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1. Introduction

We denote by N, Z, R the set of all natural numbers, integers, and real numbers, respectively.
For a, b ∈ Z, define Z(a) = {a, a + 1, . . . }, Z(a, b) = {a, a + 1, . . . , b} when a ≤ b.

Consider the nonlinear second-order difference equation

Δ
(
pn
(
Δxn−1

)δ) + qnx
δ
n = f

(
n, xn

)
, n ∈ Z, (1.1)

where the forward difference operator Δ is defined by the equation Δxn = xn+1 − xn and

Δ2xn−1 = Δ(Δxn−1) = Δxn −Δxn−1. (1.2)

In (1.1), the given real sequences {pn}, {qn} satisfy pn+T = pn > 0, qn+T = qn for any n ∈ Z,
f : Z×R → R is continuous in the second variable, and f(n+T, z) = f(n, z) for a given positive
integer T and for all (n, z) ∈ Z×R. (−1)δ = −1, δ > 0, and δ is the ratio of odd positive integers.
By a solution of (1.1), we mean a real sequence x = {xn}, n ∈ Z, satisfying (1.1).

In [1, 2], the qualitative behavior of linear difference equations of type

Δ(pnΔxn) + qnxn = 0 (1.3)
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has been investigated. In [3], the nonlinear difference equation

Δ(pnΔxn−1) + qnxn = f(n, xn) (1.4)

has been considered. However, results on periodic solutions of nonlinear difference equations
are very scarce in the literature, see [4, 5]. In particular, in [6], by critical point method, the
existence of periodic and subharmonic solutions of equation

Δ2xn−1 + f
(
n, xn

)
= 0, n ∈ Z, (1.5)

has been studied. Other interesting contributions can be found in some recent papers [7–11]
and in references contained therein. It is interesting to study second-order nonlinear difference
equations (1.1) because they are discrete analogues of differential equation

(p(t)ϕ(u′))′ + f(t, u) = 0. (1.6)

In addition, they do have physical applications in the study of nuclear physics, gas aerody-
namics, infiltrating medium theory, and plasma physics as evidenced in [12, 13].

The main purpose here is to develop a new approach to the above problem by using
critical point method and to obtain some sufficient conditions for the existence of periodic
solutions of (1.1).

Let X be a real Hilbert space, I ∈ C1(X, R), which implies that I is continuously Fréchet
differentiable functional defined on X. I is said to be satisfying Palais-Smale condition (P-S
condition) if any sequence {I(un)} is bounded, and I ′(un) → 0 as n → ∞ possesses a conver-
gent subsequence in X. Let Bρ be the open ball in X with radius ρ and centered at 0, and let
∂Bρ denote its boundary.

Lemma 1.1 (mountain pass lemma, see [14]). Let X be a real Hilbert space, and assume that I ∈
C1(X,R) satisfies the P-S condition and the following conditions:

(I1) there exist constants ρ > 0 and a > 0 such that I(x) ≥ a for all x ∈ ∂Bρ, where Bρ = {x ∈ X :
‖x‖X < ρ};

(I2) I(0) ≤ 0 and there exists x0∈ Bρ such that I(x0) ≤ 0.

Then c = inf h∈Γ sup s∈[0,1]I(h(s)) is a positive critical value of I, where

Γ =
{
h ∈ C

(
[0, 1], X

)
: h(0) = 0, h(1) = x0

}
. (1.7)

Lemma 1.2 (saddle point theorem, see [14, 15]). LetX be a real Banach space,X = X1 ⊕ X2, where
X1 /= {0} and is finite dimensional. Suppose I ∈ C1(X,R) satisfies the P-S condition and

(I3) there exist constants σ, ρ > 0 such that I|∂Bρ
⋂
X1 ≤ σ;

(I4) there is e ∈ Bp
⋂
X1 and a constant ω > σ such that I|e+X2 ≥ ω.

Then I possesses a critical value c ≥ ω and

c = inf
h∈Γ

max
u∈Bρ

⋂
X1

I(h(u)), (1.8)

where Γ = {h ∈ C(Bρ
⋂
X1,X)|h|∂Bρ

⋂
X1

= id}.
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2. Preliminaries

In this section, we are going to establish the corresponding variational framework for (1.1).
Let Ω be the set of sequences

x =
{
xn

}
n∈Z

=
(
. . . , x−n, . . . , x−1, x0, x1, . . . , xn, . . .

)
, (2.1)

that is,

Ω =
{
x =

{
xn

}
: xn ∈ R, n ∈ Z

}
. (2.2)

For any x, y ∈ Ω, a, b ∈ R, ax + by is defined by

ax + by :=
{
axn + byn

}+∞
n=−∞. (2.3)

Then Ω is a vector space. For given positive integer T, ET is defined as a subspace of Ω by

ET =
{
x =

{
xn

} ∈ Ω : xn+T = xn, n ∈ Z
}
. (2.4)

Clearly, ET is isomorphic to R
T , and can be equipped with inner product

〈x, y〉 =
T∑

i=1

xiyi, ∀x, y ∈ ET , (2.5)

by which the norm ‖·‖ can be induced by

‖x‖ :=

(
T∑

i=1

x2
i

)1/2

, ∀x ∈ ET . (2.6)

It is obvious that ET with the inner product defined by (2.5) is a finite-dimensional Hilbert
space and linearly homeomorphic to R

T . Define the functional J on ET as follows:

J(x) =
1

δ + 1

T∑

n=1

pn(Δxn−1)
δ+1 − 1

δ + 1

T∑

n=1

qnx
δ+1
n +

T∑

n=1

F(n, xn), ∀x ∈ ET , (2.7)

where F(t, z) =
∫z
0 f(t, s)ds. Clearly, J ∈ C1(ET ,R), and for any x = {xn}n∈Z

∈ ET , by using
x0 = xT , x1 = xT+1, we can compute the partial derivative as

∂J

∂xn
= −Δ[pn(Δxn−1)

δ] − qnx
δ
n + f(n, xn), n ∈ Z(1, T). (2.8)

Thus x = {xn}n∈Z
is a critical point of J on ET (i.e., J ′(x) = 0) if and only if

Δ[pn(Δxn−1)
δ] + qnx

δ
n = f(n, xn), n ∈ Z(1, T). (2.9)

By the periodicity of xn and f(n, z) in the first variable n, we have reduced the existence
of periodic solutions of (1.1) to that of critical points of J on ET . In other words, the func-
tional J is just the variational framework of (1.1). For convenience, we identify x ∈ ET with
x = (x1, x2, . . . , xT)

T . Denote W = {(x1, x2, . . . , xT)
T ∈ ET : xi ≡ v, v ∈ R, i ∈ Z(1, T)} and

W⊥ = Y such that ET = Y⊕W. Denote other norm ‖·‖r on ET as follows (see, e.g., [16]):
‖x‖r = (

∑ T
i=1|xi|r)1/r , for all x ∈ ET and r > 1. Clearly, ‖x‖2 = ‖x‖. Due to ‖·‖r1 and ‖·‖r2

being equivalent when r1, r2 > 1, there exist constants c1, c2, c3, and c4 such that c2 ≥ c1 > 0,
c4 ≥ c3 > 0, and

c1‖x‖ ≤ ‖x‖δ+1 ≤ c2‖x‖, (2.10)

c3‖x‖ ≤ ‖x‖β ≤ c4‖x‖, (2.11)

for all x ∈ ET , δ > 0 and β > 1.
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3. Main results

In this section, we will prove our main results by using critical point theorem. First, we prove
two lemmas which are useful in the proof of theorems.

Lemma 3.1. Assume that the following conditions are satisfied:

(F1) there exist constants a1 > 0, a2 > 0, and β > δ + 1 such that

∫z

0
f(n, s)ds ≤ −a1|z|β + a2, ∀z ∈ R; (3.1)

(F2)

qn ≤ 0, ∀n ∈ Z. (3.2)

Then the functional

J(x) =
1

δ + 1

T∑

n=1

pn(Δxn−1)
δ+1 − 1

δ + 1

T∑

n=1

qnx
δ+1
n +

T∑

n=1

F(n, xn) (3.3)

satisfies P-S condition.

Proof. For any sequence {x(l)} ⊂ ET , with J(x(l)) being bounded and J ′(x(l)) → 0 as
l → +∞, there exists a positive constantM such that |J(x(l))| ≤ M. Thus, by (F1),

−M ≤ J(x(l)) =
1

δ + 1

T∑

n=1

[
pn
(
x
(l)
n − x

(l)
n−1
)δ+1 − qn

(
x
(l)
n

)δ+1
]
+

T∑

n=1

F
(
n, x

(l)
n

)

≤ 1
δ + 1

T∑

n=1

pn2δ+1
((

x
(l)
n

)δ+1
+
(
x
(l)
n−1
)δ+1) − 1

δ + 1

T∑

n=1

qn
(
x
(l)
n

)δ+1
+

T∑

n=1

F
(
n, x

(l)
n

)

≤ 2δ+1

δ + 1

T∑

n=1

(pn + pn+1)
(
x
(l)
n

)δ+1 − 1
δ + 1

T∑

n=1

qn
(
x
(l)
n

)δ+1 − a1

T∑

n=1

∣∣∣x(l)
n

∣∣∣
β
+ a2T

=
1

δ + 1

T∑

n=1

[
2δ+1(pn + pn+1) − qn

](
x
(l)
n

)δ+1 − a1
∥∥x(l)∥∥β

β + a2T.

(3.4)

Set

A0 = max
n∈Z(1,T)

[2δ+1(pn + pn+1) − qn]. (3.5)

Then A0 > 0. Also, by the above inequality, we have

−M ≤ J(x(l)) ≤ A0

δ + 1
∥∥x(l)∥∥δ+1

δ+1 − a1
∥∥x(l)∥∥β

β
+ a2T. (3.6)
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In view of

T∑

n=1

∣∣x(l)
n

∣∣δ+1 ≤ T (β−δ−1)/β
(

T∑

n=1

∣∣x(l)
n

∣∣β
)(δ+1)/β

, (3.7)

we have

∥
∥x(l)∥∥β

β
≥ T (δ+1−β)/(δ+1)∥∥x(l)∥∥β

δ+1. (3.8)

Then we get

−M ≤ J(x(l)) ≤ A0

δ + 1
∥∥x(l)∥∥δ+1

δ+1 − a1T
(δ+1−β)/(δ+1)∥∥x(l)∥∥β

δ+1 + a2T. (3.9)

Therefore, for any l ∈ N,

a1T
(δ+1−β)/(δ+1)∥∥x(l)∥∥β

δ+1 −
A0

δ + 1
∥∥x(l)∥∥δ+1

δ+1 ≤ M + a2T. (3.10)

Since β > δ+1, the above inequality implies that {x(l)} is a bounded sequence in ET . Thus {x(l)}
possesses convergent subsequences, and the proof is complete.

Theorem 3.2. Suppose that (F1) and following conditions hold:
(F3) for each n ∈ Z,

lim
z→0

f(n, z)
zδ

= 0; (3.11)

(F4)

qn < 0, ∀n ∈ Z(1, T). (3.12)

Then there exist at least two nontrivial T -periodic solutions for (1.1).

Proof. We will use Lemma 1.1 to prove Theorem 3.2. First, by Lemma 3.1, J satisfies P-S condi-
tion. Next, we will prove that conditions (I1) and (I2) hold. In fact, by (F3), there exists ρ > 0
such that for any |z| < ρ and n ∈ Z(1, T),

|F(n, z)| ≤ − qmax

2(δ + 1)
zδ+1, (3.13)

where qmax = maxn∈Z(1,T) qn < 0. Thus for any x ∈ ET , ‖x‖ ≤ ρ for all n ∈ Z(1, T), we have

J(x) ≥ − qmax

δ + 1

T∑

n=1

xδ+1
n +

qmax

2(δ + 1)

T∑

n=1

xδ+1
n

= − qmax

2(δ + 1)
‖x‖δ+1δ+1

≥ − qmax

2(δ + 1)
cδ+11 ‖x‖δ+12 .

(3.14)
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Taking a = −cδ+11 (qmax/2(δ + 1))ρδ+1,we have

J(x)|∂Bρ
≥ a > 0, (3.15)

and the assumption (I1) is verified. Clearly, J(0) = 0. For any givenw ∈ ET with ‖w‖ = 1 and a
constant α > 0,

J(αw) =
1

δ + 1

T∑

n=1

[pn(αwn − αwn−1)
δ+1 − qn(αwn)

δ+1] +
T∑

n=1

F(n, αwn)

≤ 1
δ + 1

T∑

n=1

[pn(2α)
δ+1 − qnα

δ+1] − a1

T∑

n=1

|αwn|β + a2T

≤ 1
δ + 1

T∑

n=1

[2δ+1pn − qn]αδ+1αδ+1 − a1T
(2−β)/2αβ + a2T

−→ −∞, (α −→ +∞).

(3.16)

Thus we can easily choose a sufficiently large α such that α > ρ and for x = αw ∈ ET , J(x) < 0.
Therefore, by Lemma 1.1, there exists at least one critical value c ≥ a > 0. We suppose that x̃ is
a critical point corresponding to c, that is, J(x̃) = c, and J ′(x̃) = 0. By a similar argument to the
proof of Lemma 3.1, for any x ∈ ET , there exists x̂ ∈ ET such that J ′(x̂) = cmax . Clearly, x̂ /= 0. If
x̃ /= x̂, and the proof is complete; otherwise, x̃ = x̂ and c = cmax . By Lemma 1.1,

c = inf
h∈Γ

sup
s∈[0,1]

J
(
h(s)

)
, (3.17)

where Γ = {h ∈ C([0, 1], ET) | h(0) = 0, h(1) = x}. Then for any h ∈ Γ, cmax = max s∈[0,1]J(h(s)).
By the continuity of J(h(s)) in s, J(0) ≤ 0 and J(x) < 0 show that there exists some s0 ∈
(0, 1) such that J(h(s0)) = cmax . If we choose h1, h2 ∈ Γ such that the intersection {h1(s) |
s ∈ (0, 1)}⋂ {h2(s) | s ∈ (0, 1)} is empty, then there exist s1, s2 ∈ (0, 1) such that J(h1(s1)) =
J(h2(s2)) = cmax . Thus we obtain two different critical points x1 = h1(s1), x2 = h2(s2) of J in
ET . In this case, in fact, we may obtain at least two nontrivial critical points which correspond
to the critical value cmax . The proof of Theorem 3.2 is complete. When f(n, xn) ≡ hn, we have
the following results.

Theorem 3.3. Assume that the following conditions hold:

(G1)

qn < 0, ∀n ∈ Z(1, T); (3.18)

(G2)

1

cδ+11

(
T∑

n=1

h2
n

)(δ+1)/2 T∑

n=1

(−qn) <
(
pminλ

(δ+1)/2
2 − qmax

)( T∑

n=1

hn

)δ+1

, (3.19)
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where pmin = min n∈Z(1,T)pn, qmax = max n∈Z(1,T)qn, c1 is a constant in (2.10), and λ2 is the minimal
positive eigenvalue of the matrix

A =

⎛

⎜⎜⎜⎜
⎜
⎜
⎜
⎝

2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
−1 0 0 · · · −1 2

⎞

⎟⎟⎟⎟
⎟
⎟
⎟
⎠

T×T

. (3.20)

Then equation

Δ
[
pnΔxn−1

]δ + qnx
δ
n = hn, n ∈ Z, (3.21)

possesses at least one T -periodic solution.

First, we proved the following lemma.

Lemma 3.4. Assume that (G1) holds, then the functional

J(x) =
1

δ + 1

T∑

n=1

pn
(
Δxn−1

)δ+1 − 1
δ + 1

T∑

n=1

qnx
δ+1
n +

T∑

n=1

hnxn (3.22)

satisfies P-S condition on ET .

Proof. For any sequence {x(l)} ⊂ ET with J(x(l)) being bounded and J ′(x(l)) → 0 as n → +∞,
there exists a positive constantM such that |J(x(l))| ≤ M. In view of (G3) and

T∑

n=1

|hnx
(l)
n | ≤

(
T∑

n=1

h2
n

)1/2( T∑

n=1

(
x
(l)
n

)2
)1/2

, (3.23)

we have

M ≥ J(x(l)) =
1

δ + 1

T∑

n=1

[
pn
(
Δx

(l)
n−1
)δ+1

]
− 1
δ + 1

T∑

n=1

qn
(
x
(l)
n

)δ+1
+

T∑

n=1

hnx
(l)
n

≥ − 1
δ + 1

T∑

n=1

qn
(
x
(l)
n

)δ+1 −
T∑

n=1

∣
∣hnx

(l)
n

∣
∣

≥ − 1
δ + 1

qmax

T∑

n=1

(
x
(l)
n

)δ+1 −
(

T∑

n=1

h2
n

)1/2( T∑

n=1

(
x
(l)
n

)2
)1/2

= − qmax

δ + 1
∥∥x(l)∥∥δ+1

δ+1 −
(

T∑

n=1

h2
n

)1/2
∥∥x(l)∥∥

≥ − qmax

δ + 1
cδ+11

∥∥x(l)∥∥δ+1 −
(

T∑

n=1

h2
n

)1/2
∥∥x(l)∥∥.

(3.24)

By δ + 1 > 1, the above inequality implies that {x(l)} is a bounded sequence in ET . Thus {x(l)}
possesses a convergent subsequence, and the proof of Lemma 3.4 is complete. Now we prove
Theorem 3.3 by the saddle point theorem.
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Proof of Theorem 3.3. For any w = (z, z, . . . , z)T ∈ W, we have

J(w) = − 1
δ + 1

T∑

n=1

qnz
δ+1 +

T∑

n=1

hnz. (3.25)

Take z = (
∑ T

n=1hn/
∑ T

n=1qn)
1/δ

and ρ = ‖w‖ = T1/2|∑ T
n=1hn/

∑ T
n=1qn|

1/δ
, then

J(w) =
δ

δ + 1

(∑ T
n=1hn

)(δ+1)/δ

∣∣∣
∑ T

n=1qn
∣∣∣
1/δ

. (3.26)

Set

σ =
δ

δ + 1

(∑ T
n=1hn

)(δ+1)/δ

∣∣∣
∑ T

n=1qn
∣∣∣
1/δ

, (3.27)

then we have

J(w) = σ, ∀w ∈ ∂Bρ

⋂
Y. (3.28)

On the other hand, for any x ∈ Y, we have

J(x) =
1

δ + 1

T∑

n=1

pn
(
Δxn−1

)δ+1 − 1
δ + 1

T∑

n=1

qnx
δ+1
n +

T∑

n=1

hnxn

≥ pmin

δ + 1

T∑

n=1

(
Δxn−1

)δ+1 − qmax

δ + 1

T∑

n=1

xδ+1
n −

T∑

n=1

|hnxn|

≥ pmin

δ + 1
cδ+11

[
T∑

n=1

(Δxn−1)
2

](δ+1)/2
− qmax

δ + 1
‖x‖δ+1δ+1 −

(
T∑

n=1

h2
n

)1/2

‖x‖

=
pmin

δ + 1
cδ+11 (xTAx)(δ+1)/2 − qmax

δ + 1
‖x‖δ+1δ+1 −

T∑

n=1

|hnxn|,

(3.29)

where xT = (x1, x2, . . . , xT).
Clearly, λ1 = 0 is an eigenvalue of the matrix A and ξ = (v, v, . . . , v)T ∈ ET is an eigen-

vector of A corresponding to 0, where v /= 0, v ∈ R. Let λ2, λ3, . . . , λT be the other eigenvalues
of A. By matrix theory, we have λj > 0 for all j ∈ Z(2, T). Without loss of generality, we may
assume that 0 = λ1 < λ2 ≤ · · · ≤ λT , then for any x ∈ Y,

J(x) ≥ pmin

δ + 1
cδ+11 λ

(δ+1)/2
2 ‖x‖δ+1 − qmax

δ + 1
‖x‖δ+1δ+1 −

(
T∑

n=1

h2
n

)1/2

‖x‖

=
[
pmin

δ + 1
cδ+11 λ

(δ+1)/2
2 − qmax

δ + 1
cδ+11

]
‖x‖δ+1 −

(
T∑

n=1

h2
n

)1/2

‖x‖

≥ − δ

δ + 1

(
T∑

n=1

h2
n

)1/2(
(∑ T

n=1h
2
n

)1/2

pmin c
δ+1
1 λ

(δ+1)/2
2 − qmax c

δ+1
1

)1/δ

,

(3.30)
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as one finds by minimizing with respect to ‖x‖. That is

J(x) ≥ − δ

δ + 1

(∑ T
n=1h

2
n

)(δ+1)/2δ
(1/c1)

(δ+1)/δ

(
pminλ

(δ+1)/2
2 − qmax

)1/δ . (3.31)

Set

w0 = − δ

δ + 1

(∑ T
n=1h

2
n

)(δ+1)/2δ
(1/c1)

(δ+1)/δ

(
pminλ

(δ+1)/2
2 − qmax

)1/δ , (3.32)

then by (G2), we have

J(x) ≥ w0 > σ, ∀x ∈ Y. (3.33)

This implies that the assumption of saddle point theorem is satisfied. Thus there exists at least
one critical point of J on ET , and the proof is complete. When qn > 0, we have the following
result.

Theorem 3.5. Assume that the following conditions are satisfied:

(G3) 2δ+1[pn + pn+1] < qn, qn > 0 for all n ∈ Z(1, T);

(G4) (
∑ T

n=1h
2
n)

(δ+1)/2δ
(
∑ T

n=1qn)
1/δ

Cδ+1
1 < −A0(

∑ T
n=1hn)

(δ+1)/δ
,

where A0 = maxn∈Z(1,T) [2
δ+1(pn + pn+1) − qn].

Then (3.21) possesses at least one T -periodic solution.

Before proving Theorem 3.5, first, we prove the following result.

Lemma 3.6. Assume that (G3) holds, then J(x) defined by (3.22) satisfies P-S condition.

Proof. For any sequence {x(l)} ∈ ET with J(x(l)) being bounded and J ′(x(l)) → 0 as
n → +∞, there exists a positive constantM such that |J(x(l))| ≤ M.

Thus

−M ≤ J
(
x(l)) ≤ 1

δ + 1

T∑

n=1

pn
(
Δx

(l)
n−1
)δ+1 − 1

δ + 1

T∑

n=1

qn
(
x
(l)
n

)δ+1 +
T∑

n=1

hnx
(l)
n

≤ 2δ+1

δ + 1

T∑

n=1

(
pn + pn+1

)(
x
(l)
n

)δ+1 − 1
δ + 1

T∑

n=1

qn
(
x
(l)
n

)δ+1 +
T∑

n=1

∣∣hnx
(l)
n

∣∣

≤ 1
δ + 1

T∑

n=1

[
2δ+1

(
pn + pn+1

) − qn
](
x
(l)
n

)δ+1 +

(
T∑

n=1

h2
n

)1/2
∥∥x(l)∥∥

≤ 1
δ + 1

A0
∥∥x(l)∥∥δ+1

δ+1 +

(
T∑

n=1

h2
n

)1/2
∥∥x(l)∥∥

≤ A0

δ + 1
cδ+12

∥∥x(l)∥∥δ+1 +

(
T∑

n=1

h2
n

)1/2
∥∥x(l)∥∥.

(3.34)
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That is,

−cδ+12
A0

δ + 1
∥
∥x(l)∥∥δ+1 −

(
T∑

n=1

h2
n

)1/2
∥
∥x(l)∥∥ ≤ M, ∀n ∈ N. (3.35)

By δ + 1 > 1, the above inequality implies that {x(l)} is a bounded sequence in ET . Thus {x(l)}
possesses convergent subsequences, and the proof is complete.

Proof of Theorem 3.5. For any w = (z, z, . . . , z)T ∈ W, we have

J(ω) = − 1
δ + 1

T∑

n=1

qnz
δ+1 +

T∑

n=1

hnz. (3.36)

Take z = (
∑ T

n=1hn/
∑ T

n=1qn), ρ = ‖w‖ = T1/2|∑ T
n=1hn/

∑ T
n=1|

1/δ
, then

J(w) =
δ

δ + 1

(∑ T
n=1hn

)(δ+1)/δ

∣
∣
∣
∑ T

n=1qn
∣
∣
∣
1/δ

, ∀w ∈ ∂Bρ

⋂
W. (3.37)

Set

σ =
δ

δ + 1

(∑ T
n=1hn

)(δ+1)/δ

|∑ T
n=1qn|1/δ

, (3.38)

then J(w) = σ for all w ∈ ∂Bρ
⋂
W. On the other hand, for any x ∈ Y,we have

J(x) ≤ 1
δ + 1

T∑

n=1

[2δ+1(pn + pn+1) − qn]xδ+1
n +

(
T∑

n=1

h2
n

)1/2

‖x‖

≤ A0

δ + 1
cδ+12 ‖x‖δ+1 +

(
T∑

n=1

h2
n

)1/2

‖x‖

≤ − δ

δ + 1

(
1
A0

)1/δ( 1
c2

)(δ+1)/δ
(

T∑

n=1

h2
n

)(δ+1)/2δ

.

(3.39)

Set w0 = −δ/(δ + 1)(1/A0)
1/δ(1/c2)

(δ+1)/δ(
∑ T

n=1h
2
n)

(δ+1)/2δ
, then J(x) ≤ w0 < σ. Thus −J(x)

satisfies the assumption of saddle point theorem, that is, there exists at least one critical point
of J on ET . This completes the proof of Theorem 3.5.
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