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1. Introduction

The need for a coherent theory of physics and mathematics together arises from consid-
erations of the basic relationship between physics and mathematics. Why is mathematics
relevant to physics [1–3]? One way to see the problem is based on the widely held Platonic
view of mathematics. If mathematical systems have an abstract ideal existence outside of
space and time and physics describes the property of systems in space and time, then why
should the two be related at all? Yet it is clear that they are very closely related.

The problem of the relationship between the foundations of mathematics and physics
is not new. Some recent work on the subject is described in [4–6] and in [7–9]. In particular
the work of Tegmark [8] is is quite explicit in that it suggests that the physical universe is a
mathematical universe.
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Another approach to this problem is to work towards construction of a theory that
treats physics and mathematics together as one coherent whole [10, 11]. Such a theory would
be expected to show why mathematics is so important to physics by describing details of the
relation between mathematical and physical systems.

In this paper a possible approach to a coherent theory of physics and mathematics
is described. The approach is based on the field of reference frames that follows from the
properties of quantum mechanical representations of real and complex numbers [12, 13].

The use, here, of reference frames is similar in many ways to that used by different
workers in areas of physics [14–19]. In general, a reference frame provides a background or
basis for descriptions of systems. In special relativity, reference frames for describing physical
dynamics are based on choices of inertial coordinate systems. In quantum cryptography,
polarization directions are used to define reference frames for sending and receiving
messages encoded in qubit string states.

The use of reference frames here differs from those noted above in that the frames
are not based on a preexisting space and time as a background. Instead they are based on
a mathematical parameterization of quantum theory representations of real and complex
numbers. In particular, each frame Fj,k,g in the field is based on a quantum theory
representation, Rj,k,g , Cj,k,g , of the real and complex numbers where Rj,k,g can be viewed as a
set of equivalence classes of Cauchy sequences of quantum states of qukit strings. Cj,k,g is a
set of pairs of these equivalence classes. The parameter k ≥ 2 is the base (k = 2 for qubits),
g denotes a basis choice for the states of qukit strings that are values of rational numbers,
and j denotes an iteration stage. The existence of iterations follows from the observation that
the representations of real and complex numbers are based on qukit string states. These are
elements of a Hilbert space that is itself defined as a vector space over a field of complex
numbers. Consequently one can use the real and complex numbers constructed in a stage j
frame as the base of a stage j + 1 frame.

Each reference frame contains a considerable number of mathematical structures.
Besides Rj,k,g and Cj,k,g , a frame Fj,k,g contains representations of all mathematical systems
that can be described as structures based on Rj,k,g and Cj,k,g . However frames do not contain
physical theories as mathematical structures based on Rj,k,g , Cj,k,g . The reason is that the
frames do not contain any representations of space and time.

The goal of this paper is to take a first step in remedying this defect by expansion of
the domain of each frame to include discrete space and time lattices. The lattices, Lj,k,L,m, in a
frame, Fj,k,g , are such that the number of points in each dimension is given by kL, the spacing
Δ = k−m and m = 0, 1, . . . , L. For each lattice, L and m are fixed with L being an arbitrary
nonnegative integer. It follows that each dimension component of the location of each point
in a lattice is a rational number expressible as a finite string of base k digits.

Representations of physical systems of different types are also present in each frame.
However, the emphasis here is on strings of qukits, Sj,k′,L′,m′ , present in each frame. These
strings are considered to be hybrid systems in that they are both physical systems and
mathematical systems. As mathematical systems, the quantum states of each string, in some
basis, represent a set of rational numbers. As physical systems the motion of strings in a
frame is described relative to a space and time lattice in the frame. This dual role is somewhat
similar to the concept that information is physical [20].

Considerable space in the paper is devoted to how observers in a stage j − 1 (parent)
frame view the contents of a stage j frame. For an observer, Oj, in a frame Fj,k,g the numbers
in the real and complex number base of the frame are abstract and have no structure. The
only requirement is that they satisfy the set of axioms for real or complex number systems.



Advances in Mathematical Physics 3

Points of lattices Lj,k,L,m in the frame are also regarded as abstract and without structure. The
only requirement is that the lattices satisfy some relevant geometric axioms.

The view of the contents of a stage j frame as seen by an observer , Oj−1, in a stage j −1
frame, Fj−1,k′,g ′ , is quite different. Elements of the stage j frame that Oj sees as abstract and
with no structure are seen by Oj−1 to have structure. Numbers in Rj,k,g are seen by Oj−1 to be
equivalence classes of Cauchy sequences of states of stage j − 1 hybrid systems. Space points
of stage j lattices with D space and one time dimension are seen in a stage j − 1 frame to
be D tuples of hybrid systems with the location of each point given by a state of the D tuple.
Time points are seen to be hybrid systems whose states correspond to the possible lattice time
values.

All this and more is discussed in the rest of the paper. The next section is a brief
summary of quantum theory representations and the resulting frame fields [12, 13]. Section 3
describes a possible approach to a coherent theory of physics and mathematics as the
inclusion of space and time lattices in each frame of the frame field. Properties of the lattices
in the frames are described. Qukit strings as hybrid systems are discussed in the next section.
Their mathematical properties as rational number systems with states as values of rational
numbers are described. Also included is a general Hamiltonian description of the rational
number states as energy eigenvalues and a Schrödinger equation description of the dynamics
of these systems.

Section 5 describes frame entities as viewed from a parent frame. Included is a
description of real and complex numbers, quantum states and Hilbert spaces, and space and
time lattices. Section 6 discusses in more detail a stage j − 1 views of stage j lattice points and
locations as tuples of hybrid systems and point locations as states of the tuples. Dynamics of
these tuples in stage j − 1 is briefly described as is the parent frame view of the dynamics of
physical systems in general.

The last section is a discussion of several points. The most important one is that frame
field description given here leads to a field of different descriptions of the physical universe,
one for each frame, whereas there is just one. This leads to the need to find some way to
merge or collapse the frame field to correspond to the accepted view of the physical universe.
This is discussed in the section as are some other points.

Whatever one thinks of the ideas and systems described in this work, it is good to
keep the following points in mind. One point is that the existence of the reference frame
field is based on properties of states of qukit string systems representing values of rational
numbers. However the presence of a frame field is more general in that it is not limited to
states of qukit strings. Reference frame fields arise for any quantum representation of rational
numbers where the values of the rational numbers, as states of some system, are elements of
a vector space over the field of complex numbers.

Another point is that the three-dimensional reference frame field described here exists
only for quantum theory representations of the natural numbers, the integers, and the rational
numbers. Neither the basis degree of freedom g nor the iteration stages, j, are present in
classical representations. This is the case even for classical representations based on base k
digit or kit strings. The reason is that states of digit strings are not elements of a vector space
over a complex number field.

Finally, although understandable, it is somewhat of a mystery why so much effort in
physics has gone into the description of various aspects of quantum geometry and space time
and so little into quantum representations of numbers. This is especially the case when one
considers that natural numbers integers, rational numbers, and probably real and complex
numbers are even more fundamental to physics than is geometry.
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2. Review: Quantum Theory Representations of
Numbers and Frame Fields

2.1. Quantum Theory Representations of Numbers

2.1.1. Representations of Natural Numbers, Integers, and Rational Numbers

In earlier work [12, 13] quantum theory representations of natural numbers (N), integers (I),
and rational numbers (Ra) were described by states of finite length qukit strings that include
one qubit. To keep the description as simple as possible, the strings are considered to be finite
sets of qukits and one qubit with the qukits and qubit parameterized by integer labels. The
natural ordering of the integers serves to order the set into a string.

This purely mathematical representation of qukit strings makes no use of physical
representation of qukit strings as extended systems in space and/or time. Physical
representations are described later on in Section 4 after the introduction of space and time
lattices into each frame of the frame field.

The qukit (qk) string states are given by |γ, s〉k,L,m,g where s is a 0, 1, . . . , k − 1-valued
function with domain 0, . . . , L−1, and γ = +,− denotes the sign. The string location of the sign
qubit is given bymwherem = 0, . . . , L. L is any nonnegative integer. This expresses the range
of possible locations of the sign qubit from one end of the string to the other. By convention
m = 0 has the sign qubit at the right end of the string, m = L at the left end. The qubit can
occupy the same integer location as a qukit. The reason for the subscript g will be clarified
later on.

A compact notation is used where the location m of the sign qubit is also the location
of the k−al point. As examples, the base 10 numbers 3720,−.0474,−12.71 are represented here
by |3720+〉, | − 0474〉, and |12 − 71〉, respectively.

Strings are characterized by the values of k, L,m. For each k, L, and m the string states
|γ, s〉k,L,m,g give a unified quantum theory representation of natural numbers and integers in
Nk,L, Ik,L, and Rak,L,m. For numbers in Nk.L, γ = +, m = 0; for numbers in Ik,L, m = 0, and
there are no restrictions for Rak,L,m. Here Rak,L,m is the set of rational numbers expressible
as lΔ where l is any integer whose absolute value is <kL and Δ = k−m. Ik,L = Rak,L,0 and
Nk,L is the set of nonnegative integers in Ik,L. The correspondence between the numbers lΔ
and the states |γ, s〉k,L,m,g is given by the observation that each s corresponds to an integer

l =
∑L−1

j=0 s(j)k
j . Also, as noted, m is the location of the k − al point measured from the right

end of the string.
Since one is dealing with quantum states of qukit strings, states with leading and

trailing 0s are included. In this case there are many states that are all arithmetically equal
even though they are orthogonal quantum mechanically. For example, |013 − 470〉=A|13 − 47〉
even though the two states are orthogonal.

The set of states so defined form a basis set that spans a Fock space Fk of states. A
Fock space is used because the basis set includes states of qk strings of different lengths.
(Representations of these states by use of qukit annihilation creation operators will not be
done here as it is not needed for this paper. Representations in terms of these operators for
different types of numbers are described in [12, 21]. Also see [22].) Linear superposition
states in the space have the form

ψ =
∑

L,m

∑

γ,s

cγ,s,L,m
∣
∣γ, s

〉
k,L,m,g . (2.1)
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The L and m sums are over all positive integers and from 0 to L, and the s sum is over all
functions with domain [0, L − 1].

As already noted, the states |γ, s〉k,L,m,g of qk strings are values of rational numbers.
Quantum mechanically they also represent a basis choice of states in the Fock space Fk.
However the choice of a basis is arbitrary in that there are an infinite number of possible
choices. Here the choice of a basis is parameterized by the variable g. Since choice of a basis
is equivalent to fixing a gauge, g is also a gauge fixing parameter.

One can also describe gauge and base transformation operators on these states. Gauge
transformations correspond to a basis change (g to g ′) and base transformations correspond
to a base change (k to k′). Details are given in [13].

2.1.2. Real and Complex Numbers

Quantum theory representations of real numbers are defined here as equivalence classes of
Cauchy sequences of states of finite qk strings that are values of rational numbers. Let ψ be a
function on the natural numbers such that for each nψ(n) is a basis state:

ψ(n) =
∣
∣γn, sn

〉
k,Ln,mn,g

. (2.2)

For each n the interval [0, Ln − 1] is the domain of sn.
The sequence ψ is a Cauchy sequence if it satisfies the Cauchy condition.

For each � there is a p where for all j, h > p,
∣
∣
∣
(∣
∣ψ

(
j
)
−A,k,gψ(h)

∣
∣
A,k,g

)〉

k,g
<A,k,g |+,−�〉k,g .

(2.3)

Here |(|ψ(j)−A,k,gψ(h)|A,k,g)〉k,g is the basis state that is the base k arithmetic absolute

value of the state resulting from the arithmetic subtraction of ψ(h) from ψ(j). The Cauchy
condition says that this state is arithmetically less than or equal to the state |+,−�〉k,g =
|+, 0[0,−�+1]1−�〉k,g for all j, h greater than some p. Here |+,−�〉 is a string state that represents
the number k−�. The subscripts A, k, g in the definition of the Cauchy condition indicate that
the operations are arithmetic and are defined for base k string states in the gauge g. They are
not the usual quantum theory operations.

The definition can be extended to sequences ψ of linear superpositions of basis states.
In this case one defines a probability Pj,h,� as a sum over all components of ψ(j) and ψ(h) that
satisfy the second line of (2.3). The state ψ is Cauchy if the probability Pψ = 1 where

Pψ = lim inf
�→∞

lim sup
p→∞

inf
j,h>p

Pj,h,� . (2.4)

Two sequences ψ and ψ ′ are equivalent, ψ ≡ ψ ′, if the sequence defined by the termwise
arithmetic difference of ψ and ψ ′ converges to 0. The specific condition for this is expressed by
(2.3) if one replaces ψ(h) with ψ ′(h). The relation ψ ≡ ψ ′ is used to define equivalence classes
of Cauchy sequences of qk string states. The set of these equivalence classes is a quantum
theory representation Rk,g of the real numbers.
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Quantum equivalence classes of Cauchy sequences of states are larger than classical
equivalence classes because each quantum equivalence class contains many sequences of
states that have no classical correspondent. However no new equivalence classes appear.
This is a consequence of the fact that each quantum equivalence class contains a basis-valued
sequence that corresponds to a classical sequence of finite base k digit strings.

One can also define a canonical representation of each equivalence class as a sequence
ψ(n) of basis states such that if m > n, then ψ(n) is an initial part of ψ(m). This is similar
to the usual classical canonical representation of an equivalence class of real numbers as an
infinite string of digits with a k − al point. The quantum representation would be an infinite
string of qukits with each qukit in one of k basis states.

Extension of the above to include quantum representations of complex numbers
is straightforward. One method represents complex rational numbers by pairs of states
of finite qk strings. This what is actually done in computations involving complex
numbers. The state components of the pair represent values of real and imaginary rational
numbers.

Cauchy sequences of these state pairs are defined by applying the Cauchy condition
separately to the component sequences of real rational number states and imaginary
rational number states. Two Cauchy sequences ψ and ψ ′ of state pairs are equivalent,
ψ ≡ ψ ′, if the termwise arithmetic differences of the real parts, Re ψ−A Re ψ ′, and of
the imaginary parts, Im ψ−A Im ψ ′ each converge to 0. The resulting set of equivalence
classes of Cauchy sequences is a quantum theory representation of the set of complex
numbers.

2.2. Fields of Iterated Reference Frames

Quantum theory representations of real and complex numbers differ from classical
representations in two important ways. One is the presence of the gauge freedom or basis
choice freedom. This is indicated by the g subscript in Rk,g, Ck,g .

The other difference is based on the observation that states of qukit strings are elements
of a Hilbert space or a Fock space. From a mathematical point of view these spaces are vector
spaces over the fields of real and complex numbers. It follows from what has been shown
that qk string states, as elements of a vector space over the field of real and complex numbers,
can be used to construct other representations of real and complex numbers. This suggests
the possibility of iteration of the construction described here as the quantum representations
of real and complex numbers can in turn be used as the base of Hilbert and Fock spaces for
a repeated construction. Here the iteration stage is another degree of freedom for the frame
field.

The third degree of freedom arises from the free choice of the base choice for the
humber representation. This choice, denoted by the k subscript, is common to both quantum
and classical representations.

These three degrees of freedom can be combined to describe a three-dimensional
reference frame field. Each reference frame Fj,k,g is based on a quantum representation
Rj,k,g , Cj,k,g of the real and complex numbers. The subscripts denote the iteration stage j, the
base k, and the gauge g. Each reference frame contains representations of Hilbert and Fock
spaces as mathematical structures over Rj,k,g , Cj,k,g .

Because the iteration degree of freedom is directed, it is useful to use genealogical
terms to describe the iteration stages. Frames that are ancestors to a given frame Fj,k,g occur
at stages j ′ where j ′ < j. Frames that are descendants occur at stages j ′ where j ′ > j.
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From a mathematical point of view there are several possibilities for the stages. The
frame fields can have a finite number of stages with both a common ancestor frame and a set
of terminal frames. The fields can also be one way infinite either with a common ancestor and
no terminal stage or with a terminal stage and no common ancestor, or they can be two way
infinite. They can also be cyclic. These last two cases have no common ancestor or terminal
frames.

Another way to illustrate the frame field structure is to show, schematically, frames
emanating from frames. Figure 1 illustrates a slice of the frame field for a fixed value of j.
Each point k′, g ′ in the k−g plane denotes a reference frame Fj+1,k′,g ′ at the next iteration stage
with Rj+1,k′,g ′ , Cj+1,k′,g ′ as its real and complex number base.

Three different viewpoints of the real and complex numbers as frame bases are of use
here. Rj,k,g and Cj,k,g are a view from outside the frame field that denotes the position of
the numbers with respect to the field degrees of freedom. To an observer inside Fj,k,g the
elements of Rj,k,g , Cj,k,g are seen as external, abstract, featureless elements. They have no
structure other than that which follows from the requirement that they satisfy the axioms
for real and complex numbers. This assumption is made because it is the view held, at least
implicitly by physicists. It also corresponds to how numbers are treated in physical theories.
The only properties of numbers relevant to theories are those derived from the appropriate
axioms.

An observer in a parent frame Fj−1,k′,g ′ sees the elements of Rj,k,g , Cj,k,g as having
structure. They are seen as equivalence classes of Cauchy sequences of states of finite qk
strings. This is in addition to their having properties derived from the relevant axiom sets.

3. A Possible Approach to a Coherent Theory of
Physics and Mathematics

The main consideration of this paper is the proposed use of the reference frame field as
a possible approach to a coherent theory of physics and mathematics. This ensures that
quantum theory representations of natural numbers, integers, rational numbers, and real and
complex numbers will play a basic role in the theory.

So far the reference frames contain mathematical systems. These include quantum
theory representations of numbers, qukit strings, and representations of other mathematical
systems as structures based on the different types of numbers. Physical theories and systems
are not present in the frames. The reason is that there are no representations of space and
time in the frames. These are needed for theories to describe the kinematics and dynamics of
systems moving in space and time.

This must be remedied if the frame field is to be an approach to a coherent theory.
One way to fix this is to expand the domains of the frames to include physical systems and
descriptions of their dynamics.

3.1. Space and Time Lattices in Reference Frames

A first step in this direction is to expand the domain of each frame in the field to include
discrete lattices of space and time. The reason for working with discrete instead of continuum
space and time will be noted later.

To be more specific, each frame Fj,k,g includes a setLj,k of space and time lattices. Each
lattice Lj,k,M,Δ in the set is such that the number M of points in each dimension is finite and
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Figure 1: Schematic illustration of frames coming from frame Fj,k,g . Each of the stage j + 1 frames is based
on quantum representations of real and complex numbers as equivalence classis of Cauchy sequences of
qukit string states in Fj,k,g . The distinct vertical lines in the k, g plane denote the discreteness of the integral
values of k ≥ 2. Only three of the infinitely many frames coming from Fj,k,g are shown. Here k denotes the
qukit base and g denotes a gauge or basis choice.

the spacing Δ of points is also finite. In this paper the number D of space dimensions in the
lattice will be arbitrary. To keep things simple, the number M of points and spacing Δ in each
of the D space dimensions and the time dimension will be assumed to be the same.

It should be noted that, to an observer in a frame, the points in each space and time
lattice in a frame are (emphasis on “are”) points of space and time relative to that frame. They
are not merely mathematical representations or descriptions of some external space and time.
In addition an observer in a frame sees the points of space and time lattices in the frame as
abstract, featureless points with no structure. The only requirement is that the lattices should
satisfy appropriate geometrical axioms.

A restriction on the lattices in frames is that the values of M and Δ for each space and
time lattice in the set Lj,k are given by

M = kL,

Δ = k−m.
(3.1)

Here L is an arbitrary nonnegative integer, m = 0, 1, . . . , L, and k is the same integer ≥2, that
is, the k subscript in the frame label, as in Fj,k,g . Because of this restriction the lattices Lj,k,M,Δ

will be labeled from now on as Lj,k,L,m. Based on (3.1), the location of each space or time point
in each dimension z is given by a rational number value, xz = lzΔ, where lz is a nonnegative
integer <M .

Even though these requirements might seem restrictive, they are sufficiently general to
allow lattices of arbitrarily small spacing and arbitrarily many points. Also they can be used
to describe sequences of lattices that become continuous in the limit. An example of such a
sequence is given by setting m = [L/2] and increasing L without bound.
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It follows from this description that the points of a lattice, Lj,k,L,m, with D space and
one time dimension can be taken to be D + 1-tuples of rational numbers. The value of each
number in the tuple is expressible as a finite string of base k digits.(Here, unlike the usual
case, the frames do not include a continuum space and time as a common background for the
lattices inLj,k. One may hope that the structure of space and time, as a continuum or as some
other structure, will emerge when one finds a way to merge the frames in the frame field.)

So far each frame contains in its domain, space and time lattices, and strings of qukits
that are numbers. It is reasonable to expect that it also contains various types of physical
systems. For the purposes of this paper the types of included physical systems do not play an
important role as the main emphasis here is on qukit string systems. Also in this first paper
descriptions of system dynamics will be limited to nonrelativistic dynamics.

It follows from this that each frame includes a description of the dynamics of physical
systems based on the space and time lattices in the frame. The kinematics and dynamics of
the systems are expressed by theories that are present in the frame as mathematical structures
over the real and complex number base of the frame. This is the case irrespective of whether
the physical systems are particles, fields, or strings or have any other form.

One reason that space and time are described as discrete lattices instead of as continua
is that it is not clear what the appropriate limit of the discrete description is. As is well
known, there are many different descriptions of space and time that are present in literature.
The majority of these descriptions arise from the need to combine quantum mechanics with
general relativity. They include use of various quantum geometries [23–27] and space time
as a foam [28–31] and as a spin network as in loop quantum gravity [32]. These are in
addition to the often used assumption of a fixed flat space and time continuum that serves as a
background arena for the dynamics of all physical systems, from cosmological to microscopic.
Space and time may also be emergent in an asymptotic sense [33].

The fact that there are many different lattices in a frame each characterized by different
values of L and m and that each can serve as a background space and time is not a problem.
There is no different than the fact that one can use many different space and time lattices with
different spacings and numbers of points to describe discrete dynamics of systems.

4. Qukit String Systems as Hybrid Systems

So far the domain of each frame contains space and time lattices, many types of physical
systems (such as electrons, nuclei, and atoms) and physical theories as mathematical
structures based on the real and complex numbers. These describe the kinematics and
dynamics of these systems on the lattices. Also included are qukit strings. States of these
strings were seen to be values of rational numbers. These were used to describe real and
complex numbers as Cauchy sequences of these states.

Here it is proposed to consider these strings as systems that can either be numbers, that
is, mathematical systems, or be physical systems. Because of this dual role, they are referred
to as hybrid systems. As such they will be seen to play an important role.

Support for this proposal is based on the observation that the description of qukit
strings as both numbers and physical systems is not much different than the usual view in
physics regarding qubits and strings of qubits. As a unit of quantum information, the states
of a qubit can be |0〉 and |1〉 which denote single digit binary numbers. The states can also
be | ↑〉, | ↓〉 as spin projection states of a physical spin 1/2 system. In the same way strings of
qubits are binary numbers in quantum computation, or they can represent physical systems
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such as spins or atoms in a linear ion trap [34]. To be blunt about it, “Information is Physical”
[20], and information is mathematical.

Also it is reasonable to expect that the domain of a coherent theory of physics
and mathematics together would contain systems that are both mathematical systems and
physical systems. The hybrid systems are an example of this in that they are number systems,
which are mathematical systems, and they are physical systems.

Let Sj,k′,L,m denote a hybrid system in Fj,k,g that contains L qukits and one qubit. L
is any nonnegative integer, m is any nonnegative integer ≤L , j is the iteration stage of any
frame containing these systems, and k′ is the base (or dimension of the Hilbert state space)
of the qk′ in the string system. Note that k′ can be different from the base k of the frame Fj,k,g
containing these systems.

The different qk′ in the system are distinguished by labels in the integer interval [1, L].
The qubit has label m where 0 ≤ m ≤ L. The canonical ordering of the integers serves to order
the qk′ and qubit into a string system.

The presence of the sign qubit is needed if the states of the hybrid systems are to be
values of rational numbers. Since the qubit also corresponds to the k′ − al point, the value of
m gives the location of the sign and k′ − al point in Sj,k′,L,m.

Note that there is a change of emphasis from the usual description of numbers. In the
usual description, strings of base k′ digits, such as 1423.45 with k′ = 10, are called rational
numbers. Here states, such as |1423 + 45〉k,g , are called values of rational numbers. The hybrid
system will also be referred to as a rational number system. The reason is that the set of all
basis states of a hybrid system correspond to a set of kL values of rational numbers. The type
of number N, I, Ra, represented is characterized by the value of m and state of the sign qubit
in Sj,k′,L,m. (One would like to call Sj,k′,L,m a rational number instead of a rational number
system. This would agree with the usual physical description of systems. For example, a
physical system of a certain type is a proton, not a proton system. However referring to
Sj,k′,L,m as a rational number instead of a rational number system seems so odds with the
usual use of the term that it is not done here.)

As was noted, the states of the Sj,k′,L,m systems in a frame Fj,k,g are elements of a Hilbert
spaceHk′,L,m in the frame. The choice of a basis set or gauge g ′ fixes the states of Sj,k′,L,m that
are values of rational numbers. These states are represented as |γ, s〉j,k′,L,m,g ′ . Often the L,m, g ′

subscripts on the states will be dropped as they will not be needed for the discussion.
The description of the hybrid systems as strings of qukits is one of several possible

structures. For example, as physical systems that move and interact on a space lattice Lj,k,L′.m′ ,
the strings could be open with free ends or closed loops. In this case, aspects of string theory
[35] may be useful in describing the physics of the strings.

Whatever structure the hybrid systems have, it would be expected that, as bound
systems, they have a spectrum of energy eigenstates described by some HamiltonianHS

j,k′,L,m.

If the rational number states of the hybrid system, Sj,k′,L,m, are energy eigenstates, then one
has the eigenvalue equation

HS
j,k′,L,m

∣
∣γ, s

〉
j,k′,L,m = E

(
γ, s

)
j,k′,L,m

∣
∣γ, s

〉
j,k′,L,m, (4.1)

where E(γ, s)j,k′,L,m is the energy eigenvalue of the state |γ, s〉j,k′,L,m. The superscript S on
HS

j,k′,L,m
allows for the possibility that the Hamiltonian depends on the type of hybrid system.
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The gauge variable has been removed because the requirement that (4.1) is satisfied
for some choice of HS

j,k′,L,m
, fixes the gauge or basis to be the eigenstates of HS

j,k′,L,m
. Since

HS
j,k′,L,m

is not known, neither is the dependence of E(γ, s)j,k′,L,m on γ, s.
The existence of a Hamiltonian for the S hybrid systems means that there is energy

associated with the values of rational numbers represented as states of hybrid systems. From
this it follows that there are potentially many different energies associated with each rational
number value. This is a consequence of the fact that each rational number value has many
string state representations that differ by the number of leading and trailing 0s.

One way to resolve this problem is to let the energy of a hybrid system state with no
leading or trailing 0s be the energy value for the rational number represented by the state. In
this way one has, for each k, a unique energy associated with the value of the rational number
shown by the state.

One consequence of this association of energy to rational number values is that
to each Cauchy sequence of rational number states of hybrid systems there corresponds
a sequence of energies. The energy of the nth state in the sequence is given by
〈γn, sn|Hj,k′,Ln,mn |γn, sn〉j,k′,Ln,mn

.

It is not known at this point if the sequence of energies associated with a Cauchy
sequence of hybrid system states converges or not. Even if energy sequences converge for
Cauchy sequences in an equivalence class, the question remains whether or not the energy
sequences converge to the same limit for all sequences in the equivalence class.

The above description is valid for one hybrid system. In order to describe more than
one of these systems, another parameter, h, is needed whose values distinguish the states of
the different Sj,k′,L,m systems. To this end the states |γ, s〉j,k′,L,m,g of a system are expanded by
including a parameter h as in |γ, h, s〉j,k′,L,m,g . In this case the state of two Sj,k′,L,m is given by

∣
∣γ1, h1, s1,

〉
j,k′,L,m,g ′

∣
∣γ2, h2, s2

〉
j,k′,L,m,g ′ , (4.2)

where h1 /=h2. This allows for the states of the two systems to have the same γ and s values.
Pairs of hybrid systems are of special interest because states of these pairs correspond

to values of complex rational numbers. The state of one of the pairs is the real component and
the other is the imaginary component. Since these components have different mathematical
properties, the corresponding states in the pairs of states of hybrid systems must be
distinguished in some way.

One method is to distinguish the hybrid systems in the pairs by an index r, i added to
Sj,k,L,m as in (Sr, Si)j,k′,L,m. In this case states of Sr and Si are values of the real and imaginary
components of rational numbers. In this case complex numbers are Cauchy sequences of
states of pairs, (Sr, Si)j,k′,Ln,mn

of hybrid systems.
As might be expected, the kinematics and dynamics of hybrid systems Sj,k′,L,m in a

frame Fj,k,g are described relative to a space and time lattice in the frame. For example, a
Schrödinger equation description of two hybrid systems interacting with one another is given
by

iΔf
t ψ(t) = Hψ(t). (4.3)

Δf
t is the discrete forward time derivative where Δf

t ψ(t) = (ψ(t + Δ) − ψ(t))/Δ. Here ψ(t) is
the state of the two hybrid systems at time t.
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The Hamiltonian can be expressed as the sum of a Hamiltonian for the separate
systems and an interaction part as in

H = H0 +Hint. (4.4)

For two hybrid systems H0 =
∑2

i=1 H0,i where

H0,i =
−�2

2mSj,k′ ,L,m

Δf

i ·Δ
b
i +Hi,j,k′,L,m. (4.5)

The first term of H0,i is the kinetic energy operator for the ith Sj,k′,L,m system. The second term
is the Hamiltonian for the internal states of the system. It is given by (4.1). Also mSj,k′ ,L,m is the
mass of Sj,k′,L,m. Also Δf and Δb are the discrete forward and backward space derivatives,
and � is Planck’s constant. The dot product indicates the usual sum over the product of the
D components in the derivatives. Note that a possible dependence of the mass of Sj,k′,L,m on
k′, L,m has been included.

The question arises regarding how one should view N-tuple hybrid systems as
physical systems. Should they be regarded as N independent systems each with its own
Hamiltonian (Hint = 0 in (4.4)) or as systems bound together with energy eigenstates that are
quite different from those of the single hybrid systems in isolation?

One way to shed light on this question is to examine physical representations of
number tuples in computers. Their N-tuples of numbers are represented as N strings of bits
or of qubits (spin 1/2 systems) bound to a background matrix of potential wells where each
well contains one qubit. The locations of the qubits in the background matrix determines their
assembly into strings and into tuples of strings.

Here it is assumed that N tuples of hybrid systems consist of NSj,k′,L,m systems bound
together in some fashion. Details of the binding and its effect on the states of the individual
Sj,k′,L,m in the N-tuple are not known at this point. However it will be assumed that the effect
is negligible. In this case the energy of each component state |γz, hz, sz〉 in the N tuple will
be assumed to be the same as that for an individual Sj,k′,L,m system. Then, the energy of the
state |γ, h, s〉 is the sum of the energies of the individual component states. Also the energy is
assumed to be independent of the h values.

This picture is supported by the actual states of computers and their computations. The
background potential well matrix that contains theN-tuples of qubit string states is tied to the
computer. Since the computer itself is a physical system, it can be translated, rotated, or given
a constant velocity boost. In all these transformations the states of the qubit strings in the N-
tuples and the space relations of the N qubit strings to one another are unchanged. These
parameters would be changed if two computers collided with one another with sufficient
energy to disrupt the internal workings.

This picture of each frame containing physical systems and a plethora of different
hybrid systems and their tuples may seem objectionable. However, one should recall that
here one is working in a possible domain of a coherent theory of physics and mathematics
together. In this case the domain might be expected to include many types of hybrid systems
that have both physical and mathematical properties. This is in addition to the presence of
physical systems and mathematical systems.
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5. Frame Entities as Viewed in a Parent Frame

So far it has been seen that each frame, Fj,k,g , in the frame field contains a setLj,k of space and
time lattices where the number of points in each dimension and the point spacing satisfy (3.1)
for some L andm. The frame also contains qukit string systems as hybrid Sj,k′,L′,m′ systems and
various tuples of these systems. Here k′, L′, m′ need have no relation to k, L,m. Each frame
also contains physical theories as mathematical structures based on Rj,k,g and Cj,k,g the real
and complex number base of the frame. These theories describe the kinematics and dynamics
of physical systems on the space and time lattices in the frame. For quantum systems these
theories include Hilbert spaces as vector spaces over Cj,k,g .

Since this is true for every frame, it is true for a frame Fj,k,g and for a parent frame
Fj−1,k′,g ′ . This raises the question of how entities in a frame are seen by an observer in a frame
at an adjacent iteration stage. As was noted in Section 2.2, it is assumed that ancestor frames
and their contents are not visible to observers in descendant frames; however, descendant
frames and their contents are visible to observers in ancestor frames. It follows that observers
in frame Fj,k,g cannot see frame Fj−1,k′,g ′ or any of its contents. However, observers in Fj−1,k′,g ′

can see Fj,k,g and its contents. (This restriction has to be relaxed for cyclic frame fields.)
One consequence of the relations between frames at different iteration stages is that

entities in a frame, that are seen by an observer in the frame as featureless and with
no structure, correspond to entities in a parent frame that have structure. For example,
elements of Rj,k,g , Cj,k,g are seen by an observer in Fj,k,g as abstract, featureless objects with
no properties other than those derived from the relevant axiom sets. However, to observers
in a parent frame Fj−1,k′,g ′ , numbers in Rj,k,g , Cj,k,g are seen as equivalence classes (pairs of
equivalence classes for Cj,k,g) of Cauchy sequences of states of base k qukit string systems.
Thus entities that are abstract and featureless in a frame have structure as elements of a parent
frame.

It is useful to represent these two in-frame views by superscripts j and j − 1. Thus
R
j−1
j,k,g , C

j−1
j,k,g , and R

j

j,k,g , C
j

j,k,g = Rj,k,g , Cj,k,g denote the stage j − 1 and stage j frame views of
the number base of frame Fj,k,g . They are often referred to in the following as parent frame
images of Rj,k,g , Cj,k,g .

The distinction between elements of a frame and their images in a parent frame exists
for other frame entities as well. The state

ψj =
∑

α

d
j

j,α|α〉
j

j,k,g (5.1)

inHj

j,k,g corresponds to the state

ψ
j−1
j =

∑

α

d
j−1
j,α |α〉

j−1
j,k,g (5.2)

inHj−1
j,k,g , which is the parent frame image ofHj,k,g . In the above djj,α is a featureless abstract

complex number in Cj,k,g whereas dj−1
j,α , as an element of Cj−1

j,k,g
, is an equivalence class of

Cauchy sequences of hybrid system states.
The use of stage superscripts and subscripts applies to other frame entities, such as

hybrid systems, physical systems, and space and time lattices. A hybrid system Sj,k′,L′,m′ in
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Fj,k,g has Sj−1
j,k′,L′,m′

as a parent frame image. States |γ ′, s′〉j of Sj,k′,L′,m′ are vectors in the Hilbert

space Hj,k,g , in Fj,k,g . States |γ ′, s′〉j−1
j of Sj−1

j,k′,L′,m′ are vectors in Hj−1
j,k,g . The two states are

different in that |γ ′, s′〉j is an eigenstate of an operator whose corresponding eigenvalue γ ′, s′

is a rational real number with no structure.
The state |γ ′, s′〉j−1

j of Sj−1
j,k′,L′,m′ is an eigenstate of a number value operator whose

corresponding eigenvalues are rational real numbers in R
j−1
j,k,g

corresponding to (γ ′, s′). These
eigenvalues are equivalence classes of Cauchy sequences of states of hybrid systems Sj−1,k,L,m

in a j − 1 stage frame. Here k, j − 1 are fixed and L = Ln and m = mn for the nth term in
the sequence. This accounts for the fact that each state in the sequence is a state of a different
hybrid system with j − 1, k held fixed.

The eigenvalue equivalence class is a base k′ real rational number. Since it is an element
of Rj−1

j,k,g
, it contains a constant sequence of hybrid system states if and only if all prime factors

of k′ are factors of k. If this is the case, then one can equate the equivalence class to a single
state of a hybrid system to conclude that the eigenvalue associated with |γ ′, s′〉j−1

j is a state
of a hybrid system Sj−1,k,L,m in stage j − 1 frame.(Note that the language used here avoids
referring to the absolute existence of systems with properties independent of the frames. The
emphasis is on the view of systems in different frames. Thus bj = b

j

j is the view of a physical
system b as seen by an observer in a stage j frame. The image of this view in a stage j − 1
frame is denoted by bj−1

j . The difference between the two is that physical properties of bj , as

eigenvalues of operators overHj,k,g , are featureless abstract real numbers. Properties of bj−1
j ,

as operator eigenvalues, are equivalence classes of Cauchy sequences of hybrid system states.
A frame independent description would be expected to appear only asymptotically when the
frames in the field are merged.)

If k′ has prime factors that are not prime factors of k (such as k′ = 6 and k = 3),
the eigenvalue for the eigenstate |γ ′, s′〉j−1

j is still a real rational number. However, as an
equivalence class of Cauchy sequences of base k hybrid system states, (which it must be
as a real number in C

j−1
j,k,g

) it does not contain a constant sequence of hybrid system states.
Instead it contains a sequence that corresponds to an infinite repetition of a base k hybrid
system state (just like the decimal expansion of 1/6 = 0.16666 . . .).

5.1. Parent Frame Views of Lattice Point Locations

A similar representation holds for parent frame views of point locations of lattices. Let
Lj,k,L,m denote a lattice of D space dimensions and one time dimension in a frame Fj,k,g . The
components xj,z (with z = 1, . . . , D) of the D space locations xj of the lattice points, pj , are
such that xj,z is a rational real number. The lattice points are abstract and have no structure
other than that imparted by the values xj . As rational real numbers in Rj,k,g , the xj,z have no
structure other than the requirement that they are both rational and real numbers.

The view or image of Lj,k,L,m from the position of an observer in a stage j − 1 parent
frame is denoted by L

j−1
j,k,L,m

. The image points and locations of points in L
j−1
j,k,L,m

are denoted

by pj−1
j and x

j−1
j .

The space point locations xj−1
j are different from the xj in that they have more structure.

This follows from the fact that they are D tuples of rational real numbers in R
j−1
j,k,g

. It follows
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from this that each component, xj−1
j,z , of a space point location, xj−1

j , in Lj−1
j,k,L,m

is an equivalence
class of Cauchy sequences of states of hybrid systems. Since each of the D equivalence
classes is a real number equivalent of a rational number value, the equivalence class includes
many (numerically) constant sequences of hybrid system states. The existence of constant
sequences follows from the observation that the k subscript of the lattice image is the same as
that for Rj−1

j,k,g . The states in the different sequences differ by the presence of different numbers
of leading and trailing 0s.

A useful way to select a unique constant sequence is to require that all states in the
sequence be a unique state of the hybrid system Sj−1,k,L,m where the k, L,m subscripts are the
same as those for Lj−1

j,k,L,m. Replacement of the sequence by its single component state gives

the result that, for each z, xj−1
j,z is a state of Sj−1,k,L,m.

It follows from this that the locations of space points pj in Lj,k,L,m, as viewed from a
stage j − 1 frame, are seen as states of a D-tuple SD

j−1,k,L,m of hybrid systems in the stage j − 1
frame. These states correspond to D-tuples of rational number values.

A similar representation of the time points in the lattices is possible for the real rational
number time values. In this case the time values of a lattice are seen in a parent frame as
rational number states of a hybrid system.

6. Lattices and Hybrid Systems

The above description of a stage j − 1 frame view of lattices gives point locations of Lj−1
j,k,L,m

as states of a D tuple of hybrid systems Sx,Dj−1,k,L,m for the space part and states of another
hybrid system Stj−1,k,L,m for the time part. The superscripts s and t denote the hybrid systems
associated with space and time points, respectively.

This strongly suggests that each space point image px,j−1
j in the space part of a parent

frame image, Lj−1
j,k,L,m

, of Lj,k,L,m should be identified with aD tuple, Sx,D
j−1,k,L,m of hybrid systems

and each time point image pt,j−1
j in the time part should be identified with a single hybrid

system, Stj−1,k,L,m. For each image point px,j−1
j , the location is given by the state of the D tuple

Sx,D
j−1,k,L,m, of hybrid systems in a parent frame that is associated with the space point image.

Similarly the location of each image time point in L
j−1
j,k,L,m is given by the state of the hybrid

system, Stj−1,k,L,m, associated with the point.
This shows that set of all parent frame images of the kLD space points of Lj,k,L,m become

a set of kLDD tuples of parent frame hybrid systems, Sx,D
j−1,k,L,m, with the state of each D tuple

corresponding to the image space point location in Lj−1
j,k,L,m

. The parent frame images of the kD

time points of Lj,k,L,m become a set of kL hybrid systems St
j−1,k,L,m. Each is in a different state

corresponding to the different possible lattice time values.
Figure 2 illustrates the situation described above for lattices with one space and one

time dimension. The stage j and j − 1 lattice points are shown by the intersection of the grid
lines. For the stage j lattice the points correspond to rational number pairs whose locations
are given by the values of the pairs of numbers. For the stage j − 1 image lattice the points
correspond to pairs of hybrid systems, one for the space dimension and one for the time
dimension. Point locations are given by the states of the hybrid system pairs. Non relativistic
world paths for physical systems bj and its stage j − 1 image bj−1

j are also shown.
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Figure 2: Stage j and stage j − 1 images of one-dimensional space and time lattices. Lattice points are
indicated by intersections of lines in the two-dimensional grid. In Lj,k,L,m the points pj consist of pairs

of rational numbers. In L
j−1
j,k,L,m

the image points pj−1
j consist of pairs Sx

j−1,k,L,m, S
t
j−1,k,L,m of hybrid systems

with point locations given by the states of the system pairs. Nonrelativistic world paths of a stage j physical
system bj and of its stage j − 1 image bj−1

j are shown as solid lines. Note that b can also be a hybrid system.

It is of interest to compare the view here with that in [8]. Tegmark’s explicitly stated
view is that real numbers, as labels of space and time points, are distinct from the points
themselves. This is similar to the setup here in that points of parent frame images of lattices
are tuples of hybrid systems, and locations or labels of the points of parent frame images of
lattice are states of tuples of hybrid systems.

The differing views of hybrid systems as either number systems or physical systems
may seem strange when viewed from a perspective outside the frame field and in the
usual physical universe. However it is appropriate for a coherent theory of physics and
mathematics together as such a theory might have systems that represent different entities,
depending on how they are viewed.

6.1. Energy of Space Points in L
j−1
j,k,L,m

The description of parent frame images of lattice space points and their locations as D tuples
of hybrid systems and states of the tuples means that the image of each point has a mass.
The mass is equal to that of the D tuple of hybrid systems associated with each point image.
The (rest) masses of all space points in an image lattice Lj−1

j,k,L,m should be the same as the D
tuples of hybrid systems associated with each point are the all the same. However each of
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the tuples is in a different image state xj−1
j that corresponds to the different locations of each

point image.
Each component xj−1

j,z of xj−1
j corresponds to a hybrid system state |+, sz〉

j−1
j of a

component hybrid system SDz,j−1,k,L,m in the D tuple (note the subscript z). Each of these
component hybrid system states is an energy eigenstate of a hybrid system Hamiltonian.
The corresponding energy eigenvalue, E(+, sz)j−1, is defined by (4.1). Here γ is positive as
the lattice component locations are all ≥ 0.

If the component hybrid systems in a D tuple do not interact with one another, then
the energy associated with a parent frame image lattice location is the sum of the component
energies. In this case the energy associated with the location image, |+, s〉j−1

j , of xj is given by

E(+, s)j−1 =
D∑

z=1

E(+, sz)j−1. (6.1)

Here |+, s〉j−1
j denotes the tensor product of allD component states |+, sz〉

j−1
j . If the component

systems in a D tuple do interact with one another, then the situation becomes more complex
as the Hamiltonian and energy eigenvalues must take account of the interactions.

At this point the specific dependence of the energy on the parent frame image of the
lattice point locations is not known as it depends on the properties of the hybrid system
Hamiltonian. Nevertheless the existence of energies associated with locations of points of
parent frame images of a space lattice is intriguing. One should note, though, that this
association of energy to space points holds only for parent frame images. It does not extend
to lattices Lj,k,L,m when viewed by an observer in Fj,k,g .

This aspect is one reason why one needs to do more work, particularly on the merging
of frames in the frame field. It is quite possible that, in the case of a cyclic frame field, some
aspects of the association of energy with space points in the same frame will be preserved.
Note that for cyclic frame fields the restriction that an observer cannot see ancestor frames or
their contents must be relaxed. The reason is that ancestor frames are also descendant frames.

6.2. Dynamics of Systems as Seen from a Parent Frame

The description of the motion of hybrid systems and other physical systems in a stage j frame,
as seen from a parent stage j − 1 frame, is interesting. The reason is that the dynamics and
kinematics of systems are based on a parent frame image lattice, Lj−1

j,k,L,m
, whose space points

and point locations are D tuples, Sx,Dj−1,k,L,m, and tensor product states
⊗D

z=1|+, sz〉j−1 of the D
tuples of hybrid systems. The time points and point locations are hybrid systems, Stj−1,k,L,m,
and states of these systems. The x and t superscripts allow for the possibility that the hybrid
systems associated with space point images may be different from those associated with time
images.

It follows that the stage j − 1 frame description of the motion and dynamics of stage
j systems is described relative to the states of certain hybrid systems in the parent frame. To
understand this consider a simple example where Ψ(x, t)j denotes the state of some physical
system bj in a stage j frame at position x and at time t. The pair x, t denote a point in a stage
j frame space and time lattice Lj,k,L,m which, for simplicity, consists of one space and one
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time dimension. The stage j frame time evolution of the state Ψ(x, t)j is given by a discrete
Schrödinger Equation:

i�Δf

t,jΨj(x, t) = HjΨj(x, t). (6.2)

Here Δf

t,j is the discrete forward time derivative defined by

Δf

t,jΨj(x, t) =
Ψj

(
x, t + Δj

)
−Ψj(x, t)

Δj
. (6.3)

As a sum of kinetic and potential terms, the Hamiltonian, Hj, has the form

Hj = −
�

2Δf

j Δ
b
j

2mbj

+ Vj. (6.4)

To keep things simple, the description is restricted to just one bj system interacting with an
external potential. In this case Vj = Vj(x). Also � is Planck’s constant and mbj is the mass of
system bj .

In the above, the forward and backward discrete derivatives Δf

j and Δb
j are defined

similar to the forward time derivative. One has

Δf

j Ψj(x, t) =
Ψj

(
x + Δj , t

)
−Ψj(x, t)

Δj
,

Δb
jΨj(x, t) =

Ψj

(
x −Δj , t

)
−Ψj(x, t)

Δj
.

(6.5)

This description of the time development and Hamiltonian for a system bj is a
description in a stage j frame. Viewed from a parent stage j − 1 frame the image of the
Schrödinger equation, (6.2) describes the motion of the system b in the image lattice Lj−1

j,k,L,m
.

Since the space and time point locations in the image lattice are states of hybrid systems
Sxj−1,k,L,m and Stj−1,k,L,m, the image Schrödinger equation describes the motion of system b

relative to these states. The image equation is given by

i�
(
Δf

)j−1

j,st
Ψj−1
j (sx, st) = H

j−1
j Ψj−1

j (sx, st). (6.6)

The image state, Ψj−1
j (sx, st), is the same state in the Hilbert spaceHj−1

j,k,g as Ψj(x, t) is inHj,k,g .

Here sx and st are shorthand notations for the hybrid system states, |+, sx〉j−1 and |+, st〉j−1 of
Sx
j−1,k,L,m and St

j−1,k,L,m.
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The Hamiltonian Hj−1
j is given by

H
j−1
j = −

�
2(Δf

)j−1
j,sx

(
Δb

)j−1
j,sx

2m
b
j−1
j

+ V j−1
j (sx). (6.7)

The potential V j−1
j (sx) is a function of the states |+, sx〉j−1 of Sxj−1,k,L,m. The value of m

b
j−1
j

is a

real number in Rj−1
j,k,g that is expected to be the same as that of m

b
j

j
in Rj

j,k,g .

The forward and backward discrete derivatives are expressed by equations similar to
(6.5):

(
Δf

)j−1

j,sx
Ψj−1
j (sx, st) =

Ψj−1
j (sx + 1, st) −Ψ

j−1
j (sx, st)

Δj−1
j

,

(
Δb

)j−1

j,sx
Ψj−1
j (sx, st) =

Ψj−1
j (sx − 1, st) −Ψ

j−1
j (sx, st)

Δj−1
j

.

(6.8)

In these equations sx+1 and sx−1 denote the hybrid system states |+, sx+A1〉x and |+, sx−A1〉x
where the subscript A denotes arithmetic addition and subtraction. For example, if |+, sx〉x =
|100 + 111〉x in binary then, |+, sx+A1〉x = |101 + 000〉x.

This use of states of Sx
j−1,k,L,m and St

j−1,k,L,m as point locations of an image space and
time lattice must be reconciled with the observation that these hybrid systems are dynamical
systems that move and interact with one another and with other physical systems. If the
Sx
j−1,k,L,m and St

j−1,k,L,m and their states are to serve as points and point locations of a space
and time lattice image, they must be dynamically very stable and resistant to change. This
suggests that these systems must be very massive and that their interactions with each
other and other systems are such that state changes occur very rarely, possibly on the order
of cosmological time intervals. (The dynamics of these systems on space and time lattices
Lj−1,k′,L′,m′ is described in a stage j − 1 frame. Here k′, L′, m′ need have no relation to k, L,m.)

The reason for these restrictions on the properties of space and time hybrid systems
is that one expects the space and time used to describe motion of systems to be quite stable
and to change at most very slowly. Changes, if any, would be expected to be similar to those
predicted by the Einstein equations of general relativity.

7. Discussion

It is to be emphasized that the work presented so far is only a beginning to the development
of a complete framework for a coherent theory of physics and mathematics together. Not
only that but one must also find a way to reconcile the multiplicity of universes, one for each
frame, to the view that there is only one physical universe.

One way to achieve reconciliation is to drop the single universe view and to relate
the multiplicity of frame representations of physics and mathematics to the different many
physical universes views of physics. These include physical universes in existing in different
bubbles of space time [36, 37] and other descriptions of multiple universes [4, 38–40]
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including the Everett Wheeler description [41]. Whether any of these are relevant here or
not will have to await future work.

If one sticks to the single physical universe view, then the frames with their different
universes and space and time representations need to be merged or collapsed to arrive in
some limit at the existing physical universe with one space time. This applies in particular to
the iteration stage and gauge degrees of freedom as their presence is limited to the quantum
representation of numbers.

One expected consequence of the merging is that it will result in the emergence of a
single background space time as an asymptotic limit of the merging of the space time lattices
in the different frames. Whether the ultimate space time background is a continuum, a foam
[28–31], or has some other form, should be determined by details of the merging process.

In addition the merging may affect other entities in the frames. Physical systems,
denoted collectively as bj , may become the observed physical systems in the space
time background. In addition, hybrid systems may split into either physical systems or
mathematical systems.

One potentially useful approach to frame merging is the use of gauge theory
techniques [17, 42] to merge frames in different iteration stages. One hopes that some aspects
of the standard model [43] in physics will be useful here. This will require inclusion of
relativistic treatment of systems and quantum fields in the frames.

This look into a possible future approach emphasizes how much there is to accomplish.
Nevertheless one may hope that the work presented here is a beginning to the development
of a coherent theory. The expansion of the frames in the frame field to include, not only
mathematical systems but also space and time lattices, and hybrid systems that are both
mathematical systems and physical systems, seems reasonable from the viewpoint of a
coherent theory of physics and mathematics together. One might expect such a theory to
contain systems that can be either physical systems or mathematical systems.

The use of massive hybrid systems to be stage j−1 frame images of points of space and
time lattices in stage j frames suggests that there must be different types of hybrid systems.
For example, stage j theoretical predictions of the values of some physical quantity Q are,
in general, real numbers in Rj,k,g . Their images in a stage j − 1 parent frame are equivalence
classes of Cauchy sequences of states of hybrid systems Sj−1,k,L,m where L,m are dependent
on positions in the Cauchy sequences. (If one introduces limit hybrid systems containing an
infinite number of qubits, then an equivalence class of Cauchy sequences could be replaced
by just one limit system whose state corresponds to an infinite sequence of digits that is a
canonical representative of the class.) If the predicted values are rational numbers expressible
as a finite string of base k digits, then the stage j − 1 values can be expressed as states of
Sj−1,k,L,m rather than equivalence classes of sequences of states. If the images of properties
of the physical quantities Q are to be reflected in the properties of the hybrid systems, then
different types of hybrid systems, such as SQj−1,k,L,m,must be associated with different physical
quantities.

Whether these descriptions of parent frame images as hybrid systems will remain
or will have to be modified remains to be seen. However, it should be recalled that these
images are based on the dual role played by values of rational numbers both as mathematical
systems and as locations of components of points in the lattices. Recall that the notion of a
point in a lattice is separated from the location of the point just as the notion of a number,
as a mathematical system, is separated from the value of a number. This use of number and
number value is different from the usual use in mathematics in that expressions, as 135.79, are
usually considered as rational numbers and not as values of rational numbers. Here a rational
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number, as a hybrid system, is similar to the usual mathematical concept of a set of rational
numbers as a model of the rational number axioms.

In conclusion, it is worth reiterating the last paragraphs at the end of the introduction.
Whatever one thinks of the ideas presented in the paper, the following points should be kept
in mind. Two of the three dimensions of the field of reference frames are present only for
quantum theory representations of the real and complex numbers. These are the gauge or
basis degree of freedom and the iteration stage degree of freedom. They are not present in
classical descriptions. The number base degree of freedom is present for both quantum and
classical representations based on rational number representations by digit strings.

The presence of the gauge and iteration degrees of freedom in the quantum
representation described here is independent of the description of rational number values
as states of qukit string systems. Any quantum representation of the rational numbers, such
as states |l, n〉 of integer pairs, where the states are elements of a vector space will result in a
frame field with gauge and iteration degrees of freedom.

Finally, the importance of numbers to physics and mathematics should be emphasized.
It is hoped that more work on combining quantum physics and the quantum theory
of numbers will be done. The need for this is based on the observation that natural
numbers, integers, rational numbers, and probably real and complex numbers are even more
fundamental to physics than is geometry.
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