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From the integration of nonsymmetrical hyperboles, a one-parameter generalization of the
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suitable to generalize some probability density functions (pdfs). A very reliable rank distribution
can be conveniently described by the generalized exponential function. Finally, we turn the
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and Laplace pdf. Their cumulative functions and moments were also obtained analytically.
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1. Introduction

The convenience of generalizing the logarithmic function has attracted the attention of
researchers since long ago [1] and particularly in the last years [2–7]. In Physics, several
one-parameter generalizations of the logarithmic function have been proposed in different
contexts such as nonextensive statistical mechanics [8–13], relativistic statistical mechanics
[14, 15], and quantum group theory [16]. Also, more sophisticated such as two-parameter
[17] and three-parameter [18] generalizations have been proposed, each one including
previous situations as particular cases. Examples of the convenience of these generalizations
have been seen in different fields, for instance, psychophysics [19], neuroeconomics [20, 21],
econophysics [22, 23], complex networks [24, 25], population dynamics [26, 27], and so forth.

Here, our main objective is to show that the generalized stretched exponential
function, written as probability density function (pdf), is suitable to generalize a wide range
of one- and two-tail pdfs. This approach, which stresses the emergence of several probability
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distributions, is motivated by a mathematical curiosity. In Section 2, we show that from the
integration of nonsymmetrical hyperboles, one obtains a one-parameter generalization of the
logarithmic function, which we call q̃-logarithm. This generalization coincides with the one
obtained in the context of nonextensive thermostatistics [9, 10]. Inverting the q̃-logarithm,
one obtains the generalized exponential (q̃-exponential) function. Some properties of these
generalized functions are presented. In Section 3, the very reliable rank distribution obtained
by Naumis and Cocho [28] is conveniently described by the q̃-exponential function, which
permits us to detect the effect of finite sample size in the description. In Section 4, we first
show that the Zipf-Mandelbrot function, which is a fingerprint of complex systems, can be
conveniently written in terms of the q̃-exponential. Raising the q̃-exponential argument to
a given power, one obtains a function that generalizes the stretched exponential function.
Its generating differential equation is then presented. In Section 5, we consider the pdfs for
continuous variables. First we consider the one-tail stretched exponential generalization and
obtain analytically its cumulative function and moments. One obtains the generalized error
function as a particular case and the Zipf-Mandelbrot pdf as another. Next, we consider
the two-tail generalized stretched exponential pdf and obtain analytically its cumulative
function and moments. One has the generalized Gaussian and the generalized Laplace pdf as
particular cases. The characteristic function is analytically calculated. Our final remarks are
drawn in Section 6.

2. The q̃-Generalized Functions

From the integration of nonsymmetrical hyperboles, we obtain a one-parameter generaliza-
tion of the logarithmic function, which coincides with the one obtained in the context of
nonextensive thermostatistics [9, 10]. Inverting this function, one obtains the generalized
exponential function. Some properties of these generalized functions are presented.

2.1. q̃-Generalized Logarithm Function

In the one-parameter generalization we address here, the q̃-logarithm function lnq̃(x) is
defined as the value of the area underneath 1/t1−q̃, in the interval t ∈ [1, x] [29]

lnq̃(x) =
∫x

1

dt
t1−q̃

= lim
q̃′ → q̃

xq̃
′ − 1
q̃′

, (2.1)

which is defined for all real values of q̃, but only for positive x. This is exactly the same
function obtained from the nonextensive statistical mechanics context [8, 9], but here, only
simple geometrical arguments have been used in the derivation.

The usual natural logarithm (lnx) is retrieved for q̃ = 0 and a linear function for q̃ = 1.
Scaling and deformation of the variable x are given by lnq̃(αxβ) = βlnβq̃(α1/βx), so that for
β = −1, one has lnq̃(α/x) = −ln−q̃(x/α) and for the particular case α = 1, lnq̃(x−1) = −ln−q̃(x).
Notice that using q̃ instead of q = 1 − q̃, as used in [8, 9], makes simpler to handle the scaling
and deformation operations.

2.2. q̃-Generalized Exponential Function

The q̃-exponential function eq̃(x) is defined as the t-value, in such a way that the area
underneath fq̃(t) = 1/t1−q̃, in the interval t ∈ [1, eq̃(x)], is x. This is the inverse of the
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q̃-logarithm function eq̃[lnq̃(x)] = x = lnq̃[eq̃(x)] and it is given by

eq̃(x) =

⎧

⎪

⎨

⎪

⎩

0, for q̃x < −1,

lim
q̃′ → q̃

(

1 + q̃′x
)1/q̃′

, for q̃x ≥ −1.
(2.2)

Notice that (1 + q̃x)1/q̃ is real only if q̃x ≥ −1.
This is a nonnegative function (eq̃(x) ≥ 0, for all q̃ and x) and eq̃(0) = 1, independently

of the q̃ value. For q̃ = 0, one retrieves the usual exponential function ex and for q̃ = 1, a linear
function. Notice that taking the surface underneath 1/t1−q̃ to be unitary, one generalizes the
Euler’s number: eq̃ = eq̃(1) = (1 + q̃)1/q̃. An interesting property is that [eq̃(x)]

a = eq̃/a(ax),
meaning that the q̃-exponential argument scaling corresponds to a power of a different q̃-
exponential function. For a = −1, one has that e−q̃(−x) = 1/eq̃(x).

The derivative of the q̃-exponential function with respect to x is deq̃(kx)/dx =
k [eq̃(kx)]

1−q̃ = k eq̃/(1−q̃)[(1 − q̃)kx], so that it is the solution of the following nonlinear first-
order differential equation: dy(x)/dx = ky1−q̃(x), which is a particular case of Bernoulli’s
differential equation: [d/dx + p(x)]y(x) = q(x)y1−q̃(x), with p(x) = 0 and q(x) = k. Notice
that k has the dimension of yq̃ over the dimension of x. This means that it sets up a scale
(inversion dimension of x) to the problem only if q̃ = 0. One important application of the
above differential equation concerns reaction kinetics [30].

3. Beta-Like Distribution

Let us turn our attention to discrete random variables, the rank distribution in particular.
We show that the rank distribution obtained by Naumis and Cocho [28] is conveniently
described by the q̃-exponential function. In this way, we are able to quantify the finite size
effects. This rank distribution is very reliable since it has an underlying microscopic model
and has been validated by a wide range of experimental data [28].

To simultaneously fit the beginning, body and tail of experimental rank distributions
of complex systems, Naumis and Cocho [28] consider N independent subsystems with a
large number of internal states. The rank r of a system property dependent on the internal
states of the subsystems decays as a two-free-parameter beta-like function: f(r) = K[1 −
r/(R + 1)]βr−α, where K = 1/

∑N
r=1[1 − r/(R + 1)]βr−α, with R ≤ N being the maximal value

of r, K is the normalization factor, and the two free parameters are α and β. As noticed by the
authors, if R � 1, then K ≈ 1/B(1 − α, 1 + β), where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta
function [31] and Γ(x) =

∫∞
0 dt t

x−1e−t, x > 0 is the gamma function [31].
Finite size effects are described by factor [1− r/(R+ 1)]β ≈ 1− βr/R ≈ e−r/r0 , for R� r

with r0 = R/β. In this way, we see that the rank distribution of f(r) is in fact a generalization
of the standard technique of multiplying the power-law (r−α) by an exponential cutoff: f(r) ∝
r−αe−r/r0 .

If one writes [1 − r/(R + 1)]β = [1 − (1/β)βr/(R + 1)]β = e1/β[−βr/(R + 1)] then

f(r) =
K

rα
e1/β

[ −βr
R + 1

]

=
K

rα

[

e1

( −r
R + 1

)]β

, (3.1)
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meaning that the q̃-exponential function can properly take into account finite size effects. The
exponential cutoff is retrieved where R and β grow, but R must grow faster than β, to have
R → ∞ and β → ∞, with β/R → 0.

4. Special Functions and Processes

In what follows, we first show that the Zipf-Mandelbrot function, which is a fingerprint of
complex systems, can be written in terms of the q̃-exponential. Next, raising the q̃-exponential
argument to a given power, one obtains a function that generalizes the stretched exponential
function. Finally, we obtain the process (differential equation) of which the generalized
stretched exponential is the solution.

4.1. Zipf-Mandelbrot Function

The envelope of a typical rank distribution of complex systems can be well described by the
Zipf-Mandelbrot function [32], which may be written in terms of q̃-exponential function:

Pq̃,α,A(x) =
d

(c + x)γ
=

A

eq̃(x/α)
= Ae−q̃

(−x
α

)

, (4.1)

with q̃ = 1/γ , α = c/γ , and A = d/cγ .
We remark that (4.1) has another interesting application in time-dependent lumi-

nescence spectroscopy. In this case the relaxation processes are known as Becquerel decay
function [33].

4.2. Generalized Stretched Exponential Function

A deformation in the argument of (4.1) leads to the generalized stretched exponential
function

Pq̃,α,β,A(x) = Pq̃,α,A
(

x1/β
)

=
d

(

d + x1/β
)γ = Ae−q̃

(

−x1/β

α

)

. (4.2)

The usual stretched exponential function, also known as the Kohlrausch function [34–
36], is obtained from (4.2) in the limit q̃ → 0. Although the (usual) stretched exponential
function has been used to describe relaxation processes in time-dependent luminescence
spectroscopy [36], a generalization of the form eβ/ae−e1/β(x/α)/a seems to be more convenient
to fit experimetal data [37]. In this case we stress the q̃-exponential figures as the argument
of the usual exponential function.

The stretched exponential function can also be obtained as the solution of the following
differential equation: dy(x)/dx = −x1/β−1y(x)/(αβ), which can be written in terms of the
logarithmic function (relative variation) as d lny(x)/dx = −x1/β−1/(αβ). If one replaces
the logarithmic function in the differential equation obtained above by the q̃-logarithm, one



Advances in Mathematical Physics 5

obtains

d ln−q̃y(x)
dx

= −x
1/β−1

αβ
, (4.3)

or equivalently

dy(x)
dx

= −x
1/β−1

αβ
y1+q̃(x), (4.4)

which is a particular case of Bernoulli’s equation: dy(x)/dx + p(x)y(x) = q(x)y1+q̃(x), with
p(x) = 0 and q(x) = −x1/β−1/(αβ) and which solution is precisely the generalized stretched
exponential function of (4.2).

5. Probability Functions

Considering the factor A > 0 and using the nonnegativeness of (4.2), we write the
generalization of the stretched exponential pdf and study its properties. We consider one-
and two-tail distributions and obtain some known pdfs (generalized Gaussian) and new ones
(generalized error function and generalized Laplace pdf) as particular cases.

5.1. One-Tail PDF

If the considered independent variable x is constrained to nonnegative (or eventually
nonpositive) values, then one uses the one-tail pdf. We consider the generalization of the
stretched exponential pdf and analytically obtain its cumulative function and moments.
From this pdf, one obtains the generalized error function as a particular case and the Zipf-
Mandelbrot pdf as another.

The normalization factor A of (4.2) is

1
A

=
∫∞

0
dt e−q̃

(

−t1/β
α

)

= β
(

α

q̃

)β

B
(

β,
1
q̃
− β
)

. (5.1)

The integral of (5.1) does not diverge only if 0 < q̃ < 1, 0 < β < 1/q̃, α > 0, and one has
the generalized stretched exponential pdf :

P
(1)
q̃,α,β

(x) =

(

q̃/α
)β

βB
(

β, 1/q̃ − β)e−q̃
[

−x
1/β

α

]

. (5.2)

For our purposes, it is more convenient to write a = (αβ)β > 0:

P
(1)
q̃,a,β

(x) =

(

q̃β
)β

aβB
(

β, 1/q̃ − β)e−q̃
[

−β
(x

a

)1/β
]

, (5.3)

which is depicted in Figures 1 and 2.
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Figure 1: Behavior of (5.3) as a function of (a) x and q̃, with β = 1/2 and a = 1, (b) x and β, with q̃ = 1/5
and a = 1, (c) q̃ and β, with x = 1 and a = 1.

As q̃ → 0, B(β, 1/q̃−β) ≈ q̃βΓ(β), since 1/q̃ � β, one retrieves the stretched exponential
function P (1)

0,a,β(x) = β
βe−β(x/a)

1/β
/[aβΓ(β)] or P (1)

0,α,β(x) = e
−x1/β/α/[αββΓ(β)].

The cumulative function of (5.3) is

F
(1)
q̃,a,β

(x) =
∫x

0
dt P

(1)
q̃,a,β

(t) =
x

A
2F1

(

β,
1
q

; β + 1;− q̃x
1/β

α

)

, (5.4)

where

2F1(a, b; c;x) =
∞
∑

n=0

(a)n(b)n
(c)n

xn

n!
(5.5)
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Figure 2: Behavior of (5.3) as a function of (a) x with β = 1/2 and a = 1 and for several q̃ values (projection
of Figure 1(a)), (b) x with q̃ = 1/5 and a = 1 and for several β values (projection of Figure 1(b)).

is the hypergeometric function [31] and

(a)n = a(a + 1)(a + 2) · · · (a + n − 1) =
(a + n − 1)!
(a − 1)!

=
Γ(a + n)
Γ(a)

(5.6)

is the Pochhammer symbol.
The moments of x are

〈xn〉q̃,a,β =
[

a

(q̃β)β

]n
B
[

(n + 1)β, 1/q̃ − (n + 1)β
]

B
(

β, 1/q̃ − β) , (5.7)

where one sees that they are finite only if q̃ < 1/[(n + 1)β].
If q̃ < 1/(3β), the mean value and variance are finite and, respectively, given by

〈x〉q̃,a,β =
(

α

q̃

)β B
(

2β, 1/q̃ − 2β
)

B
(

β, 1/q̃ − β) ,

σ2
q̃,a,β

〈x〉2
q̃,a,β

=
B
(

3β, 1/q̃ − 3β
)

B
(

β, 1/q̃ − β)

B2(2β, 1/q̃ − 2β
)

− 1.

(5.8)

Notice that the ratio σ2
q̃,a,β

/〈x〉2
q̃,a,β depends only on β and q̃, but not on a.

Particular values of β lead to a q̃-generalization of the error function and to the Zipf-
Mandelbrot pdf.
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5.1.1. Generalized Error Function

To generalize the error function, consider β = 1/2 and a = ββ (or α = 1) in (5.4) and one has

erfq̃(x) = F
(1)
q̃,1/

√
2,1/2

(x) =
2
√

q̃

B
(

1/2, 1/q̃ − 1/2
)

∫x

0
dt e−q̃

(

−t2
)

. (5.9)

As q̃ → 0, B(1/2, 1/q̃ − 1/2) =
√

q̃π and one retrieves the standard error function: erf0(x) =

erf(x) = (2/
√
π)
∫x

0dt e
−t2 .

An alternative way to obtain (5.9) can be found in [38].

5.1.2. Zipf-Mandelbrot PDF

For β = 1 in (5.2), one obtains the Zipf-Mandelbrot’s pdf

P
(1)
q̃,α,1(x) =

1 − q̃
α

e−q̃

(−x
α

)

=
1 − q̃
α

1
(

1 + q̃x/α
)1/q̃

, (5.10)

where the mean value and the variance are

〈x〉q̃,α,1 =
α

1 − 2q̃
,

σ2
q̃,α,1

〈x〉2
q̃,α,1

=
q̃ − 1

3q̃ − 1
,

(5.11)

which is finite for 0 ≤ q̃ < 1/3 and, from (5.4), one obtains its cumulative function:

F
(1)
q̃,a,1(x) = 1 − 1

[

eq̃(x/a)
]1−q̃ = 1 − ˜F(1)

q̃,a,1(x), (5.12)

where the upper-tail distribution is simply given by

˜Fq̃,a,1(x) =
∫∞

x

dt P
(1)
q̃,a,1(t) =

(

1 + q̃
x

a

)

e−q̃

(−x
a

)

=
[

e−q̃

(−x
a

)]1−q̃
=
[

eq̃
(x

a

)]q̃−1
,

(5.13)

which is more suitable for fitting the model to real data than the pdf (5.10) itself.
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5.2. Two-Tail PDF

If the domain of the considered independent variable is not bounded, it is interesting to
consider its absolute value |x| in (5.3) and one has a symmetric pdf about the line x = 0.
Notice that in this case, the normalization factor must be halved since the domain has been
doubled in a symmetrical way, the generalized stretched exponential pdf is then

P
(2)
q̃,a,β

(x) =

(

q̃β
)β

2aβB
(

β, 1/q̃ − β)e−q̃
[

−β
( |x|
a

)1/β
]

, (5.14)

which is a convenient function to use in wavelets [39]. Its cumulative function is

F
(2)
q̃,a,β

(x) =
1
2

[

1 + sgn (x)F(1)
q̃,a,β

(|x|)
]

, (5.15)

where F(1)
q̃,a,β

(x) is given by (5.4).
On one hand, due to its symmetry around x = 0, the odd moments of this pdf vanish

〈x2n+1〉 = 0, with n = 0, 1, 2, . . . . On the other hand, the even moments 〈x2n〉 are finite only if
q̃ < 1/[(2n + 1)β]:

〈

x2n
〉

q̃,a,β
=

[

a
(

q̃β
)β

]2n
B
[

(1 + 2n)β, 1/q̃ − (1 + 2n)β
]

B
(

β, 1/q̃ − β) . (5.16)

In the following, we retrieve the generalized Gaussian as a particular case of (5.14).
Also, as a new result, we propose to consider another particular case of (5.14) to generalize the
Laplacian pdf. The characteristic function of both particular cases is analytically calculated.

5.2.1. Generalized Gaussian

An interesting particular case of the two-tail generalized stretched exponential function (5.14)
is when β = 1/2, which leads to the q̃-Gaussian [40]

Gq̃,a(x) =

√

q̃ Γ
(

1/q̃
)

Γ
(

1/q̃ − 1/2
)

e−q̃
[

−(x/a)2/2
]

√
2πa2

. (5.17)

Due to symmetry, all odd moments vanish. Even moments are given by (5.16)

〈

x2n
〉

q̃,a,1/2
=

(

2a2

q̃

)n
Γ(1/2 + n)Γ

(

1/q̃ − 1/2 − n)√
π Γ
(

1/q̃ − 1/2
) , (5.18)

and the variance is finite only for q̃ < 2/3

σ2
q̃,a =

〈

x2
〉

q̃,a
=

2a2

2 − 3q̃
. (5.19)
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Using that for a� b, Γ(a+b)/Γ(a) = ab, when q̃ → 0 in (5.17), Γ(1/q̃)/Γ(1/q̃−1/2) =
1/q̃1/2 and one has a Guassian, with variance a2: G0,a(x) = e−(x/a)

2/2/
√

2πa2, as a particular
case. Another particular case is when q̃ = 1 and one retrieves the Lorentzian (Cauchy pdf)
G1,a(x) = 1/{πa√2[1 + (x/a)2/2]}.

The characteristic function of (5.17) has an analytical closed form

pq̃,a,1/2(k) =
〈

eıkx
〉

=
∫∞

−∞
dxGq̃,a(x)eıkx

=

⎛

⎜

⎝

ka
√

2/q̃

2

⎞

⎟

⎠

1/q̃−1/2
2K1/q̃−1/2

(

ka
√

2/q̃
)

Γ
(

1/q̃ − 1/2
) ,

(5.20)

where Kν(z) is the K-modified Bessel function [31]:

Kν(z) =
2νΓ(ν + 1/2)√

πzν+1

∫∞

0

dt cos t
[

1 + (t/z)2
]ν+1/2

. (5.21)

For the Gaussian one has also a Gaussian p0,a(k) = e−a
2k2/2 but for the Lorentzian, one has the

Laplace function p1,a = e−
√

2a|k|.

5.2.2. Generalized Laplace PDF

For β = 1 and q̃ = 0, (5.14) leads to the Laplace pdf P (2)
0,a,1(x) = e

−|x|/a/(2a). For arbitrary q̃, one
has the generalized Laplace pdf

Lq̃,a(x) = P
(2)
q̃,a,1(x) =

1 − q̃
2a

e−q̃

(−|x|
a

)

, (5.22)

and its cumulative function is

F
(2)
q̃,a,1(x) =

1
2
˜Pq̃,a,1(|x|), (5.23)

where ˜Pq̃,a,1(x) is given by (5.10).
The odd moments of (5.22) vanish and the even ones are finite if q̃ < 1/(1 + 2n)

〈

x2n
〉

q̃,a,1
=

1
q̃ − 1

(

a

q̃

)2n

B
(

1 + 2n,
1
q̃
− 2n − 1

)

. (5.24)



Advances in Mathematical Physics 11

Its characteristic function has an analytical closed form

pq̃,a,1(k) =
∫∞

−∞
dxLq̃,a(x)eıkx =

1 − q̃
a

∫∞

0
dx cos(kx)e−q̃

(

−x
a

)

=
1 − q̃
a

∫∞

0
dx

cos(kx)
(

1 + q̃x/a
)1/q̃

=
π t

1/q̃−1
0 sin

(

t0 + π/
(

2q̃
))

sin
(

π/q̃
)

Γ
(

1/q̃ − 1
) + 1F2

(

1; 1 − 1
2q̃
,

3
2
− 1

2q̃
;
−t20
4

)

,

(5.25)

where t0 = ka/q̃ and 1F2(a; b1, b2; z) =
∑∞

n=0{(a)n/[(b1)n(b2)n]}xn/n! is the hypergeometric
function [31], with (a)n being the Pochhammer symbol.

6. Conclusion

We have shown that the q̃-generalization of the exponential is suitable to generalize the
stretched exponential function. The q̃-generalized stretched exponential function has the
generalized error function, the generalized Laplace pdf and the already known generalized
Gaussian as special cases. Further, we have used the q̃-exponential to write the very reliable
rank distribution obtained by Naumis and Cocho. Since these distributions are the solution
of differential equations that describe the complex systems, the q̃-generalization brings many
different systems to be described by the same underlying process.
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