that R(P) =N(L), N(Q) = R(L), then x ∈ X is a solution for the equation

Lx =Nx (2.18)

if and only if x is a fixed point for the operator

U = P+aQN +K(I −Q)N, (2.19)

where I is the identity operator in Z, a ∈ R, a �= 0, and K is the right inverse of L
(more precisely K = (L |D(L)∩N(P))−1).

This result has been successfully used by Mawhin for the building of associ-
ated operators to the boundary value problem (closely related to the periodic
solutions problem [9, 10, 11])

ẋ = f (t,x), x(0) = x(T). (2.20)

By this model in the next subsection, we briefly describe how can we construct
associated operators to problem (1.1) and their properties.

2.5. Construction of associated operators. The form of associated operators
depends firstly on the fundamental space X and next on the space Z and on the
choice of the operators L, N and the choice of the projectors P, Q; only after this
K can be determined and also the final form of the operator U . Having so many
arbitrary elements we can find many associated operators.

In what follows, we sketch the building of associated operators in two im-
portant cases: X = Cl and X = Cll; further details about the construction can be
found in [4, 12].

In the caseX = Cl we distinguish three subcases related to L andN ; this choice
must be made such that the equation (L,N) does contain (1.1). The expression
of projectors P and Q depends on the considered case.

In all three cases, we have Z = CR×Rn, D(L) = C1
l .

2.5.1. The case L1.

Lx =
(
ẋ,x(+∞)

)
, Nx =

(
Fx,x(−∞)

)
. (2.21)

In this case P =Q = 0, so the operator L is invertible and therefore U = L−1N .
This case gives us the easiest associated operators,

Ux = x(+∞)+
∫ (·)

−∞
(Fx)(s)ds (2.22)

and the symmetric form

Ux = x(−∞)+
∫ (·)

+∞
(Fx)(s)ds. (2.23)
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2.5.2. The case L2.

Lx = (ẋ,0), Nx =
(
Fx,x(+∞)−x(−∞)

)
. (2.24)

In this case, since R(L) = CR×{0} the projector Q may be

Q(y,c) = (0, c). (2.25)

For P, we take

Px = x(b), x ∈ R̄, (2.26)

or

Px =
∫+∞

−∞
e(t)x(t)dt, (2.27)

where

e : R −→ R, e continuous,
∫+∞

−∞
e(s)ds = 1. (2.28)

For U , we can construct

Ux = x(b)+a
[
x(+∞)−x(−∞)

]
+
∫ (·)

b
(Fx)(s)ds (2.29)

or

Ux = a
[
x(+∞)−x(−∞)

]
+
∫+∞

−∞

[
x(s)− 1

2
(Fx)(s)

]
e−2|s| ds+

∫ (·)

0
(Fx)(s)ds.

(2.30)

2.5.3. The case L3.

Lx =
(
ẋ,x(+∞)−x(−∞)

)
, Nx = (Fx,0). (2.31)

In this case,

R(L) =
{

(y,c) ∈ CR×R
n | c =

∫+∞

−∞
y(s)ds

}
(2.32)

and hence the projector Q must be changed; we can take for example

Q(y,c) =
(

0, c−
∫+∞

−∞
y(s)ds

)
(2.33)

and therefore,

Ux = x(b)+a
∫+∞

−∞
(Fx)(s)ds+

∫ (·)

b
(Fx)(s)ds (2.34)

and other more complicated forms.



8 Existence problems for homoclinic solutions

In the case X = Cll, we have D(L) = C1
ll, Z = CR, Lx = ẋ and consequently,

R(L) =

{
y ∈ CR,

∫+∞

−∞
y(s)ds = 0

}
. (2.35)

We can take, for example,

(Qy)(t) = e(t)
∫+∞

−∞
y(s)ds. (2.36)

In general, in this case the expression of U is more complicated since all its
values must be in Cll. For example, for (2.26) we get

(Ux)(t) = x(b)+

[
ae−2|t| −

∫ t

b
e−2|s| ds

]
·
∫+∞

−∞
(Fx)(s)ds+

∫ t

b
(Fx)(s)ds (2.37)

and with (2.27), where e(t) = e−2|t|,

(Ux)(t) =
∫ t

0
e−2|s| ds+ae−2|t| −

∫ t

0
e−2|s|

(
1− 1

2
e−2|s|

)
ds

− 1
2

∫+∞

−∞
e−2|s|(Fx)(s)ds

∫+∞

−∞
(Fx)(s)ds+

∫ t

0
(Fx)(s)ds.

(2.38)

2.6. Admissible operators. It is obvious that this construction of the associated
operators has an algebraic character; the condition

FD ⊂ CR (2.39)

is sufficient for the existence of these operators, but it is not sufficient to confer
their important topological properties.

Definition 2.9. An associated operator on the set D ⊂ X to problem (1.1), con-
structed as in Section 2.5, is called admissible if and only if U : D ⊂ X → X is
compact.

Proposition 2.10. Let X be a subspace of Cl and D ⊂ Cl be a bounded subset. If
FD is CR-bounded, then every associated operator constructed as in Section 2.5 is
compact.

The proof of this proposition is complicated in calculus, but it is basically an
easy application of the elementary known properties of uniform convergence,
which allows to establish immediately the continuity of the operator U which
contains finite rank projectors and application of type

x −→
∫+∞

−∞
(Fx)(s)ds, x −→

∫ (·)

b
(Fx)(s)ds, b ∈ R̄. (2.40)
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The compactness of the operatorU is an immediate consequence of Corollary
2.7. At least for the operators U given by (2.22), (2.23), (2.29), (2.30), (2.34),
(2.37), and (2.38) the verification of compactity is immediate.

Remark that if f satisfies the condition

∣∣ f (t,x)
∣∣ ≤ θ(t) ·β(|x|), (2.41)

where θ ∈ CR, θ ≥ 0, β ≥ 0, β : R → R is continuous, then FD is CR-bounded for
every bounded set D ⊂ X ; indeed, we have

∣∣(Fx)(t)
∣∣ ≤ ρθ(t), (2.42)

where

ρ := sup
{
β(u), |u| ≤ r}, r := sup

{‖x‖∞, x ∈D}. (2.43)

The situation is more complicated in the case when (1.1) proceeds from a
second-order equation

ÿ = h
(
t, y, ẏ

)
, (2.44)

where h : R×Rk×Rk → Rk is a continuous function. Substituting (2.44) in (1.1),
where

x =
(
x1,x2

)
, x1 = y, x2 = ẏ, f (t,x) =

(
x2,h

(
t,x1,x2

))
, (2.45)

then

x ∈ Cl ⇐⇒ y, ẏ ∈ Cl. (2.46)

Since

y ∈ Cl ⇐⇒ ẏ ∈ CR, (2.47)

it results that

ẏ ∈ Cl ∩CR (2.48)

and hence

lim
t→±∞

ẏ(t) = 0. (2.49)

Therefore, the boundary value problem defining the homoclinic solutions for
(2.34) has the form

ÿ = h
(
t, y, ẏ

)
, y(−∞) = y(+∞), ẏ(−∞) = ẏ(+∞) = 0. (2.50)

We give an example to obtain the CR-boundedness of F(D) in this case.
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Let α1,α2 ∈ CR, α1,α2 be positive; in addition, suppose that α2(±∞) = 0.
Let γ,β : R → R be two continuous and positive functions. We take as funda-
mental space X = Cl×CRl, where CRl := CR∩Cl = {x ∈ CR,x(±∞) = 0}.

Let D1 be a bounded set in CR and let D =D1×D2, where

D2 =
{
x ∈ CR,

∣∣x(t)
∣∣ ≤ α2(t), t ∈ R

}
. (2.51)

It is easy to check that if∣∣h(t,x1,x2
)∣∣ ≤ k1α1(t)γ

∣∣x1
∣∣+k2

∣∣x2
∣∣β(∣∣x2

∣∣), (2.52)

then F(D) is CR-bounded (more precisely, CR×CR-bounded).
The case of second-order equation is different from the first-order equation;

this is why it will not be treated here, but it will make the object of a future note.

2.7. Remarks on the topological degree of the admissible operators. Let Ω ⊂ X
be an open and bounded set, where X is Cl or Cll.

Suppose that F(Ω) is CR-bounded, for an admissible operator U , if

x �=Ux, x ∈ ∂Ω, (2.53)

where ∂Ω is the boundary of Ω, we can consider its topological degree

deg(I −U,Ω,0). (2.54)

If this degree is nonzero, then U admits fixed points and so problem (1.1) has
solutions.

As we said, the results contained in this section are based on the ones by
Mawhin related to the boundary value problem

ẋ = f (t,x), x(0) = x(T). (2.55)

This author proves that the associated operators to problem (2.55) in the
space C(0,T) or C[0,T] are compact on the bounded sets without supplementary
conditions on the mapping f as it was to be expected. Moreover, these operators
have the same topological degree which does not depend on the choice of L, N ,
P,Q. In addition, if in particular f (t,x) = g(x), then for each associated operator
U to problem (2.55) on the bounded and open set Ω from C(0,T) (or C[0,T]), we
have

deg(I −U,Ω,0) = (−1)ndegB
(
g,Ω∩R

n,0
)
, (2.56)

where degB denotes the Brouwer degree.
The associated operators to problem (1.1) on Ω from Cl or Cll have the de-

grees invariant with respect to L, N , P, Q; the proof, based on the invariance of
topological degree to homeomorphisms, is essentially simple but complicated to
achieve. As we do not use this property in the present paper, we renounce to its
proof.
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Finally we make only a remark on the isomorphism Φ given by (2.9).
Let Ω ⊂ X be an open and bounded set in X (X = Cl or Cll) and let U be an

admissible operator on Ω for problem (1.1) fulfilling (2.56).
Set

ΩΦ :=Ω(Φ), UΦ :=ΦUΦ−1, (2.57)

where Φ is given by (2.9) with a = 0, b = T .
Then ΩΦ is open and bounded, Φ(∂Ω) = ∂ΩΦ and ΩΦ ⊂ C(0,T) (resp., ΩΦ ⊂

C[0,T]).
Furthermore, UΦ is compact and since ∂ΩΦ =Φ(∂Ω), we have

x �=Ux, x ∈ ∂Ω⇐⇒ x �=UΦ, x ∈ ∂ΩΦ. (2.58)

Hence

deg(I −U,Ω,0) = deg
(
I −UΦ,ΩΦ,0

)
. (2.59)

3. Existence results in the hypothesis of uniqueness of solutions

3.1. Introduction. Let f : R×Rn → Rn be a continuous function; consider again
problem (1.1).

We research the existence of solutions for problem (1.1) in the hypothesis that
the Cauchy problem

ẋ = f (t,x), x(0) = y (3.1)

has a unique solution defined on the whole real axis R, for every G a bounded
set in Rn and for every y ∈ G; denote the solution of (3.1) by

x(t; y), y ∈ G. (3.2)

The uniqueness condition is fulfilled in particular if f (t,x) is locally Lipschitz
with respect to x. Condition (2.41) is sufficient to assure the existence on R of
the solution (3.2), it is in particular fulfilled in conditions of type (2.41) and
even more general.

It is known that the uniqueness condition assures the continuous dependence
of the function x(t; ·); this property would be stated as: for every [a,b] ⊂ R and
for every yn ∈ G, yn → y ∈ G, the sequence x(t; yn) converges uniformly on [a,b]
to x(t; y).

In this section, we present certain existence results for problem (1.1), exploit-
ing this continuous dependence with respect to initial data.

3.2. Generalized Poincaré operator. Let Ω ⊂ Cl be a bounded and open set; let

G :=
{
y ∈ R

n, x(·; y) ∈Ω
}
. (3.3)

Obviously, G is a bounded and open set.
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Theorem 3.1. Suppose that

(i) FΩ̄ is CR-bounded;
(ii) for every y ∈ ∂G and for every t > 0

x(t; y) �= x(−t; y); (3.4)

(iii) for every y ∈ ∂G

f (0, y) �= 0; (3.5)

(iv) for every y ∈ ∂G

degB
(
f (0, y),G,0

) �= 0. (3.6)

Then problem (1.1) has solutions in Ω̄.

Proof. By hypothesis (i) it results that x(·; y) ∈ Cl, for every y ∈ Ḡ; set

Py =
1
2

[
x(+∞; y)−x(−∞; y)

]
(3.7)

(we call P the generalized Poincaré operator). It is easy to check that the solution
x(·; y) ∈ Cll if and only if Py = 0.

We want to show that P : Ḡ→ Ḡ is continuous; for this aim we remark that

Py =
1
2

∫+∞

−∞
f
(
s,x(s; y)

)
ds. (3.8)

By hypothesis (i) it results that the integral in (3.8) is uniformly convergent
with respect to y ∈ Ḡ; on the other hand, since the mapping y → x(·; y) is con-
tinuous (as mentioned in the previous paragraph) we conclude the continuity
of the mapping (t, y) → f (t,x(t; y)) on every set of type [−A,A]× Ḡ. Hence the
mapping y→ Py is continuous on Ḡ.

Define the application h : Ḡ×[0,1] → Rn by

h(y,λ) :=




1
2λ

[
x
( λ

1−λ ; y
)
−x

( λ

λ−1
; y
)]
, λ ∈ (0,1), y ∈ Ḡ,

Py, λ = 1,

f (0, y), λ = 0.

(3.9)

By L’Hospital rule,

lim
λ↓0

h(y,λ) = f (0,λ). (3.10)

Since

lim
λ↑1

h(y,λ) = Py, (3.11)
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it follows that h is continuous.
If for y ∈ ∂G we have Py = 0, then x(·; y) is a solution for (1.1).
Suppose then Py �= 0, for every y ∈ ∂G; by hypotheses (ii) and (iii) it results

that

h(y,λ) �= 0, ∀λ ∈ [0,1], ∀y ∈ ∂G. (3.12)

By homotopic invariance property of the topological degree it results that
degB(h(·,λ),G,0) is constant for λ ∈ [0,1]; in particular,

degB
(
h(·,0),G,0

)
= degB

(
h(·,1),G,0

)
, (3.13)

that is,

degB(P,G,0) = degB
(
f (·, y),G,0

)
(3.14)

and hence, by (3.6)

degB(P,G,0) �= 0, (3.15)

which assures the existence of y ∈ G with Py = 0. The theorem is proved. �

3.3. The case Ω connected. The advantage of the previous result is that the
topological degrees appearing are Brouwer degrees; the drawback is that con-
dition (3.4) is not easy to be checked. We state now another existence result.

As usual, suppose that Ω ⊂ Cl is a bounded and open set; define on Ω̄ the
operators

Hx =
∫ (·)

0
(Fx)(s)ds, S = I −H. (3.16)

Lemma 3.2. If

(i) f : R×Rn → Rn is locally Lipschitz with respect to the second variable;
(ii) F(Ω̄) is CR-bounded,

then S : Ω̄→ Cl is injective.

Proof. Let x, z ∈ Ω̄ such that

S(x) = S(z). (3.17)

If x �= z, then there exists t0 ∈ R such that x(t0) = z(t0); we can assume that
t0 > 0. Let A > 0 be such that t0 ∈ [0,A] and r = max{‖x‖∞,‖y‖∞}.

Since

∃Lr > 0, ∀u,v ∈ Σ(r),
∣∣ f (t,u)− f (t,v)

∣∣ ≤ Lr |u−v|,
∣∣x(t)−z(t)

∣∣ ≤ Lr
∫ t

0

∣∣u(s)−v(s)
∣∣ds, t ∈ [0,A],

(3.18)
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we obtain by using Gronwall’s lemma

x(t) = z(t), ∀t ∈ [0,A]. (3.19)
�

Remark 3.3. The mapping S : Ω̄→ S(Ω̄) is a homeomorphism. In addition, since
H is a compact operator, S−1 is a compact perturbation of identity, too.

Remark 3.4. If y ∈ Rn∩S(Ω̄), then

S−1y = x(·; y). (3.20)

Set

Πx := x(0)−Px. (3.21)

Observe that the operator

U :=Π+H (3.22)

is just the admissible operator (2.22), where b = 0 and a = 1/2.

Remark 3.5. The following identity holds:

I −U =
(
I −ΠS−1)S. (3.23)

Theorem 3.6. Assume that the following hypotheses are fulfilled:

(i) f : R×Rn → Rn is locally Lipschitz;
(ii) Ω ⊂ Cl is a connected, open, and bounded set;

(iii) F(Ω̄) is CR-bounded;
(iv) the following relations hold:

x �=Ux, x ∈ ∂Ω,
y �= Py, y ∈ ∂(S(Ω̄)∩R

n). (3.24)

Then

deg(I −U,Ω,0) = ±degB
(
P,S(Ω)∩R

n,0
)
. (3.25)

In addition, if

degB
(
P,S(Ω)∩R

n,0
) �= 0, (3.26)

then problem (1.1) admits solutions.

Proof. By identity (3.22) and applying the Leray-Schauder result for topological
degree of product operators, we get

deg(I −U,Ω,0) = deg(S− y,Ω,0) ·deg
(
I −ΠS−1,S(Ω),0

)
, (3.27)
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where y ∈ S(Ω) is arbitrary. Since S(Ω) is connected and S : Ω̄ → S(Ω̄) is a
homeomorphism, then∣∣deg(S− y,Ω,0)

∣∣ = 1, ∀y ∈ S(Ω). (3.28)

Since ΠS−1 takes values in Rn, we have

deg
(
I −ΠS−1,S(Ω),0

)
= degB

(
I −ΠS−1,S(Ω)∩R

n,0
)

(3.29)

and since

ΠS−1 = I −P, (3.30)

it results (3.25).
Finally, if (3.26) is satisfied, then U admits fixed points and since U is associ-

ated to (1.1), every fixed point is a solution for problem (1.1). �

Remark 3.7. If condition (3.4) is fulfilled for every t ∈ R̄ and y ∈ ∂G, then

deg(I −U,Ω,0) = ±degB
(
f (·, y),G,0

)
. (3.31)

Remark 3.8. Formula (3.31) is available for every operator U : Ω̄ ⊂ Cl → Cl
admissible for problem (1.1).

3.4. Existence results using Miranda’s theorem. Let K = Πn
i=1[−l, l] ⊂ Rn and

Φ : K → Rn be a continuous function; denote by Φi the ith component of Φ and
by yi the ith component of y ∈ Rn. Define L+

i ,L
−
i ⊂ Rn by

L+
i : =

(
y1, . . . , yi−1, l, yi+1, . . . , yn

)
,

L−i : =
(
y1, . . . , yi−1,−l, yi+1, . . . , yn

)
, i ∈ 1,n.

(3.32)

Remark that if we take in Rn the norm

|y| = max
1≤i≤n

{∣∣yi∣∣}, (3.33)

then, if |yj | ≤ l, j �= i, it results that K = Σ(l) and L+
i , L−i are on two contrary faces

of a hypercube K (so L+
i ,L

−
i ∈ ∂K).

Miranda’s theorem states that, if

Φi
(
L+
i

) ≤ 0, Φi
(
L−i

) ≥ 0, i ∈ 1,n,∣∣yj∣∣ ≤ l, j �= i,
(3.34)

then the equation

Φ(y) = 0 (3.35)

admits solutions in K .
Suppose that f satisfies the following hypotheses:
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(H1) for every l > 0, problem (3.1) has a unique solution defined on the whole
R, for every y ∈ K ;

(H2) the functions αi(t) := infx∈Rn{ fi(t,x)}, βi(t) := supx∈Rn{ fi(t,x)} (where
f = ( fi)i∈1,n) are defined on R and

αi,βi ∈ L1(R), i ∈ 1,n; (3.36)

(H3) there exists a constant c > 0 such that for every i ∈ 1,n and for every
(t, y) ∈ R×Rn with |yi| > c, we have

yi · fi(t, y) ≥ 0. (3.37)

Theorem 3.9. Assume that the hypotheses (H1), (H2), and (H3) are fulfilled. Then
problem (1.1) admits solutions.

Proof. Consider the operator P on K given by (3.8), that is,

Py =
1
2

∫+∞

−∞
f
(
s;x(s, y)

)
ds. (3.38)

The operator P is well defined since hypotheses (H1), (H2), and (H3) are as-
sumed; in addition, as remarked, it is continuous on Rn.

Set

ai := inf
t∈R

∫ t

0
αi(s)ds, bi := sup

t∈R

∫ t

0
βi(s)ds,

a := max
1≤i≤n

{
ai
}
, b := min

1≤i≤n
{
bi
}
.

(3.39)

Then we have for every solution x(t; y) = (xi(t; y))i∈1,n,

yi+a ≤ xi(t; y) ≤ yi+b, i ∈ 1,n. (3.40)

Considering l ≥ 0 such that

l ≥ max{c−a,c+b}, (3.41)

we obtain

xi
(
t;L+

i

) ≥ c, xi
(
t;L−i

) ≤ −c, ∀i ∈ 1,n, ∀L+
i ,L

−
i ∈ ∂K. (3.42)

If relation (3.41) is fulfilled, it follows from (H3),

Pi
(
L+
i

) ≤ 0, Pi
(
L−i

) ≥ 0, ∀i ∈ 1,n, ∀L+
i ,L

−
i ∈ ∂K, (3.43)

where P = (Pi)i∈1,n.
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Applying Miranda’s theorem, it results that P has a zero in K . The proof is
now complete. �

4. Continuation method

4.1. Introduction. In this section f : R×Rn → R is a continuous function, X is
the space Cl or Cll and Ω ⊂ X is an open and bounded set. If FΩ̄ is CR-bounded,
as remarked in Section 2, one can associate to problem (1.1) operators U : Ω̄→
X which are compact and whose fixed points coincide with the solutions of (1.1).

In particular, if

x �=Ux, x ∈ ∂Ω, (4.1)

then we can define the topological degree of U and if

deg(I −U,Ω,0) �= 0, (4.2)

then U admits fixed points in Ω.
However, when we face to check condition (4.2), then we can use the so-called

continuation method, which is based on the well-known homotopic invariance
property of the topological degree (used in Section 3).

One of the most used forms of this method is the following. Let h : R×Rn ×
[0,1] → Rn be a continuous and CR-bounded on Ω̄ function in the sense that
there exists θ ∈ CR, θ > 0, such that for every x ∈ Ω̄ and for every λ ∈ [0,1] we
have |h(t,x(t),λ)| ≤ θ(t), t ∈ R.

Consider the problem

ẋ = h(t,x,λ), x(+∞) = x(−∞). (4.3)

We can associate to problem (4.3) an operator Uλ which in addition is com-
pact for every λ.

If the condition

x �=Uλx, x ∈ ∂Ω, λ ∈ [0,1] (4.4)

is fulfilled, then we can define the degree deg(I −Uλ,Ω,0); but a homotopic in-
variance property tells us that this degree is constant with respect to λ. In partic-
ular,

deg
(
I −U0,Ω,0

)
= deg

(
I −U1,Ω,0

)
. (4.5)

Equality (4.5) is useful if U0 is an associated operator to problem (1.1)
(h(t,x,0) = f (t,x)) and the degree of I −U1 is easier to be computed, for ex-
ample, when it is a Brouwer degree.

Condition (4.4) can be formulated under the following form: for every λ ∈
[0,1] problem (4.3) has no solutions x(·;λ) with x ∈ ∂Ω. If this condition is ful-
filled, every associated operator Uλ satisfies (4.4) because the fixed points of an
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associated operator coincide with the set of solutions for the problem whose it is
associated.

We get therefore the following proposition.

Proposition 4.1. Assume that

(i) there exists θ ∈ CR, θ(t) ≥ 0, such that |h(t,x(t),λ)| ≤ θ(t), for every x ∈ Ω̄,
for every λ ∈ [0,1];

(ii) for every λ ∈ [0,1], problem (4.3) does not admit solutions x(·) with x ∈ ∂Ω;
(iii) h(t,x,1) = f (t,x);
(iv) deg(I −U0,Ω,0) �= 0.

Then problem (1.1) admits solutions.

The question that problem (4.3) has no solutions in ∂Ω can be formulated
under the following form.

“A priori estimates”: for every possible solution x(·) of problem (4.3) with
x ∈ Ω̄ we have x ∈Ω.

Another form of the same condition is the next.
“A priori bound”: there exists a number r > 0 such that problem (4.3) does

not admit solutions x(·) with ‖x‖∞ = r.
In this case we set Ω := {x ∈ X,‖x‖ < r}.
Another variant of the same condition is the following.
“Bounded set condition”: for every λ ∈ [0,1] for which problem (4.3) has

solutions x(·) with x(t) ∈ D̄, t ∈ R̄, we have x(t) ∈D, for every t ∈ R̄.
In this case when D ⊂ Rn is an open and bounded set we take Ω :={x ∈ X ,

x(t) ∈D}.
In this section, we indicate certain simple functions candidates to be homo-

topic linked through h with f , functions for which the computation of their
topological degree is more advantageously.

The most difficult problem remains to establish the fact that problem (4.3)
has no solutions in ∂Ω; in what follows we consider certain cases when this thing
is easy to be checked.

4.2. Homotopy with a linear equation. In this paragraph consider X = Cll.
Let A : R →Mn(R) be a continuous quadratic matrix; denote by | · | an arbi-

trary norm for the constant matrices.
Consider the system

ẋ = A(t)x (4.6)

and denote by X = X(t) its fundamental matrix with X(0) = I . In [5], the follow-
ing result is proved.

Proposition 4.2. Assume that∫+∞

−∞

∣∣A(t)
∣∣dt <∞, (4.7)
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then there exists X(±∞) = limt→±∞X(t). If in addition

rank
[
X(+∞)−X(−∞)

]
= n, (4.8)

then the problem

ẋ = A(t)x, x(+∞) = x(−∞) (4.9)

admits only the zero solution.

Theorem 4.3. Assume that

(i) A : R →Mn(R) is a continuous matrix such that conditions (4.7), (4.8) are
fulfilled;

(ii) f : R×Rn → Rn is a continuous function fulfilling the condition∣∣ f (t,x)
∣∣ ≤ θ(t) ·ω(|x|), (4.10)

where θ : R → R, ω : R → R are continuous and positive functions, θ ∈ CR;
(iii) there exists r > 0 such that for every λ ∈ [0,1] the problem

ẋ = (1−λ)A(t)x+λ f (t,x), x(+∞) = x(−∞) (4.11)

has no solution x(·) such that ‖x‖∞ = r.

Then problem (1.1) admits solutions.

Proof. Set

h(t,x,λ) = (1−λ)A(t)x+λ f (t,x),

Ω = B(r) :=
{
x ∈ Cll, ‖x‖∞ < r

}
.

(4.12)

For every x ∈ Ω̄, we have∣∣h(t,x(t),λ
)∣∣ ≤ ρ∣∣A(t)

∣∣+ω(ρ)θ(t), (4.13)

where

ρ = sup
|u|≤r

ω(u) (4.14)

and so hypothesis (i) of Proposition 4.1 is satisfied; obviously (iii) is satisfied,
too.

For λ = 0, problem (4.3) becomes

ẋ = A(t)x, x(+∞) = x(−∞) (4.15)

which, by Proposition 4.2, admits only the zero solution; that means every oper-
ator U0 attached to problem (4.15) is injective. Since U0 is linear and compact,
then after a known property,

deg
(
I −U0,Ω,0

)
= ±1. (4.16)

This ends the proof. �
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Hypothesis (ii) of Proposition 4.1 is difficult to be checked in practice. In the
next theorems it will be fulfilled.

Consider the problem

ẋ = A(t)x+g(t,x)+ p(t), x(−∞) = x(+∞), (4.17)

where g : R×Rn → Rn and p : Rn → Rn are continuous functions.

Theorem 4.4. Assume that

(i) conditions (4.7), (4.8) are fulfilled;
(ii) p ∈ L1(R)∩Cc;

(iii) there exists α ∈ (0,1) such that

g(t,x) = kαg(t,x), ∀k > 0, ∀t ∈ R, ∀x ∈ R
n; (4.18)

(iv) the following inequality holds:

∣∣g(t,x)
∣∣ ≤ θ(t), ∀t ∈ R, ∀x ∈ R

n, |x| ≤ 1, (4.19)

where θ ∈ CR, θ(t) ≥ 0, (∀)t ∈ R.

Then problem (4.17) admits solutions.

Proof. Set in Proposition 4.1

h(t,x,λ) := (1−λ)A(t)x+λ
((
A(t)x

)
+ p(t)+h(t,x)

)
,

Ω = B(ρ) :=
{
x ∈ Cll, ‖x‖∞ < ρ

}
.

(4.20)

By (4.18) it results that

(|x| ≤ ρ) =⇒ (∣∣g(t,x)
∣∣ ≤ ραθ(t)

)
, (4.21)

which shows that for x ∈ Ω̄,

∣∣h(t,x,λ)
∣∣ ≤ 2ρ

∣∣A(t)
∣∣+ραθ(t)+

∣∣p(t)
∣∣ ∈ CR. (4.22)

Obviously, to apply Proposition 4.1, it remains to check only hypothesis (ii).
For this aim, we will show that there exists ρ0 > 0 such that for every λ ∈ [0,1]
and for every ρ > ρ0 problem (4.3) has no solution x(·) with ‖x‖∞ = ρ.

Indeed, if not, then we could find a sequence λk ∈ [0,1], a sequence ρk →∞,
such that the problem

ẋ = h
(
t,x,λk

)
, x(−∞) = x(+∞) (4.23)

admits solutions xk(·) with

∥∥xk∥∥∞ = ρk. (4.24)
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Setting

uk :=
1∥∥xk∥∥∞

xk =
1
ρk
xk, (4.25)

we have ∥∥uk∥∥∞ = 1,

u̇k =
(
1−λk

)
A(t)uk +λk

[
A(t)uk +ρα−1

k g
(
t,uk

)
+ρ−1

k p(t)
]
.

(4.26)

By Corollary 2.7, we get the compactness of the sequence (uk)k in Cll.
Let u ∈ (uk)k, λ ∈ (λk)k; by using the classical properties of uniform conver-

gence we obtain, after computations,

u̇ = A(t)u, u(−∞) = u(+∞), ‖u‖∞ = 1, (4.27)

which contradicts Proposition 4.2. �

4.3. Auxiliary results. In Section 4.2, the homotopy has been achieved through
a linear mapping for which it was easy to evaluate its topological degree. We give
rise to another case when the topological degree computation is not too difficult
in the sense that it becomes a Brouwer degree. This result will be a consequence
of a more general result which links the existence of solutions for problem (1.1)
to the existence of solutions for the problems of the type

ẏ = g(t, y), y(0) = y(T), 0 < T <∞. (4.28)

Let θ : R → R, θ ∈ CR, θ(t) > 0, for every t ∈ R; set

ψ(t) :=
∫ t

−∞
θ(s)ds, ϕ := ψ−1, T :=

∫+∞

−∞
θ(s)ds. (4.29)

Obviously, through (2.9), ϕ : (0,T) → R determines by (2.9) an isomorphism
between Cl and C(0,T) (or between Cll and C[0,T]).

Proposition 4.5. Suppose that f : R ×Rn → Rn is a continuous function such
that

lim
t→±∞

1
θ(t)

f (t, y) = γ±(y), y ∈ R
n, (4.30)

the convergence being uniform with respect to y on every compact subset of Rn.
Let

g(t, y) :=



ϕ̇(t) f

(
ϕ(t), y

)
, if t ∈ (0,T), y ∈ Rn,

γ−(y), if t = 0, y ∈ Rn,

γ+(y), if t = 1, y ∈ Rn.

(4.31)

Then problem (1.1) admits solutions if and only if (4.28) admits solutions.
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Proof. Remark that if D ⊂ Cl is a bounded set, then FD ⊂ CR; indeed, for |t| ≥ A,
we have ∣∣ f (t, y)

∣∣ ≤ (a+m)θ(t), (4.32)

where

m := max
{

supγ+(u), γ−(u), u ∈D∩R
n}. (4.33)

Set

r := sup
{‖x‖∞, x ∈D}, α(t) := sup

|y|≤r

{∣∣ f (t, y)
∣∣}, t ∈ [−A,A],

β(t) :=



α(t), |t| < A,
(a+m)θ(t), |t| ≥ A.

(4.34)

We obtain β ∈ CR and ∣∣ f (t,x)
∣∣ ≤ β(t), ∀t ∈ R, ∀x ∈D. (4.35)

Let x(t) be a solution for (1.1); then y =Φ(x) is a solution for the differential
equation appearing in (4.28) on the interval (0,T). Since y(t) has limits in 0 and
T , it can be prolonged as solution on [0,T]; but by definition of y(t) it follows
that

y(0) = ϕ
(
x(−∞)

)
= ϕ

(
x(+∞)

)
= y(T). (4.36)

The converse is proved by using the isomorphism Φ−1.
Let Ω ⊂ Cl be an open and bounded set. Hypothesis (4.30) allows us, as re-

marked, to associate to problem (1.1) the operator

U : Ω̄ ⊂ Cl −→ Cl, Ux = x(+∞)+
∫ (·)

−∞
(Fx)(s)ds, (4.37)

which, from (4.35), is compact.
The operator UΦ defined in (2.15) is

UΦ : ΩΦ ⊂ C(0,T) −→ C(0,T), UΦy := y(T)+
∫ (·)

0
g
(
τ, y(τ)

)
dτ. (4.38)

But the operator UΦ is associated to problem (4.28). By using the remarks
from 2.4 we obtain the following result.

Corollary 4.6. If x �=Ux, for every x ∈ ∂Ω, then

deg(I −U,Ω,0) = deg
(
I −UΦ,ΩΦ,0

)
. (4.39)

(Obviously, the first degree is computed in Cl, the second in C(0,T).)
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An important particular case is

f (t,x) = θ(t) ·g(x). (4.40)

In this case, when (4.30) is fulfilled, (4.24) becomes

ẏ = g(y), y(0) = y(T). (4.41)

As it is proved in [7], for every associated operator to problem (4.41) in C(0,T)

or C[0,T] (so for UΦ, too) we have

deg
(
I −UΦ,ΩΦ,0

)
= ±degB

(
g,Ω∩R

n,0
)
. (4.42)

We obtain therefore the following proposition.

Proposition 4.7. Suppose that

(i) θ : R → R, θ ∈ CR, θ(t) ≥ 0, for every t ∈ R;
(ii) g : Rn → Rn, g continuous.

Consider the problem

ẋ = θ(t)g(x), x(−∞) = x(+∞). (4.43)

Let Ω ⊂ Cl be an open and bounded set. If for the operator U associated to
problem (4.43), we have

x �=Ux, x ∈ ∂Ω, (4.44)

then

deg(I −U,Ω,0) = ±degB
(
g,Ω∩R

n,0
)
. (4.45)

Furthermore, if

degB
(
g,Ω∩R

n,0
) �= 0, (4.46)

it results that (4.43) admits solutions. �

4.4. Homotopies with nonlinear equations. We consider the problem

ẋ = f (t,x)+ p(t), x(−∞) = x(+∞). (4.47)

Suppose that the following hypotheses are fulfilled:

(a1) f : R×Rn → Rn is a continuous function;
(a2) | f (t,x)| ≤ β(t), x ∈ Rn, |x| ≤ 1, t ∈ R, β ∈ CR∩Cc;
(a3) there exists α ∈ (0,1), f (t,kx) = kα · f (t,x), k > 0, t ∈ R, x ∈ Rn;
(a4) |p| ∈ CR.
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In addition, let θ ∈ CR, θ(t) > 0, with
∫+∞
−∞ θ(t)dt = 1.

Set

g(x) :=
∫+∞

−∞
f (s,x)ds. (4.48)

Theorem 4.8. Assume that hypotheses (a1), (a2), (a3), and (a4) are fulfilled. Con-
sider the problem

ẋ = (1−λ)θ(t)g(x)+λ
[
f (t,x)+ p(t)

]
, x(−∞) = x(+∞). (4.49)

Then

(1) if

g(y) �= 0, y ∈ R
n, ‖y‖ = 1, (4.50)

it results that there exists ρ > 0 such that for every λ ∈ [0,1], problem (4.49)
has no solution x(·) with ‖x‖∞ = ρ0;

(2) if for this ρ0

degB
(
g,Σ

(
ρ0
)
,0
) �= 0, (4.51)

then (4.47) admits solutions.

Proof. If conclusion (1) is not true, then there would exist the sequences (ρk)k ⊂
(0,∞), (xk)k ⊂ X , with ‖xk‖∞ = ρk, λk ∈ [0,1], ρk > k and

ẋk =
(
1−λk

)
θ(t)g

(
xk
)

+λk
[
f
(
t,xk

)
+ p(t)

]
, x(−∞) = x(+∞). (4.52)

Setting

uk =
xk
ρk
, (4.53)

we get

u̇k = ρ−1
k

[(
1−λk

)
θ(t)g

(
uk
)

+λk f
(
t,uk

)]
+ρ−1

k λk p(t),∥∥uk∥∥ = 1, uk(−∞) = uk(+∞).
(4.54)

Based on Corollary 2.7, it results that (uk)k is relatively compact in X . We can
assume, up to subsequences, that uk → u, λk → λ; we have

‖u‖∞ = 1. (4.55)

By (4.50) it results that u̇k → 0, in X . Therefore u ∈ Rn.
On the other hand, since ∫+∞

−∞
u̇k(s)ds = 0 (4.56)
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and (4.54), it follows that

0 =
(
1−λk

)∫+∞

−∞
θ(t)g

(
uk(t)

)
dt

+λk

∫+∞

−∞
f
(
s,uk(s)

)
ds+ρ−1

k λk p(t);

(4.57)

hence, for k→∞, we get

g(u) = 0, u ∈ R
n, ‖u‖ = 1, (4.58)

which contradicts (4.50). �

The second part of the theorem follows then by Proposition 4.1 for Ω = B(ρ0)
and Proposition 4.7.

A similar result can be obtained in the case α > 1, if
∫+∞
−∞ |p(t)|dt < 1.

4.5. Small perturbations. This paragraph deals with the problem

ẋ = θ(t)g(x)+e(t,x), x(−∞) = x(+∞), (4.59)

where g : Rn → Rn, θ : R → R, e : R×Rn → Rn are continuous functions; in
addition θ(t) > 0, t ∈ R, θ ∈ CR.

Consider problem (4.43). Let D ⊂ Rn be an open and bounded set.
Assume the following hypotheses:

(b1) for every solution x(·) of problem (4.43) for which x(t) ∈ D̄, t ∈ R, it
results that x(t) ∈D, t ∈ R̄;

(b2) e(t,x) is CR-bounded on Ω̄, where

Ω :=
{
x ∈ X, x(t) ∈D, t ∈ R

}
. (4.60)

Finally, consider the problem

ẋ = θ(t)g(x)+λe(t,x), x(−∞) = x(+∞), λ ∈ [0,1]. (4.61)

Theorem 4.9. If hypotheses (b1) and (b2) are fulfilled, there exists ε0 > 0 such that
if

∥∥e(·, y)
∥∥
∞ < ε0, ∀y ∈ ∂D, (4.62)

then for every solution x(·) of problem (4.61) for which x(t) ∈ D̄, for every t ∈ R, it
results that x(t) ∈D, for every t ∈ R̄.

If, in addition,

degB(g,D,0) �= 0, (4.63)

then for every e(·, ·) satisfying (4.62), problem (4.59) admits solutions.
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Proof. We prove the first part. If the conclusion is not true, then for every k ∈
N∗ there exists a function ek(·, ·) with ‖ek(·, y)‖∞ < 1/k, for every y ∈ D̄ and a
function xk(·) such that

ẋk = θ(t)g
(
xk
)

+λke
(
t,xk

)
, xk(−∞) = xk(+∞), λk ∈ [0,1], (4.64)

with xk(t) ∈ D̄, for every t ∈ R̄, and xk(tk) �∈ ∂D, for an tk ∈ R.
Corollary 2.7 assures the compactness of the sequence (xk)k in Cl. If xk → x

in Cl, λk → λ, and tk → t ∈ R̄, one contradicts hypothesis (b1).
The second part follows by Propositions 4.1 and 4.7 for Ω := {x ∈ Cl, x(t) ∈

D, for every t ∈ R}. �

4.6. Asymptotically homogeneous systems. Consider again the problems

ẋ = θ(t)g(x)+e(t,x), x(−∞) = x(+∞), (4.65)

ẋ = θ(t)g(x), x(−∞) = x(+∞), (4.66)

ẋ = θ(t)g(x)+λe(t,x), x(−∞) = x(+∞), λ ∈ [0,1]. (4.67)

Assume the following hypotheses:

(c1) g : Rn → Rn is a continuous function such that

g(kx) = g(x), x ∈ R
n, k > 0; (4.68)

(c2) lim|x|→∞ e(t,x)/|x| = 0;
(c3) for every ρ > 0, there exists αρ ∈ CR, αρ > 0, for every x ∈ Σ(ρ),

∣∣e(t,x)
∣∣ ≤ αρ(t), t ∈ R; (4.69)

(c4) θ ∈ CR, θ(t) > 0, for every t ∈ R;
(c5) problem (4.43) admits only the zero solution.

Theorem 4.10. Assuming that hypotheses (c1), (c2), (c3), (c4), and (c5) are ful-
filled. Then there exists ρ0 > 0, such that for every solution x(·) for problem (4.67)
and for every λ ∈ [0,1]

‖x‖∞ < ρ0. (4.70)

If, in addition,

degB
(
g,Σ

(
ρ0
)
,0
) �= 0, (4.71)

then problem (4.65) admits solutions.

The proof is analogous with the proofs of Theorems 4.8 and 4.9. If the first
conclusion is not true, then one finds λk ∈ [0,1] and xk ∈ X satisfying

ẋk = θ(t)g
(
xk
)

+λke
(
t,xk

)
, xk(−∞) = xk(+∞),

∥∥xk∥∥∞ −→∞. (4.72)
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Setting again uk = xk/‖xk‖, we deduce that (uk)k is compact in X ; if u ∈ {xk}k,
then u satisfies (4.64) and ‖u‖∞ = 1, which contradicts hypothesis (c5).

The second part is an immediate consequence of Propositions 4.1 and 4.7 and
of condition (4.71).
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