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Thermoelastic plate model with a control term in the thermal equation is con-
sidered. The main result in this paper is that with thermal control, locally dis-
tributed within the interior and square integrable in time and space, any finite
energy solution can be driven to zero at the control time T .

1. Introduction

In this paper, we investigate the null controllability of thermoelastic plates when
the control (heat source) acts in the thermal equation. In general, these models
consist of an elastic motion equation and a heat equation, which are coupled in
such a way that the energy transfer between them is taken into account.

The plate, we consider here, is derived in the light of [18]. Transverse shear
effects are neglected (Euler-Bernoulli model), and the plate is hinged on its edge.
In addition to internal and external heat source, the temperature dynamics are
driven by internal frictional forces caused by the motion of the plate. The latter
connection is expressed by the second law of thermodynamics for irreversible
processes, which relates the entropy to the elastic strains. Accounting for thermal
effects, we assume that the heat flux law involves only the temperature gradient
by the Fourier law.

Let Ω be a bounded, open, connected subset of R2, with a C∞ boundary and
ω any open subset of Ω. Let T > 0 and set

Q := (0,T)×Ω, Σ := (0,T)× ∂Ω. (1.1)

We consider a model which describes the small vibrations of a homogeneous,
elastically and thermally isotropic Kirchhoff plate, under the influence of a con-
trol function f ∈ L2((0,T) × ω). In absence of exterior forces, and with
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hinged mechanical and Dirichlet thermal boundary conditions, the system we
are going to study is the following one:

utt +∆2u+∆θ = 0 in Q,

θt −∆θ−∆ut = f in Q,

u= ∆u= 0 on Σ,

θ = 0 on Σ,

u(0)= u0, ut(0)= u1, θ(0)= θ0 on Ω.

(1.2)

Here, u is the vertical deflection of the plate and θ is the variation of temperature
of the plate with respect to its reference temperature. The subscript ·t denotes
time derivative, and u0, u1, θ0 are initial data in a suitable space.

We recall (cf. [20, 26]) that a system is exactly controllable at given time T > 0
if it can be driven from any state to any state belonging to the same space of
states where the system evolves. A system is null controllable at time T > 0 if
an arbitrary state can be transferred to 0 in time T , or equivalently, any state
can be joined to any trajectory (e.g., attainability of the trajectories). The null
controllability does not yield the exact controllability of the system (cf. the heat
equation with distributed control in the domain Ω [26]).

In recent years, many efforts have been devoted to studying the controllability
of thermoelastic systems, under varying boundary conditions, and with different
choices of control on the boundary or in the control domain. In the classical
literature some controllability results are established. Haraux [15] studies the
internal controllability of a rectangular plate Ω in R2. By denoting with ω the set
Ω∩B �= ∅, where B is an open strip parallel to one side of Ω, he proves that for
any T > 0 and any (y0, y1) ∈ (H2(Ω)∩H1

0 (Ω))× L2(Ω), there exists a control
h∈ L2((0,T)×Ω) with supph⊂ (0,T)×ω such that the solution of

ytt +∆2y = h in Q,

y = ∆y = 0 on Σ,

y(0)= y0, yt(0)= y1 on Ω

(1.3)

satisfies (y(T), yt(T)) = (0,0) (or equivalently, the null controllability at any
time T > 0).

Lasiecka and Triggiani [21] show the null controllability at any time T > 0
of the thermoelastic plate equation with hinged mechanical and Dirichlet ther-
mal boundary conditions, under the influence of either mechanical or thermal
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control on the whole domain, namely

utt +A2u−Aθ = f1 in Q,

θt +Aθ +Aut = f2 in Q,

u= Au= 0 on Σ,

θ = 0 on Σ,

u(0)= u0, ut(0)= u1, θ(0)= θ0 on Ω,

(1.4)

where A is a strictly positive, selfadjoint partial differential operator with com-
pact resolvent, and ( f1, f2)= (0,h) or ( f1, f2)= (k,0), with h,k ∈ L2((0,T)×Ω)
and h,k �≡ 0.

On the other hand, by considering in addition the rotatory inertia in the plate
motion equation, Avalos [5] complements the previous result. He proves the
exact controllability at any time T > 0 for thermoelastic system

utt − γ∆utt +∆2u+α∆θ = f1 in Q,

θt −∆θ + σθ−α∆ut = f2 in Q,

u= ∂u

∂ν
= 0 on Σ,

θ = 0 on Σ,

u(0)= u0, ut(0)= u1, θ(0)= θ0 on Ω

(1.5)

in absence of control forces ( f1 ≡ 0), with a control f2 ∈ L2(0,T ;H−1(Ω)) in the
whole Ω. The choice of this control space yields the result of exact controllability.

De Teresa and Zuazua [10] consider the thermoelastic plate system (1.5) in
presence of a control function f1 ∈ L1(0,T ;H−1(Ω)), with supp f1(·, t) ⊂ ω ⊂
Ω, in absence of heat sources ( f2 ≡ 0), and with σ ≡ 0 and γ �= 0. Clamped
boundary conditions are imposed on u. By using a decoupling result (see [16])
for three-dimensional thermoelasticity, a variational approach to controllability
(see [13]), and some observability inequalities for the system of thermoelastic
plate, a result of exact-approximate controllability is obtained. More precisely,
they prove the exact controllability of the displacement and the approximate
controllability of the temperature, when the control time T is large enough and
the support ω of the control satisfies the geometric control conditions intro-
duced in [8]. In other words, they find sufficient conditions on control time
T and control region ω such that for every initial and final data (u0,u1,θ0),
(v0,v1, ξ0), belonging to the space of states where system (1.5) evolves, and
for every ε > 0 there exists a control function f1 such that the solution of (1.5)
satisfies

u(T)= v0, ut(T)= v1,
∥∥θ(T)− ξ0

∥∥
L2(Ω) ≤ ε. (1.6)



588 Null controllability of a thermoelastic plate

Finally, we want to recall an important contribution by Lebeau and Zuazua
[24] to the controllability theory of thermoelastic systems. By using the spectral
decomposition of operators generated by the coupled wave and heat equations
state variables, Lebeau and Zuazua study the null controllability at any time
T > 0, when the control acts in the wave equation part as distributed control.
They suppose the geometric control condition for the wave equation in the do-
main. With the same assumptions they also prove that the null controllability at
any time T > 0 holds when the control acts on the heat equation.

Instead of an interior control implemented in the motion or in the heat equa-
tion, if the control time T is sufficiently large, Lagnese [19] gives the exact con-
trollability of the displacement, for a boundary controlled thermoelastic system.
In this work, free boundary conditions are imposed, instead of the clamped
ones in (1.5). Moreover, constant γ is positive and coupling constant α is small
enough.

By considering the same previous thermoelastic system, and inserting addi-
tional thermal control on an arbitrarily small subset of the boundary, Avalos and
Lasiecka [6, 7] dispense with the smallness assumption on α, and they tackle the
exact-approximate controllability of thermoelastic plates with variable coupling
coefficient of thermal expansion α, respectively. Finally, we recall a recent paper
of Eller et al. [11] where they study the exact-approximate boundary controlla-
bility of thermoelastic plates with thermal coefficient variable in space.

The null controllability problem for the heat equation has been developed re-
cently by Carleman estimates [12, 14]. This result enables to study the nonlinear
case with variable coefficients, and to apply Carleman estimates to thermoelastic
plate. In particular, if T is sufficiently large, Albano and Tataru [2] prove some
Carleman estimates for a coupled parabolic-hyperbolic system. They obtain a
boundary observability estimate which, by duality, implies the null controllabil-
ity for the adjoint system. Instead of the wave operator, Albano [1] gets a similar
result in the case of the plate operator.

In this paper, we present the null controllability at any time T > 0 for ther-
moelastic problem (1.2). We consider an interior control applied in the heat
equation, and supported in a subset ω of the domain Ω. Two results are ob-
tained. Firstly, we study the case when ω≡Ω and we find the null controllability
at any time T > 0, as Lasiecka and Triggiani [21]. Our procedure is supported by
introducing a quadratic function depending on the time (see [4]). Multipliers
method is applied to construct this function [3, 5, 6]. Then, we consider the case
when ω �Ω, and the closure of ω does not intersect the boundary of Ω. By ap-
plying an iterative method and the observability estimates on the eigenfunctions
of the Laplacian operator due to Lebeau and Robbiano [23] (see also [24]), we
show that system (1.2) is null controllable at any time T > 0. In our proof, the
analyticity property of semigroup associated to the thermoelastic system (recall
γ = 0, see Lasiecka and Triggiani [22]), and the commutative property of the
operators, which comes from the hinged boundary conditions, are crucial.
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The paper is organized as follows. Section 2 is devoted to functional setting
and notation. In Section 3, we study the case ω ≡Ω. In particular, we prove the
null controllability of system (1.2) by a control supported in the whole domain.
Finally, Section 4 contains the main result of this paper.

2. Functional setting and notation

We introduce the Hilbert space

H := (H2(Ω)∩H1
0 (Ω)

)×L2(Ω)×L2(Ω) (2.1)

equipped with the inner product

〈
z1, z2

〉
H =

∫
Ω

(
∆u1 ·∆u2 + v1 · v2 + θ1 · θ2

)
dx, (2.2)

where

zi =


ui
vi
θi


 , i= 1,2. (2.3)

The induced norm is denoted by ‖ · ‖H . Putting v = ut and

z(t)=


u(t)
v(t)
θ(t)


 , z0 =



u0

v0

θ0


 , (2.4)

problem (1.2) can be rewritten as an abstract linear evolution equation in H of
the form

zt = Az+B f , z(0)= z0 ∈H, (2.5)

where we set the operator A : D(A)→H by

A=



0 I 0
−∆2 0 −∆

0 ∆ ∆


 (2.6)

with domain

D(A)= {z ∈H : ∆u,v,θ ∈H2(Ω)∩H1
0 (Ω)

}
, (2.7)

and the control operator B : L2(ω)→H by

B f =



0
0
f


 . (2.8)
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Given T > 0, the problem of the null controllability of system (2.5) consists in to
prove that, for any z0 ∈H , there exists a control f ∈ L2((0,T)×ω) such that the
solution z(t;z0, f ) of (2.5) satisfies z(T ;z0, f )= 0. This property is equivalent to
(cf. [26, Theorem 2.6, page 213]): there exists a positive constant CT such that

∥∥eA∗T y0
∥∥2
H ≤ CT

∫ T

0

∥∥B∗eA∗t y0
∥∥2
L2(ω)dt, ∀y0 ∈H. (2.9)

We compute

A∗ =



0 −I 0
∆2 0 ∆
0 −∆ ∆


 (2.10)

with domain D(A∗)=D(A), and

B∗ = [0 0 I]. (2.11)

The adjoint system with respect to (1.2) is

ϕtt +∆2ϕ+∆w = 0 in Q,

wt −∆w−∆ϕt = 0 in Q,

ϕ= ∆ϕ= 0 on Σ,

w = 0 on Σ,

ϕ(0)= ϕ0, ϕt(0)= ϕ1, w(0)=w0 on Ω.

(2.12)

Its solution can be written as



ϕ(t)
ϕt(t)
w(t)


= eA

∗t



ϕ0

ϕ1

w0


 , (2.13)

B∗eA
∗t



ϕ0

ϕ1

w0


=w(t). (2.14)

Then, condition (2.9) is equivalent to require that there exists a positive constant
CT such that

∥∥∆ϕ(T)
∥∥2
L2(Ω) +

∥∥ϕt(T)
∥∥2
L2(Ω) +

∥∥w(T)
∥∥2
L2(Ω) ≤ CT

∫ T

0

∥∥w(t)
∥∥2
L2(ω)dt (2.15)

for any solution (2.13) of system (2.12).
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3. Null controllability when ω ≡Ω

We have the following result.

Theorem 3.1. For any T > 0 and for any z0 ∈ H , there exists a control function
f ∈ L2((0,T)×Ω) such that the solution z(T ;z0, f ) of (2.5) satisfies z(T ;z0, f )=
0. That is to say, problem (2.5) is null controllable in arbitrary time T > 0 on the
space H within the class of L2((0,T)×Ω)-controls.

Remark 3.2. By a different method, Lasiecka and Triggiani [21] show the previ-
ous result.

Proof. In Section 2 we recalled that the request of null controllability is equiva-
lent to: there exists a positive constant CT such that

∥∥∆ϕ(T)
∥∥2
L2(Ω) +

∥∥ϕt(T)
∥∥2
L2(Ω) +

∥∥w(T)
∥∥2
L2(Ω) ≤ CT

∫ T

0

∥∥w(t)
∥∥2
L2(Ω)dt (3.1)

for any solution of system (2.12). Let
[ ϕ(t)
ϕt(t)
w(t)

]
be a solution of system (2.12) cor-

responding to an initial data
[ ϕ0

ϕ1

w0

]
∈D(A∗)=D(A). We introduce the function

�(t)= t5

2

[∥∥∆ϕ(t)
∥∥2
L2(Ω) +

∥∥ϕt(t)
∥∥2
L2(Ω) +

∥∥w(t)
∥∥2
L2(Ω)

]
+αt3〈w(t),(−∆)−1ϕt(t)

〉
L2(Ω) +βt4〈ϕ(t),ϕt(t)

〉
L2(Ω)

+ 4βt3〈(−∆)−1w(t),ϕ(t)
〉
L2(Ω) + γt3

∥∥(−∆)−1/2w(t)
∥∥2
L2(Ω)

+ δt4
∥∥(−∆)−2wt(t)

∥∥2
L2(Ω)− 2δt4〈(−∆)−1ϕ(t),w(t)

〉
L2(Ω)

+ δt4
∥∥(−∆)−1w(t)

∥∥2
L2(Ω),

(3.2)

where α, β, γ, and δ are positive constants that will be chosen later. By a differ-
entiation of �(t) with respect to t and by application of Young inequality, we
find

d

dt
�(t)≤−

(
αt3− 5

2
t4−βt4− 8δt3

∥∥(−∆)−1
∥∥2− εt3

)∥∥ϕt(t)
∥∥2
L2(Ω)

−
(
βt4− 5

2
t4− εt4

)∥∥∆ϕ(t)
∥∥2
L2(Ω) +P(t)

∥∥w(t)
∥∥2
L2(Ω),

(3.3)

where ‖ · ‖ denotes the norm in �(L2(Ω)), ε > 0 and P(t) is a polynomial of fifth
order on time. We can choose α, β, γ, δ, ε in order to obtain

d

dt
�(t)≤ P(t)

∥∥w(t)
∥∥2
L2(Ω), (3.4)
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and, for any T > 0,

�(T)≥ T5

4

[∥∥∆ϕ(T)
∥∥2
L2(Ω) +

∥∥ϕt(T)
∥∥2
L2(Ω) +

∥∥w(T)
∥∥2
L2(Ω)

]
. (3.5)

Integrating (3.4) on [0,T] and considering (3.5), observability inequality (3.1)
is obtained and the observability constant CT is �(T−10). �

Remark 3.3. The controllability time estimate is surely not optimal, but it is
sufficient to prove the results in Section 4.

4. Null controllability when ω �Ω

Theorem 4.1. Let ω be an open subset of Ω and the closure of ω does not intersect
the boundary of Ω. For any T > 0 and for any z0 ∈H , there exists a control function
f ∈ L2((0,T)×ω) such that the solution z(T ;z0, f ) of (2.5) satisfies z(T ;z0, f )=
0. That is to say, problem (2.5) is null controllable at any time T > 0 on the space H
within the class of L2((0,T)×ω)-controls.

The proof of this theorem follows the procedure developed by Lebeau and
Robbiano in [23] (see also [24, 25]). We decompose the time interval [0,T] as
follows. We fix δ ∈ (0,T/2) and ρ ∈ (0,1/n), n = 2 being the space dimension.
For l ≥ 1, we set

σl := 2l , Tl := k2−ρ l = kσ
−ρ
l , (4.1)

where k > 0 is chosen such that 2
∑

l≥1Tl = T − 2δ. We introduce the operator

Lt′,t(z, f )= eA(t−t′)z+
∫ t

t′
eA(t−t′−s)B f (s)ds, (4.2)

with 0≤ t′ < t. In particular, when t′ = 0 we have

Lt(z, f )= eAtz+
∫ t

0
eA(t−s)B f (s)ds. (4.3)

We observe that z(t) = Lt(z0, f ) is the unique solution of system (2.5). We also
set the sequence (al)l≥1 by

a0 = δ, al = al−1 + 2Tl, l ≥ 1. (4.4)

We observe that al → T − δ as l→∞. For any initial data z ∈H , we denote by

gl := KTl,σl(z) (4.5)

a control function acting in the time interval [al−1,al−1 +Tl] in such a way as to
drive to zero the projection of the solution Lal−1,al−1+Tl(z,gl) on the subspace

Hσl = span
{
Φ

j
k, 1≤ k ≤ σl, j = 1,2,3

}
, (4.6)
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namely

πσl
(
Lal−1,al−1+Tl

(
z,gl

))= 0, (4.7)

where πσl is the projection operator on the subspace Hσl . We can construct a
sequence of states

z0 ∈H, z1 = eAδz0,

zl+1 = eATl yl, yl = Lal−1,al−1+Tl

(
zl,KTl,σl

(
zl
))
.

(4.8)

In the time interval [0,δ] we let the system to evolve freely without control. The
second time interval [a0,a1] = [δ,δ + 2T1] is split into two parts. Firstly, we in-
troduce a control g1 := KT1,σ1 (z1) which drive z1 to a function of H⊥

σ1
in time T1

(or equivalently, in [δ,δ + T1] we control to zero the projection πσ1 of the so-
lution). Subsequently, in the time interval [δ + T1,δ + 2T1], we let the system
to evolve freely. By repeating this procedure on [al−1,al−1 + 2Tl], for any l ≥ 2,
we obtain the sequence (zl)l≥1. The main result is to prove the existence of zl

and that liml→∞ zl = 0. Then, the assertion of Theorem 4.1 follows. Since system
(2.5) is invariant in time, the existence of control gl, for any l ≥ 1 amounts to the
existence of a control for (2.5) for any T > 0. Moreover, because of liml→∞Tl = 0,
we will need to work with small T .

We start to consider the following lemma.

Lemma 4.2. Let ω be an open subset of Ω and the closure of ω does not intersect
the boundary of Ω. Let T > 0. For any Y 0 ∈H and any l ≥ 1, there exists at least a
control fl(T,Y 0)∈ L2((0,T)×ω) such that

πσl
(
LT
(
Y 0, fl

))= 0 (4.9)

with
∥∥ fl(T,Y 0)∥∥2

L2((0,T)×ω) ≤ CTe
C
√

µσl
∥∥Y 0

∥∥2
H (4.10)

with CT , C > 0. In particular, CT is �(T−10).

Remark 4.3. This shows that the projection of solutions Y(T)= LT(Y 0, fl) over

Hσl , l ≥ 1, can be controlled to zero with a control of size
√
CTe

C
√

µσl .

Proof. Condition (4.9) is equivalent to require that for any l ≥ 1 and anyY 0 ∈H ,
there exists at least a control fl ∈ L2((0,T)×ω) such that

πσl

(
eATY 0 +

∫ T

0
eA(T−s)B fl(s)ds

)
= 0, (4.11)

or equivalently,

eAT
(
πσlY

0)+πσl

(∫ T

0
eA(T−s)B fl(s)ds

)
= 0. (4.12)
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We introduce the operator

�T : L2((0,T)×ω
)−→H, f �−→

∫ T

0
eA(T−s)B f (s)ds. (4.13)

Then (4.11) is equivalent to

Im
(
πσl ◦ eAT

)⊂ Im
(
πσl ◦�T

)
. (4.14)

Because (�∗
Th)(t)= B∗eA∗(T−t)h, for any h∈H , condition (4.14) can be rewrit-

ten as (cf. [26])

∥∥∆X1(T)
∥∥2
L2(Ω) +

∥∥X2(T)
∥∥2
L2(Ω) +

∥∥X3(T)
∥∥2
L2(Ω) ≤ CT

∫ T

0

∥∥X3(t)
∥∥2
L2(ω)dt (4.15)

for any solution X(t)=
[
X1(t)
X2(t)
X3(t)

]
of system

Xt = A∗X in (0,T)×Ω,

X(0)= X0 on Ω
(4.16)

with X0 =
[

X0
1

X0
2

X0
3

]
∈Hσl . In this case, by inequality (3.1) we have

∥∥∆X1(T)
∥∥2
L2(Ω) +

∥∥X2(T)
∥∥2
L2(Ω) +

∥∥X3(T)
∥∥2
L2(Ω) ≤ CT

∫ T

0

∥∥X3(t)
∥∥2
L2(Ω)dt (4.17)

and CT is �(T−10). Since the eigenspaces of A∗ are invariant for eA
∗t and X0 ∈

Hσl , we have that X(t)∈Hσl for any t ∈ (0,T]. The restriction A∗l of the operator
A∗ on Hσl has the following representation:

A∗l =
σl∑
k=1

3∑
j=1

λ
j
k

〈·,Φk, j
〉
HΦ

∗
k, j , (4.18)

where
(
λ
j
k

)
are the eigenvalues of A∗, (Φ∗

k, j) are the corresponding eigenvectors,
and (Φk, j) are the eigenvectors of A such that 〈Φk, j ,Φ

∗
h,i〉H = δkhδji. Then, the

associated semigroup is given by

eA
∗
l t· =

σl∑
k=1

3∑
j=1

eλ
j
kt
〈·,Φk, j

〉
HΦ

∗
k, j . (4.19)

This means that the solution X(t) of system (4.16) with initial data X0 ∈Hσl , we
get

X(t)= eA
∗
l tX0 =

σl∑
k=1

3∑
j=1

eλ
j
kt
〈
X0,Φk, j

〉
HΦ

∗
k, j . (4.20)
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Direct computations (see [3, 9]) give

X3(t)=
σl∑
k=1

3∑
j=1

eλ
j
kt
〈
X0,Φk, j

〉
H

(
λ
j
k

)2

+µ2
k

µk
ek

:=
σl∑
k=1

ak(t)ek,

(4.21)

where ek is a normalized eigenfunction of the Dirichlet Laplacian operator. From
the observability estimates on the eigenfunctions of the Laplacian operator (see
[17, Theorem 14.6, page 230]), there exist positive constants C, depending on Ω
and ω, such that

l∑
k=1

∣∣ak(t)
∣∣2 ≤ CeC

√
µl

∫
ω

∣∣∣∣∣
l∑

k=1

ak(t)ek(x)

∣∣∣∣∣
2

dx. (4.22)

Recalling that

∥∥X3(t)
∥∥2
L2(Ω) =

σl∑
k=1

∣∣ak(t)
∣∣2
, (4.23)

by (4.21) and (4.22) we obtain

∫
Ω

∣∣X3(t,x)
∣∣2

dx ≤ CeC
√

µσl

∫
ω

∣∣X3(t,x)
∣∣2

dx. (4.24)

Applying estimates (4.24) in (4.17), we get

∥∥∆X1(T)
∥∥2
L2(Ω) +

∥∥X2(T)
∥∥2
L2(Ω) +

∥∥X3(T)
∥∥2
L2(Ω)

≤ CT

∫ T

0

∥∥X3(t)
∥∥2
L2(Ω)dt

≤ CTe
C
√

µσl

∫ T

0

∥∥X3(t)
∥∥2
L2(ω)dt

(4.25)

with CT is �(T−10). Then, the existence of the required control follows. The con-
stant controlling observability inequality is the one which gives the size of the
norm of the control (see [20]), then estimate (4.10) follows. �

Corollary 4.4. Let ω be an open subset of Ω and the closure of ω does not intersect
the boundary of Ω. For any l ≥ 1 and any zl ∈ H , there exists at least a control
gl ∈ L2((al−1,al−1 +Tl)×ω) such that

πσl
(
Lal−1,al−1+Tl

(
zl,gl

))= 0 (4.26)
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with

∥∥gl∥∥2
L2((al−1,al−1+Tl)×ω) ≤ CTl e

C
√

µσl
∥∥zl∥∥2

H (4.27)

with CTl ,C > 0. In particular, CTl is �(T−10
l ).

Proof. By application of Lemma 4.2 to every interval (al−1,al−1 +Tl), l ≥ 1, with
Y 0 = zl, T = Tl, and gl(t)= fl(t− al−1), for any t ∈ (al−1,al−1 +Tl), our conclu-
sion follows. �

Proof of Theorem 4.1. Recalling (4.8) and yl ∈H⊥
σl , we have

∥∥zl+1
∥∥
H =

∥∥eATl yl
∥∥
H =

∥∥∥∥∥
∑

k≥σl+1

3∑
j=1

eλ
j
kTl
〈
yl,Φ∗

k, j

〉
HΦk, j

∥∥∥∥∥
H

≤
( ∑

k≥σl+1

3∑
j=1

e2Reλ
j
kTl

∣∣∣〈yl,Φ∗
k, j

〉
H

∣∣∣2
)1/2

≤ eReλ2
σl+1Tl

∥∥yl∥∥H.
(4.28)

Since eAt is a semigroup of contractions, from (4.8) and (4.27), we find

∥∥yl∥∥H = ∥∥Lal−1,al−1+Tl

(
zl,KTl,σl

(
zl
))∥∥

H

≤ ∥∥eATl zl
∥∥
H +

∥∥∥∥∥
∫ al−1+Tl

al−1

eA(Tl−s)Bgl(s)ds

∥∥∥∥∥
H

≤ ∥∥zl∥∥H +
∥∥gl∥∥L2((al−1,al−1+Tl)×ω)

≤
(

1 +
√
CTl e

C
√

µσl

)∥∥zl∥∥H.

(4.29)

From (4.28) and (4.29) we have

∥∥zl+1
∥∥
H ≤ eReλ2

σl+1Tl

(
1 +

√
CTl e

C
√

µσl

)∥∥zl∥∥H. (4.30)

Recalling that

σl = 2l , Tl = k2−ρl = kσ
−ρ
l , CTl =

C

T10
l

for l −→ +∞, (4.31)

and by Weyl’s formula, µσl ∼ C(Ω)(σl)2/n = C(Ω)σl, we deduce that

Reλ2
σl+1 ∼−0.2151µσl+1 ∼−Cσl, (4.32)

for suitable positive constant C. Then

Reλ2
σl+1Tl ∼−C

(
σl
)1−ρ

(4.33)
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and we find

C
√
µσl

Reλ2
σl+1Tl

∼−C
(
σl
)1/2

(
σl
)1−ρ =−C

1(
σl
)1/2−ρ . (4.34)

Because of ρ ∈ (0,1/2), we obtain

√
CTl e

Reλ2
σl+1Tl+C

√
µσl ≤ C

T5
l

e−C(σl)1−ρ = Cσ
5ρ
l e−C (σl)1−ρ

. (4.35)

Applying (4.35) to (4.30), we get

∥∥zl+1
∥∥
H ≤ Cσ

5ρ
l e−C(σl)1−ρ∥∥zl∥∥H

= C25ρle−C2(1−ρ)l∥∥zl∥∥H
≤ C225ρl25ρ(l−1)e−C2(1−ρ)l

e−C2(1−ρ)(l−1)∥∥zl−1
∥∥
H

≤ Cl25ρ(l+1)l/2e−C2(1−ρ)l[1+2−(1−ρ)+···+2−(1−ρ)(l−1)]
∥∥z1

∥∥
H

≤ Cl25ρ(l+1)l/2e−C2(1−ρ)l∥∥z0
∥∥
H.

(4.36)

We find that

lim
l→+∞

Cl25ρ(l+1)l/2e−C2(1−ρ)l = lim
l→+∞

el lnC+((l+1)l/2)ln25ρ−C2(1−ρ)l = 0, (4.37)

since 0 < ρ < 1/2 and

lim
l→+∞

[
l lnC+

(l+ 1)l
2

ln25ρ−C2(1−ρ)l
]

= lim
l→+∞

2(1−ρ)l
{[

l lnC+
(l+ 1)l

2
ln25ρ

]
2−(1−ρ)l −C

}
=−∞.

(4.38)

Then, (4.36) shows that

lim
l→+∞

∥∥zl+1
∥∥
H = 0. (4.39)

Finally, denoting by

f (t,·)=




0 if 0≤ t < a0 = δ

gl(t,·) if al−1 ≤ t < al−1 +Tl, l ≥ 1

0 if al−1 +Tl ≤ t < al−1 + 2Tl = al, l ≥ 1

0 if T − δ ≤ t ≤ T,

(4.40)
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the control function, by (4.27) and (4.36) it can be estimated as

‖ f ‖L2((0,T)×ω) ≤
∞∑
l=1

∥∥gl∥∥L2((al−1,al−1+Tl)×ω)

≤ C
∞∑
l=1

T−5
l eC

√
µσl
∥∥zl∥∥H

≤ C

{ ∞∑
l=1

Cl−125ρ(l+1)l/2eC[2l/2−2(1−ρ)(l−1)]

}∥∥z0
∥∥
H.

(4.41)

Since the series on the right-hand side converges in view of 0 < ρ < 1/2, the con-
trol f ∈ L2((0,T)×ω). �
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