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In a real separable Hilbert space, we consider nonautonomous evolution equa-
tions including time-dependent subdifferentials and their nonmonotone multi-
valued perturbations. In this paper, we treat the multivalued dynamical systems
associated with time-dependent subdifferentials, in which the solution is not
unique for a given initial state. In particular, we discuss the asymptotic behaviour
of our multivalued semiflows from the viewpoint of attractors. In fact, assum-
ing that the time-dependent subdifferential converges asymptotically to a time-
independent one (in a sense) as time goes to infinity, we construct global at-
tractors for nonautonomous multivalued dynamical systems and its limiting au-
tonomous multivalued dynamical system. Moreover, we discuss the relationship
between them.

1. Introduction

In [8, 12], we considered a nonlinear evolution equation in a real Hilbert spaceH
of the form

u′(t) + ∂ϕt
(
u(t)

)
+ g
(
t,u(t)

)� f (t) in H, t > s(≥ 0), (1.1)

where ∂ϕt is the subdifferential of a time-dependent proper lower semicontinu-
ous (l.s.c.) and convex function ϕt on H , g(t,·) is a single-valued perturbation
which is small relative to ϕt, and f is a given forcing term. Assuming that ϕt,
g(t,·), and f (t), respectively, converge to a convex function ϕ∞ on H , a single-
valued operator g∞(·) in H and an element f ∞ in H in appropriate senses as
t→ +∞, we also considered the limiting autonomous system

u′(t) + ∂ϕ∞
(
u(t)

)
+ g∞

(
u(t)

)� f ∞ in H, t ≥ 0. (1.2)

Copyright © 2002 Hindawi Publishing Corporation
Abstract and Applied Analysis 7:9 (2002) 453–473
2000 Mathematics Subject Classification: 34D45, 35K55, 35K90, 37B55
URL: http://dx.doi.org/10.1155/S1085337502204042

http://dx.doi.org/10.1155/S1085337502204042


454 Attractors for nonautonomous multivalued systems

In fact, in [12] we showed the existence and global boundedness of the solu-
tions for (1.1) and (1.2). In [8], considering the case when the Cauchy prob-
lems (1.1) and (1.2) lose the uniqueness of solutions, we discussed the large-
time behaviour of multiple solutions for (1.1) and (1.2). In such a situation,
the solution operator E(t, s) (0 ≤ s ≤ t < +∞) for (1.1) is multivalued. Namely,
E(t, s) (0≤ s≤ t < +∞) is the multivalued operator fromD(ϕs) intoD(ϕt) which
assigns to each u0 ∈D(ϕs) the set

E(t, s)u0 := {z∈H | there is a solution u of (1.1) on [s,+∞) : u(s)=u0, u(t)=z}.
(1.3)

Of course, the solution operator S(t) (t ≥ 0) for the limiting autonomous sys-
tem (1.2) is similarly defined as a multivalued operator inD(ϕ∞), and the family
{S(t); t ∈ R+} forms a multivalued semigroup, where R+ := [0,+∞). Then, in
[8] we showed that there exists a global attractor for multivalued evolution oper-
ators {E(t, s)} and it is semi-invariant under S(t). Moreover, we gave a sufficient
condition in order that the global attractor for (1.1) is invariant under S(t).

In this paper, we consider the asymptotic stability for nonautonomous evo-
lution equations in a separable Hilbert space H of the form

u′(t) + ∂ϕt
(
u(t)

)
+G

(
t,u(t)

)� f (t) in H, t > s(≥ 0), (1.4)

where G(t,·) is a multivalued operator which is small relative to ϕt.
Recently, in [6] Kapustian and Valero constructed the global attractor for

(1.4) in the case that ϕt ≡ ϕ, G(t,·)≡G(·), and f (t)≡ 0.
In Mel’nik and Valero [9], they constructed the uniform global attractor for

(1.4) with ϕt ≡ ϕ and f (t)≡ 0, which implies that the domains of solution op-
erators {E(t, s)} are independent of time t, s∈R+.

The main object of this paper is to construct a global attractor for (1.4), which
implies that the domains of {E(t, s)}move with the time t, s∈R+. Under suitable
convergence assumptions for ϕt, G(t,·), and f (t) as t→ +∞, we shall construct
the global attractors for (1.4) and discuss the relationship to the one for the
multiple flows associated with the limiting autonomous system.

Moreover, in Section 6, as a model problem, we consider a parabolic varia-
tional inequalities with time-dependent double obstacles. By applying our ab-
stract results, we can discuss the asymptotic stability for the double obstacle
problem without the uniqueness of solutions.

Notation. Throughout this paper, let H be a (real) separable Hilbert space with
norm | · |H and inner product (·,·)H . For a proper l.s.c. convex function ϕ on
H , we use the notation D(ϕ), ∂ϕ, and D(∂ϕ) to indicate the effective domain,
subdifferential, and its domain of ϕ, respectively; for their precise definitions
and basic properties see [2].
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For two sets A and B in H , we define the so-called Hausdorff semi-distance

distH(A,B) := sup
x∈A

inf
y∈B
|x− y|H. (1.5)

2. Preliminaries

In this section, let H be a real Hilbert space and we consider an evolution equa-
tion of the form

v′(t) + ∂ϕt
(
v(t)

)� q(t) in H, t ∈ J, (2.1)

where J is an interval in R+, ∂ϕt is the subdifferential of time-dependent proper
l.s.c. and convex function ϕt on H , and q is a function given in L2

loc(J ;H).

Definition 2.1. (i) For a compact interval J := [t0, t1] ⊂ R+ and q ∈ L2(J ;H),
a function v : J →H is called a solution of (2.1) on J , if

v ∈ C(J ;H)∩W1,2
loc

((
t0, t1

]
;H
)
, ϕ(·)(v(·))∈ L1

loc(J),

v(t)∈D(∂ϕt) for a.e. t ∈ J,
q(t)− v′(t)∈ ∂ϕt(v(t)

)
, a.e. t ∈ J.

(2.2)

(ii) For any interval J in R+ and q ∈ L2
loc(J ;H), a function v : J →H is called

a solution of (2.1) on J , if it is a solution of (2.1) on every compact subinterval
of J in the sense of (i).

Here let {ar} := {ar ; r ∈R+} and {br ; r ∈R+} be families of absolutely con-
tinuous (real) functions ar , br on R+, with parameter r ∈R+, such that

a′r ∈ L1(
R+
)∩L2(

R+
)
, b′r ∈ L1(

R+
)
. (2.3)

By (2.3), the limits ar(+∞) := limt→+∞ ar(t) and br(+∞) := limt→+∞ br(t) exist,
so ar and br are considered as continuous functions on R+ := [0,+∞].

With these families {ar} and {br}, the evolution equation (2.1) is formulated
for any family {ϕt} in the class Φ({ar},{br}) specified as follows.

Definition 2.2. The family {ϕt} ∈Φ({ar},{br}) if and only if ϕt is a proper l.s.c.
convex functions on H satisfying the following property:

(∗) For each r ∈R+, s, t ∈ [0,+∞], and z ∈D(ϕs) with |z|H ≤ r, there exists
z̃ ∈D(ϕt) such that

∣∣z̃− z∣∣H ≤ ∣∣ar(t)− ar(s)∣∣(1 +
∣∣ϕs(z)

∣∣1/2
)
,

ϕt
(
z̃
)−ϕs(z)≤ ∣∣br(t)− br(s)∣∣(1 +

∣∣ϕs(z)
∣∣). (2.4)

Given a family {ϕt} ∈ Φ({ar},{br}), consider the evolution equation (2.1)
on J , where J is an interval of the form [t0, t1] or [t0, t1) with 0≤ t0 < t1 ≤ +∞.



456 Attractors for nonautonomous multivalued systems

The Cauchy problem for (2.1) is usually formulated for any given v0 ∈H and
interval J with initial time t0 (≥ 0). A solution v of (2.1) on J satisfying v(t0)= v0

is called a solution of the Cauchy problem for (2.1) with initial value v0.
According to the results in [7], we have the following statement:
(I) The Cauchy problem for (2.1) subject to the initial condition v(t0)= v0 ∈

D(ϕt0 ) has one and only one solution v on J = [t0, t1] or [t0, t1), 0 ≤ t0 < t1 ≤
+∞, such that (· − t0)1/2v′ ∈ L2(J ;H), (· − t0)ϕ(·)(v(·)) ∈ L∞(J), and ϕ(·)(v(·))
is absolutely continuous on any compact interval of (t0, t1). In particular, if v0 ∈
D(ϕt0 ), then the solution v satisfies that v′ ∈ L2(J ;H) and ϕ(·)(v(·)) is absolutely
continuous on any compact interval in J .

Next, we introduce the notion of convergence of convex functions as follows.

Definition 2.3 (cf. [10]). Let ψ, ψn (n∈N) be proper l.s.c. and convex functions
onH . Then we say that ψn converges to ψ onH as n→ +∞ in the sense of Mosco,
denoted by ψn⇒ ψ on H as n→ +∞, if the following two conditions (i) and (ii)
are satisfied:

(i) for any subsequence {ψnk} ⊂ {ψn}, if zk → z weakly in H as k→ +∞, then

liminf
k→+∞

ψnk
(
zk
)≥ ψ(z), (2.5)

(ii) for any z ∈D(ψ), there is a sequence {zn} in H such that

zn −→ z in H as n−→ +∞, lim
n→+∞ψn

(
zn
)= ψ(z). (2.6)

The next statements (II) and (III) are found in [5].
(II) Let {ϕt} ∈Φ({ar},{br}). Then

(i) ϕtn ⇒ ϕt0 onH as n→ +∞ for any t0 ∈R+ and any {tn} ⊂R+ with tn→ t0
as n→ +∞; of course, in case t0 = +∞, the convergence tn → t0 means
that tn→ +∞;

(ii) if the level set {z ∈ H ; |z|2H + ϕt(z) ≤ r} is compact in H for any r > 0
and t ≥ 0, then

⋃
t∈R+

{z ∈H ; |z|2H +ϕt(z)≤ r} is compact in H , too, for
any r > 0.

(III) Let {ϕtn} be a sequence of families in Φ({ar},{br}), {qn} be a sequence in

L2
loc(J ;H) and {v0,n} be a sequence in H with v0,n ∈D(ϕt0n ). Assume that ϕtn⇒ ϕt

on H for each t ∈ R+, qn → q in L2
loc(J ;H) and v0,n → v0 in H with v0 ∈ D(ϕt0 )

as n→ +∞. We denote by vn (resp., v) the solution of (2.1) on J corresponding
to the source term qn (resp., q) and initial value vn(t0)= v0,n (resp., v(t0)= v0).
Then for every compact subset J1 of J ,

vn −→ v in C
(
J1;H

)
,( ·−t0)1/2

v′n −→
( ·−t0)1/2

v′ weakly in L2(J1;H
)
,∫

J1
ϕtn
(
vn(t)

)
dt −→

∫
J1
ϕt
(
v(t)

)
dt as n−→ +∞.

(2.7)
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Remark 2.4. In (III), if the level set {z ∈H ; |z|2H +ϕt(z) ≤ r} is compact in H
for every finite r > 0 and t ≥ 0, then the convergence qn → q in L2

loc(J ;H) can be
replaced by qn→ q weakly in L2

loc(J ;H).

3. Global boundedness of solutions

Throughout this paper, let H be a real separable Hilbert space. In this section,
we consider an evolution equation of the form

u′(t) + ∂ϕt
(
u(t)

)
+G

(
t,u(t)

)� f (t) in H, t ≥ s(≥ 0), (3.1)

where G(t,·) is a multivalued operator from a subset D(G(t,·))⊂H into H for
each t ∈R+ and f ∈ L2

loc([s,+∞);H). Also, the Cauchy problem for (3.1), asso-
ciated with initial value u0 ∈H , is referred to as (3.2), namely

u′(t) + ∂ϕt
(
u(t)

)
+G

(
t,u(t)

)� f (t) in H, t ≥ s,
u(s)= u0.

(3.2)

Definition 3.1. Let J be any interval in R+ with initial time s. Then

(i) a function u : J → H is called a solution of (3.1) on J , if there exists a
function g ∈ L2

loc(J ;H) such that g(t) ∈ G(t,u(t)) for a.e. t ∈ J and u is
the solution of (2.1) with q = f − g on J ;

(ii) a function u : J →H is called a solution of the Cauchy problem (3.2) on
J with given initial value u0 ∈H , if it is a solution of (3.1) on J satisfying
u(s)= u0.

We show the existence and global boundedness of a solution of (3.2) on
[s,+∞) for {ϕt} ∈Φ({ar},{br}) and G(·,·), which satisfy some further condi-
tions as follows:

(A1) there exists a positive constant C1 > 0 such that

ϕt(z)≥ C1|z|2H, ∀t ∈R+, ∀z ∈D
(
ϕt
)
; (3.3)

(A2) for each r > 0 and t ∈ R+, the level set {z ∈ H ; ϕt(z) ≤ r} is compact
in H ;

(A3) D(ϕt)⊂D(G(t,·))⊂H for any t ∈R+. And for any interval J ⊂R+ and
v ∈ L2

loc(J ;H) with v(t)∈D(ϕt) for a.e. t ∈ J , there exists a strongly mea-
surable function g(·) on J such that

g(t)∈G(t,v(t)
)

for a.e. t ∈ J ; (3.4)

(A4) G(t,z) is a convex subset of H for any z ∈D(ϕt) and t ∈R+;
(A5) there are positive constants C2, C3 such that

|g|2H ≤ C2ϕ
t(z) +C3, ∀t ∈R+, ∀z ∈D

(
ϕt
)
, ∀g ∈G(t,z); (3.5)
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(A6) (demi-closedness) if zn ∈ D(ϕtn), gn ∈ G(tn,zn), {tn} ⊂ R+, {ϕtn(zn)} is
bounded, zn → z in H , tn → t and gn → g weakly in H as n→ +∞, then
g ∈G(t,z);

(A7) for each bounded subset B ofH , there exist positive constants C4(B) and
C5(B) such that

ϕt(z) + (g,z− b)H ≥ C4(B)|z|2H −C5(B),

∀t ∈R+, ∀g ∈G(t,z), ∀z ∈D(ϕt), ∀b∈ B. (3.6)

By the same argument in [11, 12], we can get the global existence and bound-
edness of the solution for (3.1) on [s,+∞).

Theorem 3.2 (cf. [11, 12]). Assume that {ϕt} ∈Φ({ar},{br}) and (A1), (A2),
(A3), (A4), (A5), (A6), and (A7) hold. Let f ∈ L2

loc(R+,H). Then, for each s ≥ 0
and u0 ∈D(ϕs), (3.2) has at least one solution u on [s,+∞).

Furthermore, assume that

S f := sup
t≥0
| f |L2(t,t+1;H) < +∞, (3.7)

then, the solution u of (3.2) on [s,+∞) has the following global estimate:

sup
t≥s

∣∣u(t)
∣∣2
H + sup

t≥s

∫ t+1

t
ϕτ
(
u(τ)

)
dτ ≤N1

(
1 + S2

f +
∣∣u0

∣∣2
H

)
, (3.8)

where N1 is a positive constant independent of f , s≥ 0 and u0 ∈D(ϕs). Moreover,
for each δ > 0 and each bounded subset B of H , there is a constant N2(δ,B) > 0,
depending only on δ > 0 and B, such that

sup
t≥s+δ

∣∣u′∣∣2
L2(t,t+1;H) + sup

t≥s+δ
ϕt
(
u(t)

)≤N2(δ,B) (3.9)

for the solution u of (3.2) on [s,+∞) with s≥ 0 and u0 ∈D(ϕs)∩B.

4. Global attractor for the autonomous multivalued dynamical system

In this section, we assume that the source term f (t) converges to some element
f ∞ ∈H in the sense of Stepanov as t→ +∞, that is,∣∣ f (t+ ·)− f ∞

∣∣
L2(0,1;H) −→ 0 as t −→ +∞. (4.1)

Here by (i) of (II), note that {ϕt; t ∈R+} ∈Φ({ar},{br}) implies that

ϕt =⇒ ϕ∞ on H in the sense of Mosco [10] (4.2)

as t→ +∞.
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From assumptions (A6), (4.1) and the fact (4.2), it follows that the limiting
system for (3.1) is of the form

u′(t) + ∂ϕ∞
(
u(t)

)
+G∞

(
u(t)

)� f ∞ in H, t ≥ 0, (4.3)

where G∞ :=G(∞,·).
Now, we consider the limiting evolution equation (4.3) on R+ and construct

a global attractor for (4.3).
The limiting autonomous system (4.3) can be considered as the special case of

(3.1) with ϕt ≡ ϕ∞,G(t,·)≡G∞(·), and f (t)≡ f ∞. Therefore applying Theorem
3.2, we have the global bounded solution of the Cauchy problem for (4.3) on R+

with initial value u0 ∈D(ϕ∞). So we can define a family {S(t); t ∈R+} of solu-
tion operators. But we do not show the uniqueness of solutions for (4.3) on R+

with a given initial value u0. Hence the solution operator is multivalued. Namely,
for each t ∈R+, the solution operator S(t) assigns to any u0 ∈D(ϕ∞) the set

S(t)u0 :={v ∈D(ϕ∞) | there is the solution u of (4.3) on

R+ : u(0)= u0, u(t)= v}. (4.4)

Clearly, the following conditions are satisfied:
(S1) S(0)= I (the identity) on D(ϕ∞);
(S2) S(t+ s)u0 = S(t)(S(s)u0), for all u0 ∈D(ϕ∞), for all s, t ∈R+.
Therefore {S(t); t ∈ R+} forms a multivalued semigroup on D(ϕ∞). More-

over, we see the closedness of S(·)(·) in the following sense.

Lemma 4.1. Assume that tn, t ∈ R+ with tn → t, u0n, u0 ∈ D(ϕ∞) with u0n → u0

in H and an element zn ∈ S(tn)u0n converges to some element z in H as n→ +∞.
Then, z ∈ S(t)u0.

Proof. Since tn → t as n→ +∞, without loss of generality, we may assume that
there is a finite time T such that t, tn ∈ [0,T] for any n∈N.

Since zn ∈ S(tn)u0n, there exists a global solution un of (4.3) on R+ such that

un
(
tn
)= zn, un(0)= u0n. (4.5)

Let δ be any positive number. By Theorem 3.2, there is a positive constant Nδ

depending only on δ such that

sup
t≥δ

∣∣un(t)
∣∣2
H + sup

t≥δ

∣∣u′n∣∣2
L2(t,t+1;H) + sup

t≥δ
ϕ∞
(
un(t)

)≤Nδ. (4.6)

Therefore, we observe that there exist a subsequence {nk} ⊂ {n} and a function
uδ ∈ C([δ,T];H) such that

unk −→ uδ in C
(
[δ,T];H

)
, u′nk u′δ weakly in L2(δ,T ;H) (4.7)

as k→ +∞.
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By the convergence result (III) with (A2), (A6) and Remark 2.4, (by taking a
subsequence of {nk} if necessary), we see that uδ is the solution of

u′δ(t) + ∂ϕ∞
(
uδ(t)

)
+G∞

(
uδ(t)

)� f ∞ in H, a.e. t ∈ [δ,T]. (4.8)

Here by the usual diagonal argument with respect to δ, we can construct the
solution u∈ C((0,T];H) of

u′(t) + ∂ϕ∞
(
u(t)

)
+G∞

(
u(t)

)� f ∞ in H, a.e. t ∈ (0,T]. (4.9)

Using the same technique of [11, Lemma 3.10], we show that

u(t)−→ u0 in H as t −→ 0, (4.10)

which implies that u is the solution (4.3) on [0,T] such that u∈ C([0,T];H) and

unk −→ u in C
(
[0,T];H

)
as k −→ +∞. (4.11)

Now, we show that z = u(t), namely, z ∈ S(t)u0. Here, let ε be any positive
number. Since u∈ C([0,T];H) and tnk → t as k→ +∞, there is a positive number
K1,ε such that ∣∣u(tnk)−u(t)

∣∣
H ≤

ε

3
, ∀k ≥ K1,ε. (4.12)

On the other hand, it follows from (4.11) that there is a positive number K2,ε

such that ∣∣unk −u∣∣C([0,T];H) ≤
ε

3
, ∀k ≥ K2,ε. (4.13)

Moreover, since znk → z in H as k→ +∞, there is a positive number K3,ε such
that ∣∣z− znk∣∣H ≤ ε

3
, ∀k ≥ K3,ε. (4.14)

Noting (4.5), (4.12), (4.13), and (4.14), we have∣∣z−u(t)
∣∣
H ≤

∣∣z− znk∣∣H +
∣∣znk −u(tnk)∣∣H +

∣∣u(tnk)−u(t)
∣∣
H

= ∣∣z− znk∣∣H +
∣∣unk(tnk)−u(tnk)∣∣H +

∣∣u(tnk)−u(t)
∣∣
H

≤ ∣∣z− znk∣∣H +
∣∣unk −u∣∣C([0,T];H) +

∣∣u(tnk)−u(t)
∣∣
H

≤ ε

3
+
ε

3
+
ε

3
= ε, ∀k ≥ K1,ε +K2,ε +K3,ε.

(4.15)

Since ε is arbitrary, we conclude z = u(t), namely

z ∈ S(t)u0. (4.16)

Thus, Lemma 4.1 is proved. �
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Furthermore, we have the following properties of the multivalued semigroup
{S(t); t ∈R+}, which can be proved by the same way as in [5, Lemma 4.1]. For
a detail proof, see [5, Lemma 4.1].

Lemma 4.2 (cf. [5, Lemma 4.1]). Suppose the same assumptions of Theorem 3.2
and (4.1). Then

(i) for each bounded subset B of H , the set
⋃
t∈R+

S(t)(D(ϕ∞)∩B) is bounded
in H ;

(ii) for each bounded subset B of H and each positive number δ, the set

Cδ :=
⋃
t≥δ

S(t)
(
D
(
ϕ∞
)∩B) (4.17)

is relatively compact in H , and ϕ∞ is bounded on Cδ ;
(iii) there exists a compact and convex subset B0 of D(ϕ∞) such that

sup
z∈B0

ϕ∞(z) < +∞ (4.18)

and for each bounded subset B of H there is a finite time TB > 0 satisfying

S(t)
(
D
(
ϕ∞
)∩B)⊂ B0 ∀t ≥ TB. (4.19)

Remark 4.3. By taking into account Lemmas 4.1 and 4.2, we easily see that for
each bounded subset B of H and each positive numbers δ,

S(·)(·) is upper semicontinuous on J ×
(
D
(
ϕ∞
)∩B), (4.20)

where J is any compact subinterval of [δ,+∞). For the definition and property
of the upper semicontinuous mapping, see [1, 3], for instance.

Now, we mention the existence of a global attractor for the multivalued semi-
group {S(t); t ∈R+} associated with (4.3).

Theorem 4.4. Suppose the same assumptions of Theorem 3.2 and (4.1). Then,
there is a subset �∞ of D(ϕ∞) such that

(i) �∞ is nonempty and compact in H ;
(ii) for each bounded subset B of H and each number ε > 0 there exists TB,ε > 0

such that

distH
(
S(t)z,�∞

)
< ε (4.21)

uniformly in z ∈D(ϕ∞)∩B and all t ≥ TB,ε;
(iii) S(t)�∞ =�∞ for any t ∈R+.

We say that �∞ is a global attractor for {S(t); t ∈R+}, if it possesses proper-
ties (i), (ii), and (iii) of Theorem 4.4. Clearly, the global attractor is unique if it
exists.
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Proof of Theorem 4.4. On account of Lemmas 4.1 and 4.2, we can construct
a global attractor �∞ for {S(t); t ∈R+} by the standard technique established in
[4, 13]. Actually, using the compact absorbing set B0 obtained by Lemma 4.2(iii),
the global attractor �∞ can be defined by

�∞ :=
⋂
s≥0

⋃
t≥s
S(t)B0. (4.22)

Now, we show that the set �∞ has the properties (i), (ii), and (iii) of Theorem
4.4.

By the global existence of solutions for (4.3) and the compactness of B0, it
is easily seen that �∞ is nonempty and compact in H . Hence, Theorem 4.4(i)
holds.

Next we show (ii). Since B0 is the absorbing set, it suffices to show that

distH
(
S(t)B0,�∞

)−→ 0 as t −→ +∞. (4.23)

We prove (4.23) by contradiction. Namely, assume that �∞ does not attract
B0. Then there are δ0 > 0 and sequences {tn} ⊂ R+ with tn ≥ n, {zn} ⊂ B0, and
{wn} ⊂H with wn ∈ S(tn)zn such that∣∣wn− y

∣∣
H ≥ δ0, ∀y ∈�∞. (4.24)

Since B0 is the compact absorbing set inH , there exists a finite time T(B0) > 0
such that

S(t)B0 ⊂ B0, ∀t ≥ T(B0
)
. (4.25)

Hence, the set {
wn ∈H ; wn ∈ S

(
tn
)
zn, ∀tn ≥ T

(
B0
)}

(4.26)

is relatively compact in H . So, there are a subsequence {nk} ⊂ {n} and a point
w ∈H such that

wnk −→w in H as k −→ +∞. (4.27)

Since wnk ∈ S(tnk )znk and {znk} ⊂ B0, it follows that

w ∈�∞. (4.28)

This contradicts (4.24). Hence, the set �∞ attracts the compact absorbing set B0,
which means that Theorem 4.4(ii) holds.

Now we prove Theorem 4.4(iii). At first let us show �∞ ⊂ S(t)�∞ for any t ∈
R+. Let z be any element of �∞. Then, there exist sequences {tn} ⊂R+, {xn} ⊂ B0

and {zn} ⊂H with zn ∈ S(tn)xn such that

tn ↑ +∞, zn −→ z in H as n−→ +∞. (4.29)
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Since B0 is the compact absorbing set in H , there exists a finite time T(B0) > 0
such that

S(τ)B0 ⊂ B0, ∀τ ≥ T(B0
)
. (4.30)

For each t ∈R+, it follows from (S2) that

zn ∈ S(t)S
(
tn− t

)
xn for any n with tn ≥ t+T

(
B0
)
. (4.31)

Hence there is an element wn ∈ S(tn− t)xn such that

zn ∈ S(t)wn. (4.32)

By (4.30), we easily see that the set {wn ∈H ; n∈N with tn ≥ t +T(B0)} is rela-
tively compact in H . So, there are a subsequence {nk} ⊂ {n} and a point y ∈H
such that

wnk −→ y in H as k −→ +∞. (4.33)

Clearly, y ∈�∞.
Moreover, by taking a subsequence of {nk} if necessary, if follows from

Lemma 4.1, (4.29), (4.30), (4.32), and (4.33) that

z ∈ S(t)y, (4.34)

which implies that z ∈ S(t)�∞. Therefore, we have

�∞ ⊂ S(t)�∞, ∀t ∈R+. (4.35)

Next we show S(t)�∞ ⊂�∞ for any t ∈ R+. By the result as above, we see
that for any t ∈R+

S(t)�∞ ⊂ S(t)
(
S(τ)�∞

)= S(t+ τ)�∞, ∀τ ∈R+. (4.36)

Let y be any element of S(t)�∞. By (4.36) we may assume that there are se-
quences {τn} ⊂R+ with τn ≥ n and {xn} ⊂�∞ such that

y ∈ S(t+ τn
)
xn. (4.37)

Since �∞ ⊂ B0, from the attractive property (ii) of Theorem 4.4 it follows that

y ∈�∞, (4.38)

which implies that S(t)�∞ ⊂ �∞ for any t ∈ R+. Thus, (iii) of Theorem 4.4
holds. �



464 Attractors for nonautonomous multivalued systems

Remark 4.5. The authors in [6] had already constructed the global attractor for
(4.3) with f ∞ ≡ 0. However, our situation is different a little. So, we have given
the above our proof of Theorem 4.4, which will be used in the next section.

5. Global attractor of the nonautonomous multivalued dynamical system

In this section, we construct a global attractor for the nonautonomous system
(3.1).

By Theorem 3.2, we define the solution operator E(t, s) (0 ≤ s ≤ t < +∞) for
(3.1). But we do not have the uniqueness of solutions for the Cauchy problem
(3.2) on [s,+∞), hence E(t, s) is multivalued. Namely, E(t, s) (0 ≤ s ≤ t < +∞)
is the operator from D(ϕs) into D(ϕt) which assigns to each u0 ∈ D(ϕs) the set
E(t, s)u0 given by (1.3) for (3.1).

It is easy to check the following properties of {E(t, s); 0≤ s≤ t < +∞}:
(E1) E(s, s)= I on D(ϕs) for any s≥ 0;
(E2) E(t2, s)z = E(t2, t1)E(t1, s)z for any 0≤ s≤ t1 ≤ t2 < +∞ and z ∈D(ϕs).

Moreover, by the same argument of Lemma 4.1, we have the closedness of
E(·)(·) in the following sense.

Lemma 5.1. Assume that sn, s, tn, t ∈ R+ with sn → s and tn → t, u0n ∈ D(ϕsn),
u0 ∈D(ϕs) with u0n→ u0 in H an element zn ∈ E(tn + sn, sn)u0n converges to some
element z in H as n→ +∞. Then, z ∈ E(t + s, s)u0. In particular, if s = +∞, then
z ∈ S(t)u0.

In order to construct a global attractor for the multivalued evolution operator
E(t, s) associated with (3.1), we give a definition of a ω-limit set under E(t, s).

Definition 5.2. Let �(H) be a family of bounded subsets of H . Then, for each
B ∈�(H) the set

ωE(B) :=
⋂
τ≥0

⋃
t≥τ,s≥0

E(t+ s, s)
(
D
(
ϕs
)∩B) (5.1)

is called the ω-limit set of B under E(t, s).

Remark 5.3 (cf. [9, Lemma 1]). By definition of theω-limit setωE(B), it is easy to
see that x ∈ ωE(B) if and only if there exist sequences {tn} ⊂ R+ with tn → +∞,
{sn} ⊂ R+, {zn} ⊂ B with zn ∈ D(ϕsn) and {xn} ⊂ H with xn ∈ E(tn + sn, sn)zn
such that

xn −→ x in H as n−→ +∞. (5.2)

Now, we mention our main result in this section, which is the existence of the
attracting set for (3.1).
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Theorem 5.4. Let {ϕt} ∈Φ({ar},{br}) and assume that (A1), (A2), (A3), (A4),
(A5), (A6), (A7), and (4.1) hold. Then, the set �∗,

�∗ :=
⋃

B∈�(H)

ωE(B) (5.3)

satisfies the following:

(i) �∗ ⊂D(ϕ∞) and �∗ is nonempty and compact in H ;
(ii) for each bounded set B ∈�(H),

distH
(
E(t, s)z,�∗

)−→ 0 uniformly in s≥ 0, z ∈D(ϕs)∩B (5.4)

as t→ +∞;
(iii) �∗ ⊂ S(t)�∗ ⊂�∞ for any t ∈R+.

To prove Theorem 5.4. we prepare Lemma 5.5.
For the moment, we fix a bounded subset B ∈�(H), and using the global

boundedness result obtained in Theorem 3.2, choose constants rB > 0 and
MB > 0 so that

|w|H ≤ rB for any s, t ≥ 0, z ∈D(ϕs)∩B, w ∈ E(t+ s, s)z,

ϕt+s(w)≤MB for any s≥ 0, t ≥ 1, z ∈D(ϕs)∩B, w ∈ E(t+ s, s)z.
(5.5)

Next, we observe from property (∗) of time-dependence that for each s≥ 0,
z ∈D(ϕs)∩B, t ≥ 0, and w ∈ E(t+ s, s)z there is z̃ := z̃s,z,t,w ∈D(ϕ∞) satisfying

∣∣z̃−w∣∣H ≤
(∫∞

t+s

∣∣a′rB (σ)
∣∣dσ)(1 +M1/2

B

)
,(

hence
∣∣z̃∣∣H ≤ rB +

(∫∞
0

∣∣a′rB (σ)
∣∣dσ)(1 +M1/2

B

)=: r′B

)
,

ϕ∞
(
z̃
)≤MB +

(∫∞
t+s

∣∣b′rB (σ)
∣∣dσ)(1 +MB

)
≤MB +

(∫∞
0

∣∣b′rB (σ)
∣∣dσ)(1 +MB

)=:M′
B.

(5.6)

Now, we define the set B̃ by

B̃ := {z ∈H ; |z|H ≤ r′B
}∩D(ϕ∞). (5.7)

Since B0 is the absorbing set for {S(t); t ∈ R+}, there exists a finite time T̃ :=
T̃B̃ > 0 such that

S(t)B̃ ⊂ B0, ∀t ≥ T̃. (5.8)

By using the above facts, we show a key lemma to prove Theorem 5.4.
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Lemma 5.5. Let B0 be the absorbing set for {S(t); t ∈ R+} obtained in Lemma
4.2(iii). Then

ωE(B)⊂ B0, ∀B ∈�(H). (5.9)

Proof. For each B ∈�(H), let x be any element of ωE(B). Then, by Remark 5.3,
we see that there exist sequences {tn} ⊂ R+ with tn → +∞, {sn} ⊂ R+, {zn} ⊂ B
with zn ∈D(ϕsn) and {xn} ⊂H with xn ∈ E(tn + sn, sn)zn such that

xn −→ x in H as n−→ +∞. (5.10)

Let T̃ be the positive finite time obtained in (5.8). It follows from (E2) that

xn ∈ E
(
tn + sn, tn + sn− T̃

)
E
(
tn + sn− T̃, sn

)
zn for any n with tn ≥ T̃ + 1.

(5.11)
By (5.11), there is an element yn ∈ E(tn + sn− T̃, sn)zn such that

xn ∈ E
(
tn + sn, tn + sn− T̃

)
yn. (5.12)

Here note that∣∣yn∣∣H ≤ rB, ϕtn+sn−T̃(yn)≤MB for any n with tn ≥ T̃ + 1, (5.13)

where rB andO MB are positive constants in (5.5).
From property (∗) of time-dependence that for yn ∈ E(tn + sn− T̃, sn)zn there

is ỹn ∈D(ϕ∞) satisfying

∣∣ ỹn− yn
∣∣
H ≤

(∫∞
tn+sn−T̃

∣∣a′rB (σ)
∣∣dσ)(1 +M1/2

B

)
,(

hence
∣∣ ỹn∣∣H ≤ rB +

(∫∞
0

∣∣a′rB (σ)
∣∣dσ)(1 +M1/2

B

)= r′B
)
,

ϕ∞
(
ỹn
)≤MB +

(∫∞
tn+sn−T̃

∣∣b′rB (σ)
∣∣dσ)(1 +MB

)
≤MB +

(∫∞
0

∣∣b′rB (σ)
∣∣dσ)(1 +MB

)=M′
B.

(5.14)

Clearly, { ỹn∈D(ϕ∞); n∈N with tn ≥ T̃ + 1} is relatively compact inH , hence
we assume that

ỹn −→ ỹ∞ in H as n−→ +∞ (5.15)

for some ỹ∞ ∈H ; it is easily seen that ỹ∞ ∈ B̃ and

yn −→ ỹ∞ in H as n−→ +∞. (5.16)
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Here, applying Lemma 5.1, it follows from (5.10), (5.12), and (5.16) that

x ∈ S(T̃) ỹ∞, (5.17)

which implies that

x ∈ S(T̃)B̃ ⊂ B0. (5.18)

Therefore, we observe that

ωE(B)⊂ B0. (5.19)

�

Proof of Theorem 5.4. By Lemma 5.5, we observe that �∗ ⊂ B0. Therefore,
Theorem 5.4(i) holds. Also, it follows from (5.3) and Remark 5.3 that Theorem
5.4(ii) holds.

Now, we show Theorem 5.4(iii). At first, we show that �∗ ⊂ S(t)�∗ for any
t ∈ R+. To do so, let x be any element of �∗. By the definition of �∗, we may
assume that there exist sequences {Bn} ⊂�(H) and {xn} ⊂H with xn ∈ ωE(Bn)
such that

xn −→ x in H as n−→ +∞. (5.20)

It follows from Remark 5.3 that for each n, there exist sequences {tn, j} ⊂ R+

with tn, j → +∞, {sn, j} ⊂R+, {zn, j} ⊂ Bn with zn, j ∈D(ϕsn, j ), and {vn, j} ⊂H with
vn, j ∈ E(tn, j + sn, j , sn, j)zn, j such that

vn, j −→ xn in H as j −→ +∞. (5.21)

Let t be any time in R+. We note that

vn, j ∈ E
(
tn, j + sn, j , tn, j + sn, j − t

)
E
(
tn, j + sn, j − t, sn, j

)
zn, j (5.22)

for j with tn, j ≥ t+ 1. Hence, there is a wn, j ∈ E(tn, j + sn, j − t, sn, j)zn, j such that

vn, j ∈ E
(
tn, j + sn, j , tn, j + sn, j − t

)
wn, j . (5.23)

For each n, by global estimates obtained in Theorem 3.2, {wn, j ∈ H ; j ∈ N

with tn, j ≥ t + 1} is relatively compact in H . So, we may assume that the ele-
ment wn, j converges to some element w̃∞ ∈H as j → +∞. Clearly, w̃∞ ∈ ωE(Bn).
Moreover, from Lemma 4.1, (5.21), and (5.23), we observe that

xn ∈ S(t)w̃∞ ⊂ S(t)ωE
(
Bn
)
, (5.24)

which implies that

xn ∈
⋃
n≥1

S(t)ωE
(
Bn
)
, ∀n≥ 1. (5.25)
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Moreover, by Lemma 5.1, we observe that for each X ⊂ B0,

S(t)X ⊂ S(t)X, ∀t ∈R+. (5.26)

Since (5.20), (5.25), and (5.26), we see that

x ∈
⋃
n≥1

S(t)ωE
(
Bn
)

= S(t)
⋃
n≥1

ωE
(
Bn
)

⊂ S(t)
⋃
n≥1

ωE
(
Bn
)

⊂ S(t)�∗.

(5.27)

Hence, we observe that �∗ is semi-invariant under the multivalued semigroup
S(t), namely

�∗ ⊂ S(t)�∗, ∀t ∈R+. (5.28)

Next, we show that S(t)�∗ ⊂�∞ for any t ∈R+. By (5.28), for each t ∈R+

S(t)�∗ ⊂ S(t)S(τ)�∗ = S(t+ τ)�∗, ∀τ ∈R+. (5.29)

Since �∗ ⊂ B0, from (5.29) and the attractive property (ii) of Theorem 4.4, it
follows that

S(t)�∗ ⊂�∞, ∀t ∈R+, (5.30)

hence, we conclude that

�∗ ⊂ S(t)�∗ ⊂�∞, ∀t ∈R+. (5.31)

�

Theorem 5.4 says that the attracting set �∗ for (3.1) is semi-invariant under
S(t) associated with the limiting autonomous system (4.3), in general.

In order to get the invariance of �∗ under S(t), we use the concept of a regular
approximation which was introduced in [8].

Definition 5.6. Let z ∈D(ϕ∞). Then, we say that S(t)z is regularly approximated
by E(t+ s, s) as s→ +∞, if for each finiteT > 0 there are sequences {sn} ⊂R+ with
sn→ +∞ and {zn} ⊂H with zn ∈D(ϕsn) and zn→ z inH satisfying the following
property: for any function u ∈W1,2(0,T ;H) satisfying u(t) ∈ S(t)z for all t ∈
[0,T] there is a sequence {un} ⊂W1,2(0,T ;H) such that un(t) ∈ E(t + sn, sn)zn
for all t ∈ [0,T] and un→ u in C([0,T];H) as n→ +∞.

Using the above concept, we can show that the invariance of �∗ under S(t)
and the relationship between �∗ and �∞.
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Theorem 5.7. Suppose that all the assumptions in Theorem 5.4 hold true.
(i) Assume that for any point z of �∗, S(t)z is regularly approximated by

E(t, s) as s→ +∞. Then,

�∗ = S(t)�∗ ⊂�∞ for any t ∈R+. (5.32)

(ii) Assume that for any point z of �∞, S(t)z is regularly approximated by
E(t, s) as s→ +∞. Then,

�∗ =�∞. (5.33)

Proof. By the same way in [8, Theorem 3.2], we can prove Theorem 5.7(i). For
the detailed proof, see [8, Theorem 3.2].

Similarly, we can show Theorem 5.7(ii) by the similar argument of (i). In fact,
let x be any element of �∞. It follows from Theorem 4.4(iii) that

x ∈�∞ = S(t)�∞, ∀t ∈R+. (5.34)

Let t ∈R be fixed. Then there exists an element w ∈�∞ such that

x ∈ S(t)w. (5.35)

Now, by our assumption, we see that there are sequences {sn} ⊂R+, {wn} ⊂H
and {xn} ⊂H such that

sn −→ +∞, wn ∈D
(
ϕsn
)
, wn −→w in H,

xn ∈ E
(
t+ sn, sn

)
wn, xn −→ x in H

(5.36)

as n→ +∞.
Since {wn} is bounded, namely {wn} ⊂ B for some B ∈�(H), (5.36) implies

that

x ∈ ωE(B). (5.37)

Therefore, we have

�∞ ⊂ ωE(B)⊂�∗. (5.38)

Hence, it follows from (5.38) and Theorem 5.4(iii) that

�∗ =�∞. (5.39)

�

By Theorem 5.7, we get the invariance of �∗ under S(t). Therefore, we say
that the set �∗ is the global attractor for nonautonomous systems (3.1).
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Remark 5.8. If the solution operator S(t) is single-valued, namely the solution
of the Cauchy problem for (4.3) is unique, the assumptions of Theorem 5.7 al-
ways hold. Thus, Theorems 5.4 and 5.7 include the abstract results obtained in
[12] which were concerned with the asymptotic stability for the single-valued
dynamical system associated with time-dependent subdifferentials.

6. Application to an obstacle problem for PDEs

Let Ω be a bounded domain in RN (1≤N < +∞) with smooth boundary Γ= ∂Ω
and p be a fixed number with 2≤ p < +∞. We use the notation

ap(v,z) :=
∫
Ω
|∇v|p−2∇v ·∇zdx, ∀v,z ∈W1,p(Ω) (6.1)

and denote by (·,·) the usual inner product in L2(Ω).
The obstacle functions σ0 and σ1 are prescribed so that

σi ∈ L∞
(
R+;W1,p(Ω)

)∩L∞(R+×Ω
)
,

dσi
dt
∈ L1(

R+;W1,p(Ω)
)∩L2(

R+;W1,p(Ω)
)∩L1(

R+;L∞(Ω)
)∩L2(

R+;L∞(Ω)
)
,

(6.2)

for i= 0,1, and

σ1− σ0 ≥ c0 a.e. on R+×Ω (6.3)

for some constant c0 > 0. For each t ∈ [0,+∞], we define

K(t) := {z ∈W1,p(Ω); σ0(t,·)≤ z ≤ σ1(t,·) a.e. on Ω
}
, (6.4)

where σi(+∞,·)= limt→∞ σi(t,·) in W1,p(Ω), i= 0,1.
Also, let f be a function in L2

loc(R+;L2(Ω)) and f ∞ ∈ L2(Ω) such that

∣∣ f (t+ ·)− f ∞
∣∣
L2(0,1;L2(Ω)) −→ 0 as t −→ +∞. (6.5)

Furthermore, let h be a nonnegative continuous function on R+×R satisfy-
ing that there is a positive constant Lh such that

∣∣h(t,z1
)−h(t,z2

)∣∣≤ Lh∣∣z1− z2
∣∣ (6.6)

for all t ∈R+, zi ∈R, and i= 1,2. For any z ∈R, h∞(z) := limt→+∞h(t,z) exists.
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Now, under the above assumptions, for given b∈ L∞(Ω)N, we consider an in-
terior double obstacle problem (6.7): find functions u,q : [s,+∞)→ L2(Ω) such
that

u∈ C([s,+∞);L2(Ω)
)∩Lploc

(
(s,+∞);W1,p(Ω)

)∩W1,2
loc

(
(s,+∞);L2(Ω)

)
;

q ∈ L∞((s,+∞);L2(Ω)
)
;

u(t)∈ K(t) for a.e. t ≥ s;
0≤ q(t,x)≤ h(t,u(t,x)

)
a.e. on (s,+∞)×Ω;(

u′(t) + q(t) + b ·∇u(t)− f (t),u(t)− z)+ ap
(
u(t),u(t)− z)≤ 0

for any z ∈ K(t), a.e. t ≥ s.
(6.7)

And we also consider the limiting (autonomous) problem (6.8) for (6.7): find
functions u,q : R+ → L2(Ω) such that

u∈ C(R+;L2(Ω)
)∩Lploc

(
R+;W1,p(Ω)

)∩W1,2
loc

(
R+;L2(Ω)

)
;

q ∈ L∞((0,+∞);L2(Ω)
)
;

u(t)∈ K(∞) for a.e. t ∈R+;

0≤ q(t,x)≤ h∞(u(t,x)
)

a.e. on R+×Ω;(
u′(t) + q(t) + b ·∇u(t)− f ∞,u(t)− z)+ ap

(
u(t),u(t)− z)≤ 0

for any z ∈ K(∞), a.e. t ∈R+.
(6.8)

In order to apply the abstract results in Sections 3, 4, and 5, we choose L2(Ω)
as a real separable Hilbert space H . And we define a family {ϕt} of proper l.s.c.
convex functions ϕt on L2(Ω) by

ϕt(z)=


1
p

∫
Ω
|∇z|p dx if z ∈ K(t),

+∞ if z ∈ L2(Ω) \K(t).
(6.9)

Also, we define a multivalued operator G(·,·) from R+ ×H1(Ω) into L2(Ω)
by

G(t,z) := {g ∈ L2(Ω) : g = l+ b ·∇z in L2(Ω),

0≤ l(x)≤ h(t,z(x)
)

a.e. on Ω
} (6.10)

for all t ∈ R+ and z ∈H1(Ω). And G∞ is also defined by replacing h(t,z(x)) by
h∞(z(x)) in (6.10).

By the same calculations in [14, Lemma 5.1], we get the following lemma.
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Lemma 6.1 (cf. [14, Lemma 5.1]). (i) For any r ≥ 0 and t ∈R+,

ar(t)= br(t) :=M
∫ t

0

{∣∣σ ′0∣∣L∞(Ω) +
∣∣σ ′0∣∣W1,p(Ω) +

∣∣σ ′1∣∣L∞(Ω) +
∣∣σ ′1∣∣W1,p(Ω)

}
dτ,

(6.11)
where M is a (sufficiently large) positive constant. Then, {ϕt} ∈Φ({ar},{br}).

(ii) Assumptions (A1), (A2), (A3), (A4), (A5), (A6), and (A7) hold for ϕt and
G(·,·).

Clearly, the obstacle problem (6.7) can be reformulated as an evolution equa-
tion (3.1) involving the subdifferential of ϕt given by (6.9) and the multival-
ued operator G(t,·) defined by (6.10). Similarly, the limiting system (6.8) is also
rewritten in the form (4.3). Therefore, by Lemma 6.1, we can apply abstract re-
sults in Sections 3, 4, and 5. Namely, we can obtain the existence of the global so-
lutions for (6.7) and (6.8). Moreover, there are the global attractors �∗ for (6.7)
and �∞ for (6.8) such that

�∗ ⊂ S(t)�∗ ⊂�∞, ∀t ∈R+, (6.12)

where S(t) is the solution operator associated with (6.8).
Additionally, we assume that σ0(t,x) is nondecreasing and σ1(t,x) (resp.,

h(t,x)) is nonincreasing with respect to t ∈ R+ for any x ∈ Ω (resp., x ∈ R),
and f (t) ≡ f ∞. Then, we easily see that the assumption of Theorem 5.7 holds,
so we have

�∗ =�∞. (6.13)
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[11] M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated
with subdifferential operators, Cauchy problems, J. Differential Equations 46
(1982), no. 2, 268–299.

[12] K. Shirakawa, A. Ito, N. Yamazaki, and N. Kenmochi, Asymptotic stability for evo-
lution equations governed by subdifferentials, Recent Developments in Domain
Decomposition Methods and Flow Problems (Kyoto, 1996; Anacapri, 1996),
GAKUTO Internat. Ser. Math. Sci. Appl., vol. 11, Gakkōtosho, Tokyo, 1998,
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