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We study a multiplicity result for the perturbed p-Laplacian equation −∆pu−
λg(x)|u|p−2u= f (x,u) +h(x) in RN , where 1 < p < N and λ is near λ1, the prin-
cipal eigenvalue of the weighted eigenvalue problem −∆pu = λg|u|p−2u in RN .
Depending on which side λ is from λ1, we prove the existence of one or three so-
lutions. This kind of results was firstly obtained by Mawhin and Schmitt (1990)
for a semilinear two-point boundary value problem.

1. Introduction

In this paper, we study a class of p-Laplacian equations of the form

−∆pu= λg(x)|u|p−2u+ f (x,u) +h(x) in D1,p(
R

N
)
, (1.1)

where ∆pu= div(|∇u|p−2∇u), 1 < p < N , and g ≥ 0 is a weight function. Here,
D1,p(RN ) is the closure of C∞0 (RN ) with respect to the norm

‖u‖D1,p =
(∫

RN
|∇u|p dx

)1/p

. (1.2)

This space, which is motivated by the embedding W1,p(RN )↩ Lp∗(RN ), where
p∗ =Np/(N − p), is in fact a reflexive Banach space characterized by

D1,p(
R

N
)=

{
u∈ Lp∗(

R
N
)
;
∂u

∂xi
∈ Lp

(
R

N
)
, 1≤ i≤N

}
. (1.3)

We refer the reader to Ben-Naoum et al. [5] for a quite complete discussion on
the space D1,p(RN ).
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Our study is based on a bifurcation result by Mawhin and Schmitt [15], re-
lated to the two-point boundary value problem,

−u′′ − λu= f (x,u) +h, u(0)= u(π)= 0. (1.4)

By assuming that f is bounded and satisfying a sign condition, they obtained
the following result. If λ is sufficiently near to λ1 from left, where λ1 = 1 is the
first eigenvalue of the corresponding linear problem, then (1.4) has at least three
solutions. If 1≤ λ < 4, then problem (1.4) has at least one solution. Some exten-
sions and variations of their result were considered by other authors (cf. Badiale
and Lupo [3], Chiappinelli et al. [7], Sanchez [18], and Ma et al. [13]). In [14],
the multiplicity part of that result was extended to the p-Laplacian operator in
bounded domains, using critical point theory. Our objective is to extend this
problem to the p-Laplacian in RN , with λ approaching to λ1 from left and from
right.

In order to state the Mawhin-Schmitt problem in the context of D1,p(RN ),
we recall some facts about the eigenvalue problem for the weighted p-Laplacian
in RN

−∆pu= λg|u|p−2u in D1,p(
R

N
)
, (1.5)

where g ∈ L∞(RN )∩ LN/p(RN ) is a locally Hölder continuous weight function.
It is known that for g ≥ 0, there exists a first eigenvalue λ1 = λ1(g), characterized
by

λ1 = inf
{
‖u‖pD1,p ; u∈D1,p(

R
N
)
,
∫

RN
g|u|p dx = 1

}
, (1.6)

which is simple and positive. This implies that
∫

RN
|∇u|p dx ≥ λ1

∫
RN

g|u|p dx ∀u∈D1,p(
R

N
)
. (1.7)

Besides, the corresponding eigenfunction ϕ1 belongs to D1,p(RN )∩L∞(RN ) and
may be taken positive (see a complete proof in [12]). Putting

W =
{
w ∈D1,p(

R
N
)
;
∫

RN
g
∣∣ϕ1

∣∣p−2
ϕ1wdx = 0

}
(1.8)

and V = span{ϕ1}, we have from the simplicity of λ1,

D1,p(
R

N
)=V ⊕W. (1.9)

Then, since λ1 is also isolated (see [11]), we have

λ2 := inf
{
‖w‖pD1,p ; w ∈W,

∫
RN

g|w|p dx = 1
}
, (1.10)
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which satisfies λ1 < λ2. In addition,

∫
RN
|∇w|p dx ≥ λ2

∫
RN

g|w|p dx ∀w ∈W. (1.11)

Next, we make some basic assumptions on the function f . We assume that
f : RN ×R→R is a Carathéodory function satisfying the growth condition

∣∣ f (x,u)
∣∣≤ a(x)|u|σ−1 + b(x), (1.12)

with 1 < σ < p, a ≥ 0, a ∈ L∞(RN )∩ L(p∗/σ)′(RN ), and b ∈ Lp∗′(RN ). Some of
our hypotheses are given upon the primitive F(x,u)= ∫ u0 f (x,s)ds, namely, there
exists γ ∈ L1(RN ) such that

F(x,u)≥ γ(x) a.e. in R
N , ∀u∈R. (1.13)

We also consider the following: there exist α∈ L∞(RN )∩L1(RN )∩L(p∗/µ)′(RN )
and β ∈ L∞(RN )∩L1(RN )∩Lp∗′(RN ) satisfying

pF(x,u)− f (x,u)u≥ α(x)|u|µ +β(x) a.e. in R
N , ∀u∈R, (1.14)

and 1 < µ≤ σ < p.
Now we are in a position to state our results.

Theorem 1.1. Assume that (1.12) and (1.13) hold. If in addition

lim
|u|→∞

F(x,u)= +∞ a.e. in R
N , (1.15)

then for any h∈ Lp∗′(RN ) satisfying

∫
RN

h(x)ϕ1(x)dx = 0, (1.16)

problem (1.1) has at least three solutions when λ is sufficiently close to λ1 from left.

Theorem 1.2. Assume that (1.12) and (1.14) hold with α ≥max{a,g}. Assume
further that λ1 ≤ λ < λ2. Then for any h ∈ Lp∗′(RN ) satisfying |h| ≤ α, problem
(1.1) has at least one solution.

Since (1.14) implies (1.15), under the hypotheses of Theorem 1.2, we get an
extension of the original work of Mawhin and Schmitt [15] to the p-Laplacian
in RN . We note that our results do not assume f bounded nor satisfying a
sign condition. Theorem 1.2 is related to a class of double resonance problems
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introduced in [6] for semilinear elliptic equations. It was not considered for
the p-Laplacian, even in bounded domains. Condition (1.14) was early used in
[1, 8, 10] for example, as an Ambrosetti-Rabinowitz type condition [2]. A simple
example of g satisfying all the hypotheses of both theorems is

f (x,u)= σa(x)|u|σ−2u, (1.17)

where a∈ L∞(RN )∩L1(RN )∩L(p∗/σ)′(RN ) and 1 < µ= σ < p− 1.
The proofs of the theorems are given in Section 3. In Section 2, we present

some preliminary results on the variational setting of the p-Laplacian equations
in D1,p(RN ) and the related Palais-Smale compactness.

2. Preliminaries

We begin with some standard facts upon the variational formulation of problem
(1.1). Let Jλ : D1,p(RN )→R be the functional defined by

Jλ(u)=
∫

RN

[
1
p

∣∣∇u(x)
∣∣p− λ

p
g(x)

∣∣u(x)
∣∣p−F

(
x,u(x)

)−h(x)u(x)
]
dx. (2.1)

It is proved in do Ó [10], that Jλ is of class C1(RN ) and

〈
J ′λ(u),ϕ

〉=
∫

RN
|∇u|p−2∇u ·∇ϕdx− λ

∫
RN

g|u|p−2uϕdx

−
∫

RN
f (x,u)ϕdx−

∫
RN

hϕdx,
(2.2)

for all ϕ∈D1,p(RN ). In addition, the critical points of Jλ are precisely the weak
solutions of (1.1).

Next we recall a compactness result which is proved in [5].

Lemma 2.1 (see [5]). The functional

u −→
∫

RN
m(x)

∣∣u(x)
∣∣q dx (2.3)

is well defined and weakly continuous in D1,p(RN ), for 1 ≤ q < p∗ and m ∈
L(p∗/q)′(RN ).

As a consequence, under the conditions of the lemma, there exists C > 0 such
that

∫
RN

m(x)
∣∣u(x)

∣∣q dx ≤ ‖m‖L(p∗/q)′‖u‖qLp∗ ≤ C‖u‖qD1,p . (2.4)
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Lemma 2.2. Assume that (1.12) holds. Then the Nemytskii mapping,

u −→ f (x,u) (2.5)

is compact from D1,p(RN ) to Lp∗′(RN ).

Proof. Put r = p∗′ and q = (σ − 1)r so that q < p∗ and

(
p∗

σ

)′
= r
(
p∗

q

)′
. (2.6)

Then we get from (1.12) that ar ∈ L(p∗/q)′(RN ). Now let (un) be a sequence
such that un⇀ u weakly for some u∈D1,p(RN ). Then from Lemma 2.1 we have
ar/qun→ ar/qu strongly in Lq(RN ). It follows that

ar/qun −→ ar/qu,
∣∣ar/qun∣∣≤ k a.e. in R

N , (2.7)

for some k ∈ Lq(RN ). Hence, for all n and a.e. x ∈RN ,

∣∣ f (x,un(x)
)∣∣r ≤ 2r

(
a(x)r

∣∣un(x)
∣∣(σ−1)r

+
∣∣b(x)

∣∣r)≤ 2r
(∣∣k(x)

∣∣q +
∣∣b(x)

∣∣r).
(2.8)

Since the last term is an integrable function, from Lebesgue theorem, we infer
that f (x,un)→ f (x,u) strongly in Lr(RN ). �

Next, we do some remarks about the Palais-Smale condition for Jλ. We re-
call that Jλ is said to satisfy the Palais-Smale condition at level c, (PS)c, if every
sequence for which

J
(
un
)−→ c,

∥∥J ′(un)∥∥(D1,p)∗ −→ 0 (2.9)

possesses a convergent subsequence. When J satisfies (PS)c for all c ∈ RN , we
simply say that J satisfies the (PS) condition. In Theorem 1.2, we use a weaker
version of the (PS) condition due to Cerami (cf. [4]). We say that J satisfies the
Palais-Smale-Cerami condition, (PSC), if every sequence, for which

J
(
un
)

is bounded,
(

1 +
∥∥un∥∥D1,p

)∥∥J ′(un)∥∥(D1,p)∗ −→ 0, (2.10)

possesses a convergent subsequence.

Lemma 2.3. Assume that condition (1.12) holds. Then any bounded sequence sat-
isfying (2.9) or (2.10) possesses a convergent subsequence.

Proof. Let (un) be a bounded sequence satisfying (2.9). Then, passing to a subse-
quence if necessary, there exists u∈D1,p(RN ) such that un⇀uweakly inD1,p(RN )
and also in Lp∗(RN ). Consequently,

lim
n→∞

〈
J ′λ
(
un
)
,un−u

〉= 0. (2.11)
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On the other hand, from Lemma 2.2, we know that f (x,un)→ f (x,u) strongly
in Lp∗′(RN ) and therefore,

lim
n→∞

∫
RN

(
f
(
x,un

)
+h
)(
un−u

)
dx = 0. (2.12)

Noting that

∫
RN

g
∣∣un∣∣p−1∣∣un−u

∣∣dx ≤
(∫

RN
g
∣∣un∣∣p dx

)1/p′(∫
RN

g
∣∣un−u

∣∣p dx
)1/p

,

(2.13)
and since g ∈ L(p∗/p)′ , Lemma 2.1 implies that

lim
n→∞

∫
RN

g
∣∣un∣∣p−2

un
(
un−u

)
dx = 0. (2.14)

Combining (2.11) with (2.12) and (2.14), we get

lim
n→∞

∫
RN

∣∣∇un∣∣p−2∇un ·∇
(
un−u

)
dx = 0. (2.15)

But since we also have

lim
n→∞

∫
RN
|∇u|p−2∇u ·∇(un−u

)
dx = 0, (2.16)

it follows that

lim
n→∞

∫
RN

(∣∣∇un∣∣p−2∇un−|∇u|p−2∇u
)
·∇(un−u

)
dx = 0. (2.17)

Then from a well-known argument based on the Clarkson inequality (cf. Tolks-
dorf [19]), we conclude that

lim
n→∞

∫
RN

∣∣∇un−∇u∣∣p dx = 0. (2.18)

This completes the proof since (2.10) implies (2.9). �

3. Proofs of Theorems 1.1 and 1.2

The proof of Theorem 1.1 is based on the Ekeland’s variational principle and
the Ambrosetti-Rabinowitz Mountain-Pass theorem [2]. Theorem 1.2 is proved
using the saddle point theorem of Rabinowitz [17].

Proof of Theorem 1.1. We divide the proof in several steps.
Step 1 (the coerciveness of Jλ). Since λ < λ1 and (1.12) holds, from (1.7) and
(2.4) we get

Jλ(u)≥
(
λ1− λ

pλ1

)
‖u‖pD1,p −C‖u‖σD1,p −C‖u‖D1,p , (3.1)
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where C > 0 denotes several constants. Then Jλ is coercive as a consequence of
the assumption that 1 < σ < p. This implies that any sequence satisfying (2.9)
must be bounded, and therefore Lemma 2.2 implies that Jλ satisfies the (PS)c for
all c ∈R. Similarly, from (1.11),

Jλ1 (w)≥
(
λ2− λ1

pλ2

)
‖w‖pD1,p −C‖w‖σD1,p −C‖w‖D1,p , (3.2)

which shows that Jλ1 is coercive in W . Noting that Jλ1 ≤ Jλ for all λ < λ1, we
have that

m= inf
W

Jλ1 ≤ inf
W

Jλ. (3.3)

Step 2 (estimating Jλ in V). From (1.16) we have for t ∈R,

Jλ
(
tϕ1
)=

(
λ1− λ

p

)∫
RN

∣∣tϕ1(x)
∣∣p dx−

∫
RN

F
(
x, tϕ1(x)

)
dx. (3.4)

Now, from (1.13) there exist constants R,C > 0 such that

∫
|x|>R

F
(
x, tϕ1(x)

)
dx ≥

∫
|x|>R

γ(x)dx ≥−C, ∀t ∈R. (3.5)

Choosing t+ > 0 sufficiently large, we get from (1.15) that

∫
|x|≤R

F
(
x, t+ϕ1(x)

)
dx >−m+C. (3.6)

Then we have
∫

RN
F
(
x, t+ϕ1(x)

)
dx >−m, (3.7)

so that

Jλ
(
t+ϕ1

)≤
(
λ1− λ

p

)∫
RN

∣∣t+ϕ1(x)
∣∣p dx+m. (3.8)

Then for λ sufficiently near to λ1, Jλ(t+ϕ1) <m. The same conclusion holds for a
t− < 0.
Step 3 (the existence of the first two solutions). Put

�± = {u∈D1,p(
R

N
)
; u=±tϕ1 +w with t > 0, w ∈W

}
. (3.9)

Then from Step 2, for λ sufficiently near to λ1,

−∞ < inf
�±

Iλ < m. (3.10)
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Now let un ∈ �+ be a sequence satisfying (2.9) for c < m. Then from coerciveness
of Jλ, (un) has a convergent subsequence, say, (un) itself. Noting that W = ∂�+

and infW Jλ ≥m (Step 1), we conclude that (un) converges to an interior point
u ∈ �+. This means that Jλ satisfies the (PS)c condition inside �+ for all c < m.
Then applying the Ekeland variational principle in �+, we see that Jλ has a critical
point u+ as a local minimum in �+. (See complete argument in [16].) Similarly,
we obtain a critical point u− of Jλ in �−. Taking into account that �− ∩�+ =∅,
the existence of two weak solutions of (1.1) is proved.
Step 4 (the third solution). To fix ideas, suppose that Jλ(u+)≤ Jλ(u−). If u− is not
an isolated critical point, then Jλ has at least three solutions. Otherwise, putting

I(u)= Jλ
(
u+u−

)− Jλ
(
u−
)
, e = u+−u−, (3.11)

we have that I(0)=0, I(e)≤0, and there exist r,ρ>0 such that I(u)≥ρ if ‖u‖D1,p=
r. Then, since I′ = J ′λ and I also satisfies the (PS) condition, from the Mountain-
Pass theorem, the number

c = inf
γ∈Γ

max
t∈[0,1]

Jλ
(
γ(t)

)
, (3.12)

where

Γ= {γ ∈ C
(
[0,1],D1,p(

R
N
))

; γ(0)= u−, γ(1)= u+} (3.13)

is a critical value of Jλ. Noting that all paths joining u− to u+ pass through W ,
we have c ≥m. Therefore we have obtained a third critical point of Jλ. The proof
is now complete. �

Proof of Theorem 1.2. The proof is based on the arguments from [8, 10].
Step 1 (the growth of F). We prove that for some C1,C2 > 0,

∫
RN

F
(
x, tϕ1

)
dx ≥ C1

∥∥tϕ1
∥∥µ
D1,p −C2. (3.14)

In fact, from (1.14) we have

d

du

(
F(x,u)
|u|p

)
≤−α(x)|u|µ−p−2u−β(x)|u|−p−2u (u > 0). (3.15)

Integrating from u > 0 to +∞, and noting that F(x,θ)/(θp)→ 0 as θ→∞, we get

F(x,u)≥ α(x)
p−µ

|u|µ +
β(x)
p

. (3.16)
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Since this inequality holds for u < 0, we have

∫
RN

F
(
x, tϕ1

)
dx ≥ C|t|µ−C2, (3.17)

and inequality (3.14) follows.
Step 2 (the (PSC) condition). Let (un) be a sequence satisfying (2.9). Then from
Lemma 2.2, it suffices to prove that (un) is bounded. In fact, first we note that
(un) satisfies

〈
J ′λ
(
un
)
,un
〉− pJλ

(
un
)=

∫
RN

[
pF
(
x,un

)− f
(
x,un

)
un + (p− 1)hun

]
dx

≥
∫

RN
α|u|µ dx+

∫
RN

βdx+ (p− 1)
∫

RN
hun dx.

(3.18)

Now, since |h| ≤ α,

∣∣∣∣
∫

RN
hun dx

∣∣∣∣≤
∫

RN
α
∣∣un∣∣dx ≤ ‖α‖1/µ′

L1

(∫
RN

α
∣∣un∣∣µ dx

)1/µ

. (3.19)

Then from the boundedness of 〈J ′λ(un),un〉− pJλ(un), we deduce that

∫
RN

α
∣∣un∣∣µ dx ≤ C+C

(∫
RN

α
∣∣un∣∣µ dx

)1/µ

, (3.20)

so that
∫

RN
α
∣∣un∣∣µ dx ≤ C. (3.21)

Now we use an interpolation inequality. Since 0 < µ < p < p∗, there exists t ∈
(0,1) such that

1= p(1− t)
µ

+
p t

p∗
. (3.22)

Then from Hölder inequality,

∫
RN

α(x)|u|p dx =
∫

RN

(
α1/µ|u|)p(1−t)(

α1/p∗|u|)pt dx

≤
(∫

RN
α|u|µ dx

)p(1−t)/µ(∫
RN

α|u|p∗ dx
)pt/p∗

.

(3.23)

Using (3.21) and (2.4),

∫
RN

α(x)
∣∣un(x)

∣∣p dx ≤ C
∥∥un∥∥tpD1,p . (3.24)
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Taking into account the boundedness of Jλ(un),

1
p

∥∥un∥∥pD1,p ≤ C+
λ

p

∫
RN

g
∣∣un∣∣p dx+

∫
RN

F
(
x,un

)
dx+

∫
RN

hun dx, (3.25)

and since α≥max{a,g},

1
p

∥∥un∥∥pD1,p ≤ C+
λ

p

∫
RN

α
∣∣un∣∣p dx+

1
σ

∫
RN

α
∣∣un∣∣σ dx

+
∫

RN
b
∣∣un∣∣dx+

∫
RN

hun dx.

(3.26)

Consequently, if µ= σ we have, from (3.24),

∥∥un∥∥pD1,p ≤ C
(

1 +
∥∥un∥∥tpD1,p +

∥∥un∥∥D1,p

)
. (3.27)

Otherwise, we have µ < σ < p∗, and as before, we get s∈ (0,1) such that

∫
RN

α
∣∣un∣∣σ dx ≤ C

∥∥un∥∥sσD1,p . (3.28)

Then

∥∥un∥∥pD1,p ≤ C
(

1 +
∥∥un∥∥tpD1,p +

∥∥un∥∥sσD1,p +
∥∥un∥∥D1,p

)
. (3.29)

In both cases, we see that ‖un‖D1,p is uniformly bounded.
Step 3 (the saddle point theorem). It is well known that the (PS) condition can
be replaced by the (PSC) condition in the saddle point theorem of Rabinowitz
(see [4, 17]). Then to conclude that Jλ has a critical point it suffices to show that

lim
‖v‖D1,p→∞

Jλ(v)=−∞, lim
‖w‖D1,p→∞

Jλ(w)= +∞, (3.30)

where v ∈V and w ∈W , as defined in (1.9). Now, from (3.14),

Jλ
(
tϕ1
)≤−

(
λ− λ1

pλ1

)∥∥tϕ1
∥∥p
D1,p −C1

∥∥tϕ1
∥∥µ
D1,p +C

∥∥tϕ1
∥∥
D1,p +C2. (3.31)

Since λ≥ λ1, the first part of (3.30) holds. Finally, since λ < λ2, the argument in
Step 1 of the proof of Theorem 1.1 implies the second statement of (3.30). The
proof is now complete. �

Note 3.1. Just before the completion of this paper, we noticed that P. De Nápoli
and M. C. Mariani [9] studied problem (1.1) in the same framework of our
Theorem 1.1. However, they considered only the case λ→ λ1 from left. Our as-
sumptions on f are slightly more general.



T. F. Ma and M. L. Pelicer 333

Acknowledgments

T. F. Ma was partially supported by CNPq/Brazil. M. L. Pelicer was partially sup-
ported by CAPES-PICD/Brazil.

References

[1] C. O. Alves, P. C. Carrião, and O. H. Miyagaki, Existence and multiplicity results for
a class of resonant quasilinear elliptic problems on RN , Nonlinear Anal. 39 (2000),
no. 1, Ser. A: Theory Methods, 99–110.

[2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory
and applications, J. Functional Analysis 14 (1973), 349–381.

[3] M. Badiale and D. Lupo, Some remarks on a multiplicity result by Mawhin and Schmitt,
Acad. Roy. Belg. Bull. Cl. Sci. (5) 65 (1989), no. 6-9, 210–224.

[4] P. Bartolo, V. Benci, and D. Fortunato, Abstract critical point theorems and applications
to some nonlinear problems with “strong” resonance at infinity, Nonlinear Anal. 7
(1983), no. 9, 981–1012.

[5] A. K. Ben-Naoum, C. Troestler, and M. Willem, Extrema problems with critical
Sobolev exponents on unbounded domains, Nonlinear Anal. 26 (1996), no. 4, 823–
833.

[6] H. Berestycki and D. G. de Figueiredo, Double resonance in semilinear elliptic prob-
lems, Comm. Partial Differential Equations 6 (1981), no. 1, 91–120.

[7] R. Chiappinelli, J. Mawhin, and R. Nugari, Bifurcation from infinity and multiple so-
lutions for some Dirichlet problems with unbounded nonlinearities, Nonlinear Anal.
18 (1992), no. 12, 1099–1112.
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