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We study the internal exact null controllability of a nonlinear heat equation with
homogeneous Dirichlet boundary condition. The method used combines the
Kakutani fixed-point theorem and the Carleman estimates for the backward ad-
joint linearized system. The result extends to the case of boundary control.

1. Introduction

This work is concerned with the internal controllability of the equation

yt(x, t)−∆y(x, t) + a(x, t)y(x, t) + f
(
t,H y(·, t))y(x, t)

=m(x)u(x, t), (x, t)∈Q =Ω× (0,T),

y(x, t)= 0, (x, t)∈ Σ= ∂Ω× (0,T),

y(x,0)= y0(x), x ∈Ω.

(1.1)

Here Ω⊂Rn is an open, bounded set with a boundary ∂Ω, m is the character-
istic function of a nonempty open subset ω of Ω, and ∆ is the Laplace operator
with respect to the variable x.

Here a : Ω× (0,T)→ R and f : (0,T)→ R are given functions satisfying the
following conditions:

(i) a∈ L∞(Ω× (0,T)),
(ii) f is nonnegative and continuous with respect to all variables,

(iii) f (·,0) ∈ L∞(0,T) and f is locally Lipschitz according to the second
variable.

Also we assume that

(iv) H : L2(Ω)→R is a locally Lipschitz continuous operator and y0 ∈ L2(Ω).

Equation (1.1) describes the heat propagation with a viscosity term.
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System (1.1) is said to be null controllable if for every T > 0 there are (y,u)∈
C([0,T];L2(Ω))∩W1,2

loc ((0,T];L2(Ω))∩ L2(0,T ;H1
0 (Ω))∩ L2

loc((0,T];H2(Ω))×
L2(Q), which satisfy (1.1) and such that y(x,T)= 0 a.e. x ∈Ω.

The main result of the paper amounts to saying that system (1.1) is null con-
trollable for all y0 ∈ L2(Ω).

Null controllability of the linear heat equation, when the control acts on a
subset of the domain Ω, was established by Lebeau and Robbiano [6] and was
extended later by Fursikov and Imanuvilov [5] to the semilinear equation,

yt(x, t)−∆y(x, t) + f
(
y(x, t)

)=m(x)u(x, t), (x, t)∈Q, (1.2)

where f is a sublinear function.
Fernández-Cara [4] established null controllability of superlinear control sys-

tem of the form

yt(x, t)−∆y(x, t) + f
(
y(x, t)

)
y(x, t)=m(x)u(x, t), (x, t)∈Q, (1.3)

with f satisfying the condition f (y)(log|y|+ 1)−1 → 0 as |y| →∞ while Barbu
[3] established the same result in the case f (y)(log|y|+ 1)−3/2 → 0 as |y| →∞ if
1≤ n < 6.

A general discussion on dissipative semilinear heat equation has been done by
Aniţa and Tataru [1]. It has been proved that if f is nonnegative and is growing
at infinity faster than a polynomial, then the equation is not null controllable.

This is not the case of our problem. Here, we show that system (1.1) is null
controllable for any f satisfying the hypotheses mentioned above. Anyway, in
(1.1) the nonlinear term f (t,H y(·, t)) does not depend explicitly on the spatial
variable.

The paper is organized as follows. The main result is stated in Section 2 and
proved in Section 3 via the Kakutani fixed-point theorem. The proof is based on
Carleman inequality for the backward adjoint linearized system associated with
(1.1). We do not impose asymptotic conditions on f (as in [3, 4]).

In what follows we use standard notations for the Sobolev spaces H2(Ω),
H1

0 (Ω), and L2(Ω) on Ω and Q. Denote by | · | the usual norm of Rn, and by
(·,·) the inner product of L2(Ω). Moreover, we set

W1,2(0,T ;L2(Ω)
)=

{
y ∈ L2(0,T ;L2(Ω)

)
;
dy

dt
∈ L2(0,T ;L2(Ω)

)}
,

W1,2
loc

(
0,T ;L2(Ω)

)=∩δ∈(0,T)W
1,2(δ,T ;L2(Ω)

)
,

(1.4)

where dy/dt is taken in the sense of distributions.
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2. The main result

Theorem 2.1. Assume that conditions (i), (ii), (iii), and (iv) hold. Then for all
y0 ∈ L2(Ω) and T > 0, there are u ∈ L2(Q) and y ∈ C([0,T];L2(Ω)) ∩
W1,2

loc ((0,T];L2(Ω))∩ L2(0,T ;H1
0 (Ω))∩ L2

loc((0,T];H2(Ω)), which satisfy (1.1),
and

y(x,T)= 0 a.e. x ∈Ω. (2.1)

The result of Theorem 2.1 extends in a classical manner (see [3]) to the case
of boundary control. More exactly we have the following result.

Theorem 2.2. Under assumptions (i), (ii), (iii), and (iv) for each T > 0 and y0 ∈
H1(Ω), there are v ∈ L2(Σ) and y ∈W1,2([0,T];L2(Ω))∩L2(0,T ;H2(Ω)), which
satisfy

yt −∆y + a(x, t)y + f (t,H y)y = 0 in Q,

y = v on Σ,

y(x,0)= y0 in Ω,

y(x,T)= 0 in Ω.

(2.2)

Proof of Theorem 2.2. Let Ω̃ be an open bounded set such that Ω̃ ⊃ Ω. We set
ω = Ω̃ \ Ω̄ and apply Theorem 2.1 with y0 ∈H1(Ω) to (1.1) on Ω̃ with Dirichlet
boundary condition, and the initial value condition y(x,0)= ỹ0(x) on Ω̃ where
ỹ0 is an H1

0 -extension of y0 to Ω̃.
Consequently, there is ỹ satisfying (1.1) on Ω̃× (0,T) such that ỹ(T)= 0. So,

by the trace theorem v = ỹ on ∂Ω× (0,T) belongs to L2(Σ) and y, the restriction
of ỹ to Ω× (0,T) satisfies the requirements of Theorem 2.2. �

3. Proof of Theorem 2.1

Firstly, we prove Theorem 2.1 in the case y0 ∈H1
0 (Ω).

We fix y0 ∈H1
0 (Ω) and define the set

K = {w ∈ L∞
(
0,T ;L2(Ω)

)
;
∥∥w(t)

∥∥
L2(Ω) ≤M, a.e. t ∈ (0,T)

}
, (3.1)

where M is a positive constant to be defined later.
For w ∈ K and µ∈ L2(Q) consider the linear system

yt −∆y + a(x, t)y + f
(
t,Hw(t)

)
y = µ in Q,

y = 0 on Σ,

y(x,0)= y0 in Ω.

(3.2)
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We note first that for all w ∈ K , u ∈ L2(Q), and y0 ∈ H1
0 (Ω), (3.2) has a

unique solution

y = yu ∈ L2(0,T ;H1
0 (Ω)∩H2(Ω)

)∩W1,2(0,T ;L2(Ω)
)
. (3.3)

We give a sketch of the proof for this assertion. Since H : L2(Ω)→R is locally
Lipschitz continuous, for w ∈ L∞(0,T ;L2(Ω)) it follows that Hw ∈ L∞(0,T).

Now, assumptions (ii) and (iii) imply that f (·,Hw(·))∈ L∞(0,T) for all
w ∈ K .

Along with (i), the last implies that ã ∈ L∞(Q) where ã(x, t) = −a(x, t)−
f (t,Hw(t)), for all w ∈ K .

Let S(t) be the C0-semigroup generated on L2(Ω) by the Laplace operator
with Dirichlet boundary value conditions. Then, the solution y to (3.2) (if it
exists) can be represented by the variation of constant formula,

y(t)= S(t)y0 +
∫ t

0
S(t− s)

(
ã(s)y(s) +µ(s)

)
ds. (3.4)

In a standard way (see [2]) we show that (3.4) has a unique solution, y ∈
C([0,T];L2(Ω)), provided that the operator � : C([0,T];L2(Ω)) → C([0,T];
L2(Ω)),

(�y)(t)=
∫ t

0
S(t− s)

(
ã(s)y(s) +µ(s)

)
ds (3.5)

is a contraction.
Multiplying now (3.2) by y and integrating on (0, t)×Ω, we obtain

∥∥y(t)
∥∥2
L2(Ω) ≤A+B

∫ t

0

∥∥y(s)
∥∥2
L2(Ω)ds, (3.6)

where A and B are positive constants. Then, Gronwall’s inequality gives
∥∥y(t)

∥∥
L2(Ω) ≤ C̄ ∀t ∈ [0,T], (3.7)

C̄ being a positive constant (independent of w ∈ K).
As ã∈ L∞(Q), y ∈ L2(Q), and u∈ L2(Q), it follows that ãy + µ∈ L2(Q) and

by [2, Theorem 2.1, page 189] we conclude that the solution y of (3.2) satis-
fies (3.3).

Multiplying now (3.2) by yt −∆y and having in mind (3.7), the following
inequality is obtained

∥∥y(t)
∥∥2
H1

0 (Ω) +
∫
Q

(
y2
t (x, t) +

∣∣∆y(x, t)
∣∣2
)
dxdt

≤ µ̃
(
M,
∥∥y0
∥∥
H1

0 (Ω)

)
+
∫
Q
µ2dxdt,

(3.8)

where µ̃ is a constant depending on M and y0.
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Now consider the optimal control problem (ε > 0),

Minimize
{

1
ε

∫
Ω
y2(x,T)dx+

∫
Q
u2dxdt

}
(3.9)

subject to (3.2).
It is easy to observe that (in (3.2)) the map u→ yu is closed in (L2(Q))w ×

L2(Q), where by (L2(Q))w we have denoted the space L2(Q) endowed with the
weak topology. This implies that there exists an optimal pair (yε,uε) for the func-
tional (3.9).

The Pontryagin maximum principle yields that

uε(x, t)=m(x)pε(x, t) a.e. (x, t)∈Q, (3.10)

where pε is the solution to the backward adjoint system

(
pε
)
t +∆pε− apε− f

(
t,Hw(t)

)
pε = 0 in Q,

pε = 0 on Σ,

pε(x,T)=−1
ε
yε(x,T) in Ω.

(3.11)

Now, we prove an observability result for the solution p ∈ L2(0,T ;H1
0 (Ω))∩

C([0,T];L2(Ω)) to the equation

pt +∆p− a(x, t)p− f
(
t,Hw(t)

)
p = 0 in Q. (3.12)

Lemma 3.1. There is a constant C independent of w, M, and p such that

∫
Ω
p2(x,0)dx ≤ C

∫ T

0

∫
ω
p2(x, t)dxdt. (3.13)

Proof. Consider the problem

pt +∆p− ap = 0 in Q,

p = 0 on Σ,

p(x,T)= z(x) in Ω,

(3.14)

where z ∈ L2(Ω).
It is well known (see [5]) that the solution of (3.14) satisfies the Carleman

inequality,

∫
Ω
p2(x,0)dx ≤ C

∫ T

0

∫
ω
p2(x, t)dxdt, (3.15)

for all z ∈ L2(Ω).
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It is easy to observe that the solution to (3.12) is given by

pε(t)= e−
∫ T
t f (s,Hw(s))ds p(t), (3.16)

which implies that

∫
Ω
p2
ε (x,0)dx = e−2

∫ T
0 f (s,Hw(s))ds

∫
Ω
p2(x,0)dx,

∫ T

0

∫
Ω
p2
ε (x, t)dxdt =

∫ T

0

(
e−2

∫ T
t f (s,Hw(s))ds

∫
Ω
p2(x, t)dx

)
dt.

(3.17)

Now inequality (3.15) and f ≥ 0 imply that

e−2
∫ T

0 f (s,Hw(s))ds
∫
Ω
p2(x,0)dx ≤ Ce−2

∫ T
0 f (s,Hw(s))ds

∫ T

0

∫
ω
p2(x, t)dxdt

≤ C
∫ T

0
e−2

∫ T
t f (s,Hw(s))ds

∫
ω
p2(x, t)dxdt

= C
∫ T

0

∫
ω
p2
ε (x, t)dxdt,

(3.18)

and thus pε verifies (3.13) ending the proof of the lemma. �

Remark 3.2. The result given by the lemma can be viewed as a uniform observ-
ability result for the linear adjoint system (3.11) with respect to w ∈ K .

Proof of Theorem 2.1 (continued). Multiplying (3.2) by pε, (3.11) by yε, and hav-
ing in mind (3.10), we obtain, after integration on Q that

1
ε

∫
Ω
y2
ε (x,T)dx+

∫ T

0

∫
ω
u2
ε (x, t)dxdt

=−
∫
ω
yε(x,0)pε(x,0)dx

=−
∫
Ω
y0(x)pε(x,0)dx

≤ γ
∫
Ω
p2
ε (x,0) +

1
γ

∫
Ω
y2

0(x)dx ∀γ > 0.

(3.19)

As pε satisfies (3.13), the latter implies that

1
ε

∫
Ω
y2
ε (x,T)dx+

∫ T

0

∫
ω
u2
ε (x, t)dxdt

≤ Cγ
∫ T

0

∫
ω
u2
ε (x, t)dxdt+

1
γ

∫
Ω
y2

0(x)dx ∀γ > 0
(3.20)
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which gives

1
ε

∫
Ω
y2
ε (x,T)dx ≤ C1,

∫ T

0

∫
ω
u2
ε (x, t)dxdt ≤ C1, (3.21)

C1 being a positive constant.
By estimates (3.21) it follows that, selecting a subsequence, we have

uε −→ u weakly in L2(Q),

yε −→ y weakly in L2(0,T ;H1
0 (Ω)∩H2(Ω)

)∩W1,2(0,T ;L2(Ω)
)
,

(3.22)

where (y,u) satisfies (3.2) and y(T)≡ 0.
For each w ∈ K , we denote by Φ(w) ⊂ L2(Q) the set of all solutions yu ∈

L2(0,T ;H1
0 (Ω)∩H2(Ω))∩W1,2(0,T ;L2(Ω)) to (3.2) such that

yu(T)= 0, ‖u‖L2(Q) ≤ C1/2
1 . (3.23)

By (3.21) and (3.22) we deduce that Φ(w) �= ∅ for each w ∈ K . Moreover, it
is readily seen that Φ(w) is a convex subset of L2(Q). Since, by (3.8)

un −→ u weakly in L2(Q) (3.24)

implies that

yun −→ y in L2(Q), (3.25)

it follows also that Φ(w) is a closed subset of L2(Q). At the same time from
estimate (3.8) we deduce, via the Arzelà-Ascoli theorem that Φ(K) is relatively
compact.

Multiplying once again (3.2) by y and integrating on Qt =Ω× (0, t), we ob-
tain

∥∥y(t)
∥∥
L2(Ω) ≤M ∀t ∈ (0,T), (3.26)

which is a constant that we choose in the definition of K . So, we have proved that
Φ(K)⊂ K . Finally, we prove that Φ is upper semicontinuous in L2(Q)×L2(Q).
For this, let wn ∈ K , yn ∈Φ(wn), yn = yun such that

wn −→w in L2(Q),

yn −→ y in L2(Q).
(3.27)

By estimate (3.8) it follows that, eventually on a subsequence,

un −→ u weakly in L2(Q),

yn −→ y strongly in C
(
[0,T];L2(Ω)

)
and

weakly in L2(0,T ;H1
0 (Ω)∩H2(Ω)

)∩W1,2(0,T ;L2(Ω)
)
.

(3.28)
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So, we have

f
(
t,Hwn(t)

)
yn(x, t)−→ f

(
t,Hw(t)

)
y(x, t) a.e. in Q,

f
(
t,Hwn

)
yn −→ η weakly in L2(Q).

(3.29)

By Egorov’s theorem we conclude that

η = f
(
t,Hw(t)

)
y(x, t) a.e. in Q. (3.30)

Since yn is a solution of

(
yn
)
t −∆yn + a(x, t)yn + f

(
t,Hwn

)
yn = µn in Q,

yn = 0 on Σ,

yn(x,0)= y0(x), yn(x,T)= 0 in Ω,

(3.31)

we get (by passing to the limit) that (y,u) satisfies (3.2) and (3.23), that is,
y ∈ Φ(w) as claimed. By the Kakutani fixed-point theorem in L2(Q) satisfied
by Φ, we infer that there is at least one w ∈ K such that w ∈Φ(w). Then, by the
definition of Φ, this implies that there exists at least one pair (y,u) satisfying the
conditions of Theorem 2.1. �

In the general case y0 ∈ L2(Ω), we can use the smoothing effect of the par-
abolic equation on the initial data. More exactly, for each ε > 0 there exists ε̃ ∈
(0, ε] such that ȳ(ε̃) ∈ H1

0 (Ω), ȳ being the solution of (1.1) with u ≡ 0 on ω×
(0, ε) (see [2]).

Theorem 2.1 applies, for example, to the semilinear heat equation with a vis-
cosity term,

yt −∆y + ay + f
(
t,
∫
Ω
y(x, t)dx

)
y = µ in Q,

y = 0 on Σ,

y(x,0)= y0(x) in Ω.

(3.32)

Here a and f satisfy conditions (i), (ii), and (iii).
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[5] A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture
Notes Series, vol. 34, Seoul National University, Research Institute of Mathemat-
ics, Global Analysis Research Center, Seoul, 1996.

[6] G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. Partial
Differential Equations 20 (1995), no. 1-2, 335–356 (French).
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