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A version of Zhong’s coercivity result (1997) is established for nonsmooth func-
tionals expressed as a sum Φ + Ψ, where Φ is locally Lipschitz and Ψ is con-
vex, lower semicontinuous, and proper. This is obtained as a consequence of a
general result describing the asymptotic behavior of the functions verifying the
above structure hypothesis. Our approach relies on a version of Ekeland’s vari-
ational principle. In proving our coercivity result we make use of a new general
Palais-Smale condition. The relationship with other results is discussed.

1. Introduction

In this paper, we deal with the class of nonsmooth functionals I : X →R∪{+∞}
on a Banach space X of the form

I =Φ+Ψ, (1.1)

with Φ : X →R locally Lipschitz and Ψ : X →R∪{+∞} convex, lower semicon-
tinuous (l.s.c.), and proper (i.e., �≡ +∞).

For the functional I as in (1.1), it was given in [9] the following definition of
Palais-Smale (PS) condition.

Definition 1.1. The functional I : X →R∪{+∞} in (1.1) satisfies the PS condi-
tion if every sequence (un)⊂ X with I(un) bounded and for which there exists a
sequence (εn)⊂R+, εn→ 0+, such that

Φ0(un;v−un
)

+Ψ(v)−Ψ
(
un
)≥−εn∥∥v−un

∥∥, ∀v ∈ X, ∀n, (1.2)

contains a (strongly) convergent subsequence in X .
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The notation Φ0 in (1.2) stands for the generalized directional derivative of
the locally Lipschitz functional Φ : X →R introduced by Clarke [5] as follows:

Φ0(u;v)= limsup
w→u
t→0+

1
t

(
Φ(w+ tv)−Φ(w)

)
, ∀u,v ∈ X. (1.3)

In the case where Φ∈ C1(X ;R) and Ψ= 0, Definition 1.1 reduces to the usual
PS condition. If Φ is locally Lipschitz and Ψ = 0, Definition 1.1 expresses the
PS condition in the sense of Chang [4]. If Φ ∈ C1(X ;R) and Ψ is convex, l.s.c.,
and proper, Definition 1.1 represents the concept of PS condition introduced by
Szulkin [10].

A different extension of the usual PS condition is the following one.

Definition 1.2 (Zhong [11]). Let h : [0,+∞)→ [0,+∞) be a continuous nonde-
creasing function such that

∫ +∞
0 (1/(1 +h(r)))dr = +∞. An l.s.c. proper function

Φ : X →R∪{+∞} which is Gâteaux differentiable on its effective domain satis-
fies the PS condition if every sequence (un)⊂ X with Φ(un) bounded and

∥∥Φ′(un)∥∥(1 +h
(∥∥un∥∥))−→ 0 as n−→ +∞ (1.4)

has a (strongly) convergent subsequence in X .

If h= 0, Definition 1.2 reduces to the classical PS condition. In the case where
h(t)= t, for all t ≥ 0, Definition 1.2 coincides with the PS condition in the sense
of Cerami [3].

It is natural to look for a concept of PS condition for functionals of type (1.1)
incorporating simultaneously the two definitions above.

Definition 1.3. The functional I : X →R∪{+∞} in (1.1) satisfies the PS condi-
tion if every sequence (un)⊂ X with I(un) bounded and for which there exists a
sequence (εn)⊂R+, εn→ 0+, such that

Φ0(un;v−un
)

+Ψ(v)−Ψ
(
un
)≥− εn

1 +h
(∥∥un∥∥)

∥∥v−un
∥∥, ∀v ∈ X, ∀n,

(1.5)
contains a (strongly) convergent subsequence in X .

If h= 0, Definition 1.3 reduces to Definition 1.1. If Φ∈ C1(X ;R) and Ψ= 0,
Definition 1.3 coincides with Definition 1.2 since relation (1.5) becomes (1.4)
in this case. We point out that for h(t)= t, for all t ≥ 0, Definition 1.3 expresses
the extension of the PS condition in the sense of Cerami [3] to the class of non-
smooth functionals in (1.1).

A problem that has been extensively studied was the relationship between the
PS condition and coercivity. We recall that a functional I : X →R∪{+∞} is said
to be coercive if the following property holds:

I(u)−→ +∞ as ‖u‖ −→ +∞. (1.6)
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The basic assertion in this direction is that, generally, the PS condition implies
the coercivity. The first such result is the one of Čaklović et al. [2] who estab-
lished this property for a functional I : X → R which is l.s.c., Gâteaux differen-
tiable, and satisfying the classical PS condition (see also Brézis and Nirenberg [1]
for continuously differentiable functionals). The first result of this type, for non-
differentiable functionals, is due to Goeleven [7] who has shown the coercivity
property in the case where the functional I : X → R∪ {+∞} has the structure
(1.1) with Φ l.s.c. and Gâteaux differentiable, and Ψ convex, l.s.c., and proper
such that the PS condition in the sense of Szulkin [10] is satisfied. For non-
smooth functionals of the general form (1.1), an analogous result has been ob-
tained in [8] making use of the PS condition stated in Definition 1.1. The corre-
sponding property for nonsmooth functionals, satisfying the PS condition for-
mulated in Definition 1.2, has been given by Zhong [11]. The aim of this paper
is to prove the coercivity for the nonsmooth functionals verifying (1.1) together
with the PS condition given in Definition 1.3.

In this paper, the coercivity assertion is obtained as a consequence of Theorem
2.3 below expressing the asymptotic behavior of a nonsmooth functional of type
(1.1). Specifically, the coercivity property is derived from Theorem 2.3 by assum-
ing the PS condition as formulated in Definition 1.3.

Theorem 2.3 cannot be deduced from Zhong’s corresponding result [11, The-
orem 3.7] because, generally, the functionals of type (1.1), which we consider, are
not Gâteaux differentiable. However, Theorem 2.3 is not an extension of Theo-
rem 3.7 in Zhong [11] because a Gâteaux differentiable, l.s.c., and proper func-
tional is not necessarily of form (1.1). Our Theorem 2.3 represents the version of
Zhong’s corresponding result for a nonsmooth functional fulfilling the structure
assumption (1.1).

The method of proof for Theorem 2.3 relies, as in the case of [11, Theorem
3.7], on Zhong’s variational principle [11, Theorem 2.1] which is an extension of
Ekeland’s variational principle [6]. The proof of Theorem 2.3 takes into account,
essentially, the structure of functionals in (1.1). To the end of rigourously prov-
ing Theorem 2.3, we slightly extend Zhong’s variational principle [11, Theorem
2.1] in Theorem 2.1 below. The main idea is to allow the reference point x0 to
be in a larger space. Precisely, this extension is necessary because in Theorem 2.3
we encounter the situation where x0 = 0 does not belong to the space M0, on
which the variational principle must be applied. Our argument corrects a small
gap in the proof of [11, Theorem 3.7] concerning the mentioned difficulty. Fur-
thermore, in comparison with Zhong’s paper [11], our approach in Theorem 2.3
makes other improvements, among them, the accurate treatment of the passage
from the (N − 1)th to the Nth step. Moreover, our hypotheses in Theorem 2.3
and Corollary 2.4 either are slightly weaker (see (2.8)) or give the correct re-
quirement for making the proof (see (2.5)).

The rest of the paper is organized as follows. Section 2 is devoted to the state-
ments of the results. Section 3 contains the proof of the main result.
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2. Main results

We start with a slight extension of Zhong’s variational principle in [11].

Theorem 2.1. Let h : [0,+∞)→ [0,+∞) be a continuous nondecreasing function
such that

∫ +∞

0

1
1 +h(r)

dr = +∞. (2.1)

Let M be a closed subset of a complete metric space M̃ endowed with the metric d,
let a point x0 ∈ M̃, and let f : M→R∪{+∞} be an l.s.c., proper function which is
bounded from below. Then, for all ε > 0, v ∈M with

f (v) < inf
M

f + ε, (2.2)

and λ > 0, there exists a point wε,λ ∈M such that

f
(
wε,λ

)≤ f (v), d
(
wε,λ,x0

)≤ r + r0,

f (u)≥ f
(
wε,λ

)− ε
λ
(
1 +h

(
d
(
x0,wε,λ

)))d(u,wε,λ), ∀u∈M,
(2.3)

where r0 = d(x0,v) and r verifies

∫ r0+r

r0

1
1 +h(r)

dr ≥ λ. (2.4)

Proof. We endow M with the metric induced by the one on M̃, so M becomes
a complete metric space. A careful examination of the proof of [11, Theorem
2.1] shows that the argument therein can be carried out with any point x0 in M̃.
Following the same lines as in the proof of [11, Theorem 2.1] (which goes back
to Ekeland [6]), we achieve the stated conclusion. �

Remark 2.2. The classical Ekeland’s variational principle [6] is obtained from
Theorem 2.1 taking M̃ =M, h= 0, x0 = v, and r = λ.

Our main result is the following theorem.

Theorem 2.3. Let X be a Banach space and let a functional I : X → R∪ {+∞}
be of type (1.1), that is, I =Φ+Ψ with Φ : X → R locally Lipschitz and Ψ : X →
R∪{+∞} convex and l.s.c. If

α := liminf
‖v‖→+∞

I(v)∈R, (2.5)

then for every sequence (εn) ⊂ R+ with εn → 0+, there exists a sequence (un) ⊂ X
satisfying (1.5) (with a function h : [0,+∞)→ [0,+∞) nondecreasing, continuous,
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and verifying (2.1)), ∥∥un∥∥−→ +∞ as n−→ +∞, (2.6)

I(un)−→ α as n−→ +∞. (2.7)

The proof will be done in Section 3.
Now we apply Theorem 2.3 for studying the coercivity of nonsmooth func-

tionals in (1.1).

Corollary 2.4. Assume that the functional I : X →R∪{+∞} satisfies the struc-
ture hypothesis (1.1) with Φ : X →R locally Lipschitz and Ψ : X →R∪{+∞} con-
vex, l.s.c., and proper. If I verifies the PS condition in Definition 1.3 and

liminf
‖v‖→+∞

I(v) >−∞, (2.8)

then I is coercive, that is property (1.6) holds.

Proof. Suppose, by contradiction, that I is not coercive. In view of (2.8), this is
equivalent to (2.5) which enables us to apply Theorem 2.3. Corresponding to a
sequence εn → 0+, we find a sequence (un)⊂ X fulfilling (1.5), (2.6), and (2.7).
On the basis of (1.5), (2.7), and PS condition in the sense of Definition 1.3, it
follows that there exists a subsequence of (un) which is strongly convergent in X .
Thus, we arrived at a contradiction with (2.6). The proof is complete. �

3. Proof of Theorem 2.3

Note that the condition α ∈ R, imposed in (2.5), implies that the functional I
is proper outside every ball in X . We fix a positive number ε ≤ 1/3. Define the
function

m(r)= inf
‖u‖≥r

I(u), r > 0. (3.1)

The function m in (3.1) is nondecreasing and it satisfies

lim
r→+∞m(r)= α. (3.2)

From (3.2), there exists a number r = r(ε)≥ 1/ε such that

α− ε2 ≤m(r), ∀r ≥ r. (3.3)

Using property (2.1) of the function h, it follows that∫ +∞

r

1
1 +h(r)

dr = +∞. (3.4)

Therefore, we can choose r∗ > r such that∫ r∗

r

1
1 +h(r)

dr ≥ 1. (3.5)
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Corresponding to ε > 0, the definition of the integral yields a partition r = rN <
rN−1 < ··· < r1 < r0 = r∗ for which one has

∣∣∣∣∣
∫ r∗

r

1
1 +h(r)

dr−
N−1∑
k=0

1
1 +h

(
rk
)(rk − rk+1

)∣∣∣∣∣ < ε. (3.6)

We consider the following sets:

Mk =
{
u∈ X : ‖u‖ ≥ rk

}
, 0≤ k ≤N. (3.7)

The requirements in Theorem 2.1 are fulfilled with M =M0, M̃ = X , f = I , and
x0 = 0. To justify this, we notice that M0 is a closed subset of the Banach space X .
The functional I : X →R∪{+∞}, expressed in (1.1), is l.s.c. and proper on M0.
Finally, by (3.1) and (3.3) we derive that

I(u)≥m
(‖u‖)≥ α− ε2, ∀u∈ X, ‖u‖ ≥ r, (3.8)

which ensures that the functional I is bounded from below on M0 since r < r0.
Then, Theorem 2.1 (with ε replaced by ε2 and λ = ε) provides a point w0 =
w0(ε)∈M0 such that

I
(
w0
)
<m

(
r0
)

+ ε2 ≤ α+ ε2 (3.9)

(see also (3.2)) and

I(u)≥ I
(
w0
)− ε

1 +h
(∥∥w0

∥∥)∥∥u−w0
∥∥, ∀u∈M0. (3.10)

Assume that

∥∥w0
∥∥ > r0 or (3.10) holds for every u∈M1. (3.11)

For an arbitrary w ∈ X , it is permitted to set in (3.10) u = w0 + t(w−w0) with
t > 0 sufficiently small. Then, we can write

Φ
(
w0 + t

(
w−w0

))
+Ψ

(
w0 + t

(
w−w0

))
≥Φ

(
w0
)

+Ψ
(
w0
)− εt

1 +h
(∥∥w0

∥∥)∥∥w−w0
∥∥. (3.12)

On the basis of convexity of Ψ : X →R∪{+∞}, the inequality above yields

Φ
(
w0 + t

(
w−w0

))−Φ
(
w0
)

+ t
(
Ψ(w)−Ψ

(
w0
))

≥− εt
1 +h

(∥∥w0
∥∥)∥∥w−w0

∥∥. (3.13)
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Dividing by t > 0 and then passing to the upper limit as t→ 0+, we obtain that

limsup
t→0+

1
t

(
Φ
(
w0 + t

(
w−w0

))−Φ
(
w0
))

+Ψ(w)−Ψ
(
w0
)

≥− ε
1 +h

(∥∥w0
∥∥)∥∥w−w0

∥∥. (3.14)

We deduce that

Φ0(w0;w−w0
)

+Ψ(w)−Ψ
(
w0
)≥− ε

1 +h
(∥∥w0

∥∥)∥∥w−w0
∥∥, ∀w ∈ X.

(3.15)
Since w0 ∈M0, it is known that ‖w0‖ ≥ r0 = r∗ ≥ 1/ε. From (3.8) and (3.9) we
infer that α− ε2 ≤ I(w0) < α+ ε2. Taking into account that the assertions above
are valid for an arbitrary ε ∈ (0,1/3), we see that properties (1.5), (2.6), and (2.7)
are proved under the additional assumption (3.11).

We may, thus, suppose that

∥∥w0
∥∥= r0 (3.16)

and there exists some u1 ∈M1 \M0 such that

I
(
u1
)
< I
(
w0
)− ε

1 +h
(∥∥w0

∥∥)∥∥u1−w0
∥∥. (3.17)

Using the construction leading to [11, relation (2.7)] with M1, ε2 and ε in place
of M, ε and λ, respectively, and choosing u1

1 =w0, there exists a sequence (u1
n)⊂

M1 such that

I
(
u1
n+1

)≤ I
(
u1
n

)− ε
1 +h

(∥∥u1
n

∥∥)∥∥u1
n−u1

n+1

∥∥, ∀n≥ 1. (3.18)

Arguing as in the proof of [11, Theorem 2.1], on the basis of relation (3.18), we
deduce the existence of a point w1 ∈M1 with the properties

lim
n→+∞u

1
n =w1, (3.19)

I(u)≥ I
(
w1
)− ε

1 +h
(∥∥w1

∥∥)∥∥u−w1
∥∥, ∀u∈M1. (3.20)

In addition, by (3.19) and the lower semicontinuity of I in conjunction with
(3.18) and (3.9), we obtain that

I
(
w1
)≤ liminf

n→+∞ I
(
u1
n

)= lim
n→+∞I

(
u1
n

)≤ I
(
u1

1

)
< α+ ε2. (3.21)
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Relations (3.21) and (3.20) show that we arrived at a situation which is similar
to the one described in the previous step, that is, (3.9) and (3.10). In this respect,
if

∥∥w1
∥∥ > r1 or (3.20) holds for every u∈M2 (3.22)

(an assertion analogous to (3.11)), we complete the proof as above.
It remains to consider the case where (3.22) does not hold, that is,

∥∥w1
∥∥= r1 (3.23)

and there exists some u2 ∈M2 \M1 such that

I
(
u2
)
< I
(
w1
)− ε

1 +h
(∥∥w1

∥∥)∥∥u2−w1
∥∥. (3.24)

Thanks to relations (3.23) and (3.24), we are in the same situation as (3.16) and
(3.17), hence, we may pass to the next step.

Continuing the process, by the construction around [11, relation (2.7)], we
find a convergent sequence (ukn)⊂Mk, 1≤ k ≤N , with uk1 =wk−1, satisfying

I
(
ukn+1

)≤ I
(
ukn
)− ε

1 +h
(∥∥ukn∥∥)

∥∥ukn−ukn+1

∥∥, ∀n≥ 1. (3.25)

Moreover, there exists

lim
n→+∞u

k
n =wk (3.26)

with the property

I(u)≥ I
(
wk
)− ε

1 +h
(∥∥wk

∥∥)∥∥u−wk

∥∥, ∀u∈Mk. (3.27)

Now, two situations could arise: either

∥∥wk

∥∥ > rk or (3.27) holds for every u∈Mk+1 (3.28)

(where we set MN+1 = X) or

∥∥wk

∥∥= rk (3.29)

and there is uk+1 ∈Mk+1 \Mk with

I
(
uk+1

)
< I
(
wk
)− ε

1 +h
(∥∥wk

∥∥)∥∥uk+1−wk

∥∥. (3.30)

Now we prove that for at least one 0≤ k ≤N we are in the situation described
in (3.28). Clearly, this will accomplish the proof by means of a reasoning similar
to the one below relation (3.11).
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We argue by contradiction. Suppose that

wk satisfies (3.27), (3.29), and (3.30), for every 0≤ k ≤N. (3.31)

The contradiction will be achieved through the inequality

ε
1 +h

(∥∥wk

∥∥)∥∥wk −wk+1
∥∥≤ I

(
wk
)− I

(
wk+1

)
, ∀k, 0≤ k ≤N − 1. (3.32)

Assume for a moment that (3.32) is valid. According to (3.32), (3.9), wN ∈
MN , and (3.3), we derive that

N−1∑
k=0

ε
1 +h

(∥∥wk

∥∥)∥∥wk −wk+1
∥∥≤ I

(
w0
)− I

(
wN
)
< α+ ε2−m

(
rN
)≤ 2ε2. (3.33)

Using (3.5), (3.6), (3.29), (3.31), and (3.33), it turns out that

1− ε ≤
∫ r∗

r

1
1 +h(r)

dr− ε <
N−1∑
k=0

1
1 +h

(
rk
)(rk − rk+1

)

=
N−1∑
k=0

1
1 +h

(∥∥wk

∥∥)(∥∥wk

∥∥−∥∥wk+1
∥∥)

≤
N−1∑
k=0

1
1 +h

(∥∥wk

∥∥)∥∥wk −wk+1
∥∥≤ 2ε.

(3.34)

Thus, we get that ε > 1/3. This contradicts the choice ε ≤ 1/3 and completes the
proof provided that (3.32) is true.

In order to check (3.32), we fix k with 0≤ k ≤N − 1. Note that if

∥∥uk+1
j

∥∥≤ ∥∥wk

∥∥= rk, ∀ j ≥ 1, (3.35)

the claim in (3.32) is proved. Indeed, by (3.26), the lower semicontinuity of I
and (3.25), we may write

I
(
wk+1

)≤ liminf
m→+∞ I

(
uk+1
m

)≤ I
(
uk+1
n

)

≤ I
(
uk+1

1

)− n−1∑
j=1

ε
1 +h

(∥∥uk+1
j

∥∥)∥∥uk+1
j −uk+1

j+1

∥∥, ∀n≥ 2.
(3.36)



610 A version of Zhong’s coercivity result

In addition, by means of equality uk+1
1 = wk, (3.26), and the triangle inequality,

we have

∥∥wk −wk+1
∥∥= lim

n→+∞
∥∥uk+1

1 −uk+1
n

∥∥
≤ lim

n→+∞

n−1∑
j=1

∥∥uk+1
j −uk+1

j+1

∥∥

=
+∞∑
j=1

∥∥uk+1
j −uk+1

j+1

∥∥.
(3.37)

Making use of monotonicity of h in conjunction with (3.35) and (3.36), the
inequality above leads to

ε
1 +h

(∥∥wk

∥∥)∥∥wk −wk+1
∥∥≤ +∞∑

j=1

ε
1 +h

(∥∥wk

∥∥)∥∥uk+1
j −uk+1

j+1

∥∥

≤
+∞∑
j=1

ε
1 +h

(∥∥uk+1
j

∥∥)∥∥uk+1
j −uk+1

j+1

∥∥
≤ I
(
wk
)− I

(
wk+1

)
.

(3.38)

This means that if (3.35) holds, inequality (3.32) is checked.
Property (3.35) is true for j = 1 being verified with equality. Thus, for com-

pleting the proof it is sufficient to verify

∥∥uk+1
j

∥∥ < ∥∥wk

∥∥= rk, ∀ j ≥ 2. (3.39)

The proof of (3.39) is done by recurrence. Considering first the case j = 2, we
point out that the set

{
u∈Mk+1 : I(u) < I

(
wk
)− ε

1 +h
(∥∥wk

∥∥)∥∥u−wk

∥∥} (3.40)

is nonempty because it contains at least uk+1 (see (3.30) and (3.31)). Taking into
account the equality wk = uk+1

1 , by the construction of the sequence (uk+1
n ), it is

known that uk+1
2 belongs to the set described by (3.40). Comparing (3.40) and

(3.27), it follows that uk+1
2 �∈Mk which reads as ‖uk+1

2 ‖ < rk. Assertion (3.39) is,
thus, checked for j = 2.

Assume inductively that for some j >2, we have ‖uk+1
n ‖<rk with 2≤n≤ j− 1.

We must verify that ‖uk+1
j ‖ < rk. Arguing by contradiction, suppose ‖uk+1

j ‖ ≥ rk.

This ensures that uk+1
j �= uk+1

j−1, so by (3.25) with n = j − 1 and (3.31), we infer
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that

I
(
uk+1
j

)
< I
(
uk+1
j−1

)− ε
1 +h

(∥∥uk+1
j−1

∥∥)∥∥uk+1
j−1−uk+1

j

∥∥

≤ I
(
uk+1

1

)− j−1∑
n=1

ε
1 +h

(∥∥uk+1
n

∥∥)∥∥uk+1
n −uk+1

n+1

∥∥.
(3.41)

Since we admitted ‖uk+1
j ‖ ≥ rk and using (3.27), we may write

I
(
uk+1
j

)≥ I
(
wk
)− ε

1 +h
(∥∥wk

∥∥)∥∥uk+1
j −wk

∥∥. (3.42)

Relations (3.41), uk+1
1 = wk, (3.42), the triangle inequality, ‖uk+1

n ‖ < rk = ‖wk‖
for 2≤ n≤ j− 1, and the increasing monotonicity of h yield

j−1∑
n=1

ε
1 +h

(∥∥uk+1
n

∥∥)∥∥uk+1
n −uk+1

n+1

∥∥ < I
(
uk+1

1

)− I
(
uk+1
j

)
≤ ε

1 +h
(∥∥uk+1

1

∥∥)∥∥uk+1
j −uk+1

1

∥∥

≤ ε
1 +h

(∥∥uk+1
1

∥∥)
j−1∑
n=1

∥∥uk+1
n −uk+1

n+1

∥∥

≤
j−1∑
n=1

ε
1 +h

(∥∥uk+1
n

∥∥)∥∥uk+1
n −uk+1

n+1

∥∥.

(3.43)

The achieved contradiction implies that ‖uk+1
j ‖ < rk. The inductive process is

accomplished, thus (3.39) holds true. The proof is complete.
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