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We study minimal solutions for one-dimensional variational problems on a to-
rus. We show that, for a generic integrand and any rational number α, there ex-
ists a unique (up to translations) periodic minimal solution with rotation num-
ber α.

1. Introduction

In this paper, we consider functionals of the form

I f (a,b,x) =
∫b

a
f
(
t,x(t),x′(t)

)
dt, (1.1)

where a and b are arbitrary real numbers satisfying a < b, x ∈ W1,1(a,b) and
f belongs to a space of functions described below. By an appropriate choice of
representatives, W1,1(a,b) can be identified with the set of absolutely continuous
functions x : [a,b] → R

1, and henceforth we will assume that this has been done.
Denote by M the set of integrands f = f (t,x, p) : R

3 → R
1 which satisfy the

following assumptions:

(A1) f ∈ C3 and f (t,x, p) has period 1 in t,x;
(A2) δ f ≤ fpp(t,x, p) ≤ δ−1

f for every (t,x, p) ∈ R
3;

(A3) | fxp|+ | ftp| ≤ c f (1+ |p|), | fxx|+ | fxt| ≤ c f (1+ p2),

with some constants δ f ∈ (0,1), c f > 0.
Clearly, these assumptions imply that

δ̃ f p
2− c̃ f ≤ f (t,x, p) ≤ δ̃−1

f p2 + c̃ f (1.2)

for every (t,x, p) ∈ R
3 for some constants c̃ f > 0 and 0 < δ̃ f < δ f .

In this paper, we analyse extremals of variational problems with integrands
f ∈ M. The following optimality criterion was introduced by Aubry and Le
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Daeron [2] in their study of the discrete Frenkel-Kontorova model related to
dislocations in one-dimensional crystals.

Let f ∈ M. A function x(·) ∈W1,1
loc (R1) is called an ( f )-minimal solution if

I f (a,b, y) ≥ I f (a,b,x) (1.3)

for each pair of numbers a < b and each y ∈W1,1(a,b) which satisfies y(a) = x(a)
and y(b) = x(b) (see [2, 9, 10, 12]).

Our work follows Moser [9, 10], who studied the existence and structure of
minimal solutions in the spirit of Aubry-Mather theory [2, 7].

Consider any f ∈ M. It was shown in [9, 10] that ( f )-minimal solutions
possess numerous remarkable properties. Thus, for every ( f )-minimal solution
x(·), there is a real number α satisfying

sup
{∣∣x(t)−αt∣∣ : t ∈ R

1} <∞ (1.4)

which is called the rotation number of x(·), and given any real α there exists an
( f )-minimal solution with rotation number α. Senn [11] established the exis-
tence of a strictly convex function Ef : R

1 → R
1, which is called the minimal

average action of f such that, for each real α and each ( f )-minimal solution x
with rotation number α,

(
T2−T1

)−1
I f
(
T1,T2,x

) −→ Ef (α) as T2−T1 −→∞. (1.5)

This result is an analogue of Mather’s theorem about the average energy function
for Aubry-Mather sets generated by a diffeomorphism of the infinite cylinder
[8].

In this paper, we show that for a generic integrand f and any rational α, there
exists a unique (up to translations) ( f )-minimal periodic solution with rotation
number α.

Let k ≥ 3 be an integer. Set Mk = M∩Ck(R3). For f ∈ Mk and q = (q1, q2, q3) ∈
{0, . . . ,k}3 satisfying q1 +q2 +q3 ≤ k, we set

|q| = q1 +q2 +q3, Dq f =
∂|q| f

∂tq1∂xq2∂pq3
. (1.6)

For N,ε > 0 we set

Ek(N,ε) =
{

( f , g) ∈ Mk ×Mk :
∣∣Dq f (t,x, p)−Dqg(t,x, p)

∣∣
≤ ε+εmax

{∣∣Dq f (t,x, p)
∣∣,∣∣Dqg(t,x, p)

∣∣}
∀q ∈ {0,1,2}3 satisfying |q| ∈ {0,2}, ∀(t,x, p) ∈ R

3}
∩{( f , g) ∈ Mk ×Mk :

∣∣Dq f (t,x, p)−Dqg(t,x, p)
∣∣ ≤ ε

∀q ∈ {0, . . . ,k}3satisfying |q| ≤ k, ∀(t,x, p) ∈ R
3

such that |p| ≤N
}
.

(1.7)
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It is easy to verify that, for the set Mk there exists a uniformity which is deter-
mined by the base Ek(N,ε), N,ε > 0, and that the uniform space Mk is metriz-
able and complete [3]. We establish the existence of a set �k ⊂ Mk which is a
countable intersection of open everywhere dense subsets of Mk such that, for
each f ∈ �k and each rational α ∈ R

1, there exists a unique (up to translations)
( f )-minimal periodic solultion with rotation number α.

2. Properties of minimal solutions

Consider any f ∈ M. We note that, for each pair of integers j and k the trans-
lations (t,x) → (t + j,x+ k) leave the variational problem invariant. Therefore,
if x(·) is an ( f )-minimal solution, so is x(·+ j) +k. Of course, on the torus, this
represents the same curve as does x(·). This motivates the following terminology
[9, 10].

We say that a function x(·) ∈W1,1
loc (R1) has no self-intersections if for all pairs

of integers j,k the function t → x(t + j) + k − x(t) is either always positive, or
always negative, or identically zero.

Denote by Z the set of all integers. We have the following result (see [6, Propo-
sition 3.2] and [9, 10]).

Proposition 2.1. (i) Let f ∈ M. Given any real α there exists a nonself-inter-
secting ( f )-minimal solution with rotation number α.

(ii) For any f ∈ M and any ( f )-minimal solution x, there is the rotation num-
ber of x.

For each f ∈ M, each rational number α, and each natural number q satisfy-
ing qα ∈ Z, we define

�(α,q) =
{
x(·) ∈W1,1

loc

(
R

1) : x(t+q) = x(t)+αq, t ∈ R
1},

� f (α,q) =
{
x(·) ∈ �(α,q) : I f (0, q,x) ≤ I f (0, q, y) ∀y ∈ �(α,q)

}
.

(2.1)

We have the following result [9, Theorems 5.1, 5.2, 5.4, and Corollaries 5.3
and 5.5].

Proposition 2.2. Let f ∈ M, let α be a rational number, and let p,q ≥ 1 be
integers satisfying pα,qα ∈ Z. Then � f (α,q) = � f (α, p) 
= ∅, each x ∈ � f (α,q)
is a nonself-intersecting ( f )-minimal solution with rotation number α and the set
� f (α,q) is totally ordered, that is, if x, y ∈ � f (α,q), then either x(t) < y(t) for all
t, or x(t) > y(t) for all t, or x(t) = y(t) identically.

For any f ∈ M and any rational number α we set �per
f (α) = � f (α,q), where

q is a natural number satisfying qα ∈ Z.
We have the following result (see [6, Theorem 1.1]).

Proposition 2.3. Let f ∈ M. Then there exist a strictly convex function Ef : R
1 →

R
1 satisfying Ef (α) → ∞ as |α| → ∞ and a monotonically increasing function

Γ f : (0,∞) → [0,∞) such that for each real α, each ( f )-minimal solution x with
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rotation number α and each pair of real numbers S and T ,
∣∣I f (S,S+T,x)−Ef (α)T

∣∣ ≤ Γ f
(|α|). (2.2)

By Proposition 2.3 for each f ∈ M there exists a unique number α( f ) such
that

Ef
(
α( f )

)
= min

{
Ef (β) : β ∈ R

1}. (2.3)

Note that assumptions (A1), (A2), and (A3) play an important role in the
proofs of Propositions 2.1, 2.2, and 2.3 (see [9, 10]).

3. The main results

Theorem 3.1. Let k ≥ 3 be an integer and α be a rational number. Then there
exists a set �kα ⊂ Mk which is a countable intersection of open everywhere dense
subsets of Mk such that for each f ∈ Mk the following assertions hold:

(1) If x, y ∈ �(per)
f (α), then there are integers p, q such that y(t) = x(t+ p)−q

for all t ∈ R
1.

(2) Let x ∈ �(per)
f (α) and ε > 0. Then there exists a neighborhood � of f in Mk

such that for each g ∈ � and each y ∈ �(per)
g (α) there are integers p, q such that

|y(t)−x(t+ p)+q| ≤ ε for all t ∈ R
1.

It is not difficult to see that Theorem 3.1 implies the following result.

Theorem 3.2. Let k ≥ 3 be an integer. Then there exists a set �k ⊂ Mk which is a
countable intersection of open everywhere dense subsets of Mk such that, for each
f ∈ Mk and each rational number α the assertions (1) and (2) of Theorem 3.1 hold.

Note that minimal solutions with irrational rotation numbers were studied
in [2, 7, 9, 10, 12].

4. An auxiliary result

Let k ≥ 3 be an integer and β ∈ R
1. For each f ∈ Mk, define � f ∈ C3(R3) by

(� f )(t,x,u) = f (t,x,u)−βu, (t,x,u) ∈ R
3. (4.1)

Clearly � f ∈ Mk for each f ∈ Mk.

Proposition 4.1. The mapping � : Mk → Mk is continuous.

Proof. Let f ∈ Mk and let N,ε > 0. In order to prove the proposition, it is suffi-
cient to show that there exists ε0 ∈ (0,ε) such that

�
({
g ∈ Mk : ( f , g) ∈ Ek

(
N,ε0

)}) ⊂ {
h ∈ Mk : (h,� f ) ∈ Ek(N,ε)

}
. (4.2)

Set

∆0 = 2
(|β|+1

)
. (4.3)
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Equation (1.2) implies that there exists c0 > 0 such that

∆0|u|−c0 ≤ f (t,x,u) ∀(t,x,u) ∈ R
3. (4.4)

Choose a number ε0 such that

0 < ε0 < min{1,ε}, 4ε0 +4ε0
(
1−ε0

)−1(4+c0) < ε. (4.5)

It follows from (4.3) and (4.4) that for each (t,x,u) ∈ R
3,

∣∣ f (t,x,u)−βu∣∣ ≥ ∣∣ f (t,x,u)
∣∣−|βu| ≥ ∣∣ f (t,x,u)

∣∣−|β|∆−1
0

(
f (t,x,u)+c0

)
≥ ∣∣ f (t,x,u)

∣∣(1−|β|∆−1
0

)−|β|∆−1
0 c0

≥ 2−1
∣∣ f (t,x,u)

∣∣−2−1c0.

(4.6)

Assume that

g ∈ Mk, ( f , g) ∈ Ek
(
N,ε0

)
. (4.7)

By (1.7) and (4.7) for each (t,x,u) ∈ R
3,

∣∣ f (t,x,u)−g(t,x,u)
∣∣ ≤ ε0 +ε0 max

{∣∣ f (t,x,u)
∣∣,∣∣g(t,x,u)

∣∣},
max

{∣∣ f (t,x,u)
∣∣,∣∣g(t,x,u)

∣∣}−min
{∣∣ f (t,x,u)

∣∣,∣∣g(t,x,u)
∣∣}

≤ ε0 +ε0 max
{∣∣ f (t,x,u)

∣∣,∣∣g(t,x,u)
∣∣},(

1−ε0
)

max
{∣∣ f (t,x,u)

∣∣,∣∣g(t,x,u)
∣∣} ≤ min

{∣∣ f (t,x,u)
∣∣,∣∣g(t,x,u)

∣∣}+ε0,∣∣g(t,x,u)
∣∣ ≤ (

1−ε0
)−1∣∣ f (t,x,u)

∣∣+
(
1−ε0

)−1
ε0.

(4.8)

We show that (� f ,�g) ∈ Ek(N,ε). It follows from (1.7), (4.1), (4.5), and (4.7)
that, for each q = (q1, q2, q3) ∈ {0, . . . ,k}3 satisfying |q| ≤ k and each (t,x, p) ∈ R

3

satisfying |p| ≤N ,

∣∣Dq(� f )(t,x, p)−Dq(�g)(t,x, p)
∣∣ = ∣∣Dq f (t,x, p)−Dqg(t,x, p)

∣∣ ≤ ε0 < ε. (4.9)

Let q ∈ {0,1,2}3, |q| ∈ {0,2}, and (t,x, p) ∈ R
3. Equation (4.1) implies that

∣∣Dq(� f )(t,x, p)−Dq(�g)(t,x, p)
∣∣ = ∣∣Dq f (t,x, p)−Dqg(t,x, p)

∣∣. (4.10)

If |q| = 2, then by (1.7), (4.1), (4.5), (4.7), and (4.10),

∣∣Dq(� f )(t,x, p)−Dq(�g)(t,x, p)
∣∣

≤ ε0 +ε0 max
{∣∣Dq f (t,x, p)

∣∣,∣∣Dqg(t,x, p)
∣∣}

< ε+εmax
{∣∣Dq(� f )(t,x, p)

∣∣,∣∣Dq(�g)(t,x, p)
∣∣}.

(4.11)
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Assume that q = 0. By (1.7), (4.1), (4.5), (4.6), (4.7), and (4.8),
∣∣Dq(� f )(t,x, p)−Dq(�g)(t,x, p)

∣∣
=
∣∣ f (t,x, p)−g(t,x, p)

∣∣ ≤ ε0 +ε0 max
{∣∣ f (t,x, p)

∣∣,∣∣g(t,x, p)
∣∣}

≤ ε0 +ε0 max
{∣∣ f (t,x, p)

∣∣,(1−ε0
)−1∣∣ f (t,x, p)

∣∣+
(
1−ε0

)−1
ε0
}

= ε0 +ε0
(
1−ε0

)−1∣∣ f (t,x, p)
∣∣+ε2

0

(
1−ε0

)−1

≤ ε0 +ε2
0

(
1−ε0

)−1 +ε0
(
1−ε0

)−1[2∣∣ f (t,x, p)−βp∣∣+2c0
]

≤ ε0 +ε2
0

(
1−ε0

)−1 +2ε0
(
1−ε0

)−1
c0 +2ε0

(
1−ε0

)−1∣∣ f (t,x, p)−βp∣∣
≤ 2ε0(1−ε0)−1

∣∣(� f )(t,x, p)
∣∣+ε ≤ ε+ε

∣∣(� f )(t,x, p)
∣∣.

(4.12)

Equations (4.9), (4.11), and (4.12) imply that (� f ,�g) ∈ Ek(N,ε). Proposition
4.1 is proved. �

Let −∞ < T1 < T2 <∞ and x ∈W1,1(T1,T2). By (4.1) we have

I� f (T1,T2,x
)
=
∫T2

T1

(
f
(
t,x(t),x′(t)

)−βx′(t))dt
= I f

(
T1,T2,x

)−βx(T2
)

+βx
(
T1

)
.

(4.13)

Therefore, each x ∈ W1,1
loc (R1) is an (� f )-minimal solution if and only if x(·) is

an ( f )-minimal solution.
Let x ∈ W1,1

loc (R1) be an ( f )-minimal solution with rotation number r. By
Proposition 2.1 there exists c1 > 0 such that for all s, t ∈ R

1,
∣∣x(t+ s)−x(t)−rs∣∣ ≤ c1. (4.14)

Proposition 2.3 implies that there exists a constant c2 > 0 such that for each s ∈
R

1 and each t > 0,
∣∣I f (s, s+ t,x)−Ef (r)t

∣∣ ≤ c2, (4.15)∣∣I� f (s, s+ t,x)−E� f (r)t
∣∣ ≤ c2. (4.16)

It follows from (4.13), (4.14), (4.15), and (4.16) that, for each s ∈ R
1 and each

t > 0,∣∣E� f (r)t+βtr−Ef (r)t
∣∣

≤ ∣∣E� f (r)t− I� f (s, s+ t,x)
∣∣+

∣∣I� f (s, s+ t,x)+βtr− I f (s, s+ t,x)
∣∣

+
∣∣I f (s, s+ t,x)−Ef (r)t

∣∣
≤ c2 +

∣∣βtr−β[x(t+ s)−x(s)
]∣∣+c2 ≤ 2c2 + |β|c1.

(4.17)

These inequalities imply that

E� f (r) = Ef (r)−βr ∀r ∈ R
1. (4.18)
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5. Proof of Theorem 3.1

Let g ∈ M. We define

µ(g) = inf
{

liminf
T→∞

T−1Ig(0,T,x) : x(·) ∈W1,1
loc

(
[0,∞)

)}
. (5.1)

In [13, Section 5] we showed that the number µ(g) is well defined and proved
the following result [13, Theorem 5.1].

Proposition 5.1. Let f ∈ M. Then there exists a constant M0 > 0 such that:
(i) I f (0,T,x)−µ( f )T ≥ −M0 for each x ∈W1,1

loc ([0,∞)) and each T > 0.

(ii) For each a ∈ R
1 there exists x ∈W1,1

loc ([0,∞)) such that x(0) = a and
∣∣I f (0,T,x)−µ( f )T

∣∣ ≤ 4M0 ∀T > 0. (5.2)

Note that assertion (ii) of Proposition 5.1 holds by the periodicity of f in x.
Let f ∈ M. A function x ∈W1,1

loc ([0,∞)) is called ( f )-good (see [5]) if

sup
{∣∣I f (0,T,x)−µ( f )T

∣∣ : T ∈ (0,∞)
}
<∞. (5.3)

By [6, Theorem 4.1],

Ef
(
α( f )

)
= µ( f ) ∀ f ∈ M. (5.4)

For f ∈ M, x, y,T1 ∈ R
1, and T2 > T1 we set

U f (T1,T2,x, y
)
= inf

{
I f
(
T1,T2, v

)
: v ∈W1,1(T1,T2

)
, v
(
T1

)
=x,v

(
T2

)
= y

}
.

(5.5)
It is not difficult to see that for each x, y,T1 ∈ R

1, T2 > T1,

U f (T1,T2,x+1, y+1
)
=U f (T1,T2,x, y

)
,

U f (T1 +1,T2 +1,x, y
)
=U f (T1,T2,x, y

)
, −∞ < U f (T1,T2,x, y

)
<∞,

inf
{
U f (T1,T2,a,b

)
: a,b ∈ R

1} > −∞. (5.6)

Denote by Mper the set of all f ∈ M such that α( f ) is rational and denote by M0
per

the set of all g ∈ Mper for which there exist an (g)-minimal solution w ∈ C2(R1),
a continuous function π : R

1 → R
1, and integers m,n such that the following

properties hold:

(P1) π(x+1) = π(x), x ∈ R
1;

(P2) n ≥ 1 and α(g) =mn−1 is an irreducible fraction;
(P3) w(t+n) = w(t)+m for all t ∈ R

1;
(P4) Ug(0,1,x, y)−µ(g)−π(x)+π(y) ≥ 0 for each x, y ∈ R

1;
(P5) for any u ∈W1,1(0,n), the equality

Ig(0,n,u) = nµ(g)+π
(
u(0)

)−π(u(n)
)

(5.7)

holds if and only if there are integers i, j such that u(t) = w(t+ i)− j for
all t ∈ [0,n].
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Consider the manifold (R1/Z)2 and the canonical mapping P : R
2 → (R1/Z)2.

We have the following result [13, Proposition 6.2].

Proposition 5.2. Let Ω be a closed subset of (R1/Z)2. Then there exists a bounded
nonnegative function φ ∈ C∞((R1/Z)2) such that

Ω =
{
x ∈ (

R
1/Z

)2 : φ(x) = 0
}
. (5.8)

Proposition 5.2 is proved by using [1, Chapter 2, Section 3, Theorem 1] and
the partition of unity (see [4, Appendix 1]).

We also have the following result (see [13, Proposition 6.3]).

Proposition 5.3. Suppose that f ∈ Mper, α( f ) = mn−1 is an irreducible fraction
(m,n are integers, n ≥ 1) and w ∈ W1,1

loc (R1) is an ( f )-minimal solution satisfy-
ing w(t +n) = w(t) +m for all t ∈ R

1. Let φ ∈ C∞((R1/Z)2) be as guaranteed in
Proposition 5.2 with

Ω =
{
P
(
t,w(t)

)
: t ∈ [0,n]

}
, (5.9)

and let

g(t,x, p) = f (t,x, p)+φ
(
P(t,x)

)
, (t,x, p) ∈ R

3. (5.10)

Then g ∈ M0
per and there is a continuous function π : R

1 → R
1 such that the prop-

erties (P1), (P2), (P3), (P4), and (P5) hold with g,w,π,m,n and α(g) = α( f ).

In the sequel we need the following two lemmas proved in [13].

Lemma 5.4 [13, Lemma 6.6]. Assume that k ≥ 3 is an integer, g ∈ M0
per ∩Mk,

and properties (P1), (P2), (P3), (P4), and (P5) hold with a g-minimal solution
w(·) ∈ C2(R1), a continuous function π : R

1 → R
1 and integers m,n. Then for each

ε ∈ (0,1), there exists a neighborhood � of g in Mk such that for each h ∈ � and
each (h)-good function v ∈W1,1

loc ([0,∞)) there are integers p, q such that

∣∣v(t)−w(t+ p)−q∣∣ ≤ ε for all large enough t. (5.11)

Lemma 5.5 [13, Corollary 6.1]. Assume that k ≥ 3 is an integer, g ∈ M0
per ∩Mk,

and properties (P1), (P2), (P3), (P4), and (P5) hold with a g-minimal solution
w(·) ∈ C2(R1), a continuous function π : R

1 → R
1 and integers m, n. Then there

exist a neighborhood � of g in Mk and a number L > 0 such that for each h ∈ �
and each (h)-good function v ∈W1,1

loc ([0,∞)), the following property holds.
There is a number T0 > 0 such that

∣∣v(t2)−v(t1)−α(g)
(
t2− t1

)∣∣ ≤ L (5.12)

for each t1 ≥ T0 and each t2 > t1.
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Completion of the proof of Theorem 3.1. Let k ≥ 3 be an integer and let α =
mn−1 be an irreducible fraction (n ≥ 1 and m are integers). Let f ∈ Mk. By
Proposition 2.2 there exists an ( f )-minimal solution wf (·) ∈W1,1

loc (R1) such that

wf (t+n) = wf (t)+m ∀t ∈ R
1. (5.13)

Choose

β ∈ ∂E f (α). (5.14)

Consider a mapping � : Mk → Mk defined by (4.1). By Proposition 4.1 the
mapping � is continuous. Clearly there exists a continuous �−1 : Mk → Mk.
Equations (5.14) and (4.18) imply that

0 ∈ ∂E� f (α), E� f (α) = min
{
E� f (r) : r ∈ R

1} = µ(� f ) (5.15)

and that � f ∈ Mper. It follows from Proposition 5.2 that there exists a bounded
nonnegative function φ ∈ C∞((R1/Z)2) such that

{
x ∈ (

R
1/Z

)2 : φ(x) = 0
}
=
{
P
(
t,w f (t)

)
: t ∈ [0,n]

}
. (5.16)

Set f (β) = � f and for each γ ∈ (0,1) define

fγ(t,x,u) = f (t,x,u)+γφ
(
P(t,x)

)
, (t,x,u) ∈ R

3, f
(β)
γ = �

(
fγ
)
. (5.17)

Proposition 5.3 implies that for each γ ∈ (0,1),

f
(β)
γ ∈ M0

per∩Mk,

fγ −→ f as γ −→ 0+, f
(β)
γ −→ f β) as γ −→ 0+ in Mk. (5.18)

Fix γ ∈ (0,1) and an integer n ≥ 1. By Proposition 5.3 the properties (P1), (P2),

(P3), (P4), and (P5) hold with g = f
(β)
γ , α(g) = α and w(·) = wf .

By Lemmas 5.4 and 5.5, there exists an open neighborhood V( f ,γ,n) of f
(β)
γ

in Mγ and a number L( f ,γ,n) > 0 such that the following properties hold:

(i) for each h ∈ V( f ,γ,n) and each (h)-good function v ∈ W1,1
loc ([0,∞)),

there are integers p,q such that

∣∣v(t)−wf (t+ p)−q∣∣ ≤ 1
n

(5.19)

for all large enough t;
(ii) for each h ∈ V( f ,γ,n) and each (h)-good function v ∈ W1,1

loc ([0,∞)),
there is a number T0 such that

∣∣v(t2)−v(t1)−α( f (β)
γ

)(
t2− t1

)∣∣ ≤ L (5.20)

for each t1 ≥ T0 and each t2 > t1.
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Let h ∈ V( f ,γ,n) and let v ∈ W1,1
loc (R1) be an (h)-minimal solution

with rotation number α(h). Then by Proposition 2.3, (2.3), (5.4), and
property (ii), v|[0,∞) is an (h)-good function and there is T0 such that
(5.20) holds for each t1 ≥ T0 and each t2 > t1. Since v ∈ W1,1

loc (R1) has
rotation number α(h) it follows from Proposition 2.1 that there exists
c1 > 0 such that

∣∣v(t+ s)−v(t)−α(h)s
∣∣ ≤ c1 ∀s, t ∈ R. (5.21)

Equations (5.15), (5.17), (5.20), and (5.21) imply that

α(h) = α
(
f

(β)
γ

)
= α

(
f (β)) = α. (5.22)

Thus we have shown that

α(h) = α ∀h ∈ V( f ,γ,n). (5.23)

Let h ∈ V( f ,γ,n) and let v ∈W1,1
loc (R1) be an (h)-minimal solution with

rotation number α. It follows from Proposition 2.3, (2.3), and (5.4) that
v|[0,∞) is an (h)-good function. By property (i) there exist integers p, q
such that

∣∣v(t)−wf (t+ p)−q∣∣ ≤ 1
n

for all large enough t. (5.24)

Therefore we proved the following property:
(iii) for each h ∈ V( f ,γ,n) and each (h)-minimal solution v ∈ �per

h (α), there
exist integers p, q such that

∣∣v(t)−wf (t+ p)−q∣∣ ≤ 1
n

∀t ∈ R
1. (5.25)

Define

�( f ,γ,n) = �−1(V( f ,γ,n)
)
. (5.26)

Clearly �( f ,γ,n) is an open neighborhood of fγ in Mk. By property (iii)
the following property holds:

(iv) for each ξ ∈ �( f ,γ,n) and each (ξ)-minimal solution v ∈ �per
ξ

(α), there
exist integers p, q such that (5.25) holds.

Define

�kα = ∩∞
n=1∪

{
�( f ,γ, i) : f ∈ Mk, γ ∈ (0,1), i ≥ n

}
. (5.27)

It is not difficult to see that �kα is a countable intersection of open everywhere
dense subsets of Mk.
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Let g ∈ �kα, ε ∈ (0,1) and x, y ∈ �(per)
g (α). Choose a natural number n > 8ε−1.

By (5.27) there exist f ∈ Mk, γ ∈ (0,1) and an integer i ≥ n such that

g ∈ �( f ,γ, i). (5.28)

It follows from (5.28) and property (iv) that there exist integers p1, q1, p2, q2

such that

∣∣x(t)−wf
(
t+ p1

)−q1
∣∣ ≤ 1

i
∀t ∈ R

1, (5.29)

∣∣y(t)−wf
(
t+ p2

)−q2
∣∣ ≤ 1

i
∀t ∈ R

1, (5.30)

where wf ∈ �(per)
f (α).

It follows from (5.29) and (5.30) that for all t ∈ R
1,

∣∣x(t− p1
)−wf (t)−q1

∣∣ ≤ 1
i
,

∣∣y(t− p2
)−wf (t)−q2

∣∣ ≤ 1
i
,

∣∣x(t− p1−q1
)−(y(t− p2

)−q2
)∣∣ ≤ 2

i
,

∣∣x(t+ p2− p1
)− y(t)−q1 +q2

∣∣ ≤ 2
i
≤ 2
n
< ε.

(5.31)

Since ε is any number in (0,1), we conclude that there exist integers p, q such
that

x(t+ p)−q = y(t) ∀t ∈ R
1. (5.32)

Assume that h ∈ �( f ,γ, i) and z ∈ �(per)
h (α). By the property (iv) there exist

integers p3, q3 such that

∣∣z(t)−wf
(
t+ p3

)−q3
∣∣ ≤ 1

i
∀t ∈ R

1. (5.33)

Combined with (5.29) this inequality implies that

∣∣z(t− p3
)−q3−x

(
t− p1

)
+q1

∣∣ ≤ 2
i
≤ 2
n
< ε (5.34)

for all t ∈ R
1. This completes the proof of Theorem 3.1.
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