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The quantum Langevin equation has been studied for dissipative system using the approach of
Ford et al. Here, we have considered the inverted harmonic oscillator potential and calculated the
effect of dissipation on tunneling time, group delay, and the self-interference term. A critical value
of the friction coefficient has been determined for which the self-interference term vanishes. This
approach sheds new light on understanding the ion transport at nanoscale.

1. Introduction

Caldeira and Laggett [1] started a systematic investigation of the quantum dissipative system
and quantum tunneling in dissipative media. After that influential work, many authors have
discussed the dissipative tunneling in numerous papers but not with profound illustration in
the aspect of tunneling time. In fact, the proper definition of tunneling time has been debated
for decades and it is yet to have definite answer [2]. Hauge and Støveng [3] mentioned
seven different definitions of tunneling time of which the dwell time and the phase time
or group delay are well accepted by the community. Winful [4] studied a general relation
between the group delay and the dwell time. In case of quantum dissipative system Caldeira
and Laggett used the path integral technique to study the dissipative quantum tunneling.
Brouard et al. [5] made an important clarification of the existence of many tunneling times
and the relations among them in a comprehensive framework. Ford et al. [6] investigated the
dissipative quantum tunneling using quantum Langevin equation. The quantum Langevin
equation is nothing but the Heisenberg equation of motion for the coordinate operator of a
particle with certain mass, under a particular potential. This is the macroscopic description
of a quantum particle interacting with a bath. The interaction with the bath corresponds to
energy loss; in other words, it is the signature of dissipation. The memory function present in
the equation describes the interaction with the bath. The nature of the dissipation is contained
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in the memory function. In a recent work [7] one of the present authors (S. Roy) investigated
the transport of ions in biological system and constructed a nonlinear Schrödinger equation
where the transport of ion occurs at nanoscale. Here, the authors proposed a particular type
of memory kernel associated to the non-Markovian behaviour of ions so as to understand
the observational findings. The mechanism of ion transport at nanoscale is becoming an
important area of research. Considering the memory kernel for ion transport at nanoscale,
we will discuss the tunneling phenomena within quantum Langevin framework. Here
we consider a parabolic potential barrier of the form V (x) = (1/2)mΩ2(d2 − x2). The
transmittance is calculated using the method devised by Ford et al. [6]. The misty aspect
of tunneling time and various approaches towards it are critically analyzed. We will also try
to figure out a process to calculate the tunneling time for a dissipative medium. In Section 2
we will briefly review quantum Langevin equation for convenience. Then, we will discuss
various concepts related to tunneling time, that is, phase time, dwell time, and so forth,
and the effect of dissipation in Section 3. The self-interference effect is discussed within
this framework for dissipative systems. This method has been applied to understand the
transport of K+ ion in the biological domain which is much relevant at the nanoscale in
Section 4. Possible implications are indicated in Section 5.

2. Quantum Langevin Equation

We begin with the discussion on the tunneling of the ions through the dissipative potential
barrier. The theory of dissipative quantum tunneling is pioneered by Caldeira and Laggett
[1], where they treated the problem through the technique of path integral. But we will
address how quantum Langevin equation can be used to discuss dissipative quantum
tunneling using the approach developed by Ford et al. [6, 8, 9]. Here it is easy to incorporate
non-Markovian and strong coupling effects using suitable memory function. The memory
function present in the quantum Langevin equation describes the interaction with the bath.
At first we will briefly discuss the general theory with a general memory function. Then, we
will deal with a specific memory function which we have at our hands [7], in our problem
of potassium ion transfer through ion channels. We consider an inverted harmonic oscillator
potential barrier and see how the transmission coefficient is modified for inclusion of the
memory function. The quantum Langevin equation has the form

mẍ +
∫ t

−∞
dt1μ(t − t1)ẍ(t1) +U′(x) = F(t), (2.1)

where the dot and the prime, respectively, describ the derivative with respect to t and x. This
is nothing but the Heisenberg equation of motion for the coordinate operator x of a particle
of mass m, under a potential U(x). Here the coupling with the bath is described by two
terms, the random force F(t) with mean zero and a mean force characterized by the memory
function μ(t − t1). The autocorrelation of F(t) is given by

1
2
〈F(t)F(t1) + F(t1)F(t)〉 =

1
π

∫∞

0
dω Re

[
μ̃(ω + i0+)

]
�ω coth

(
�ω

2KT

)
cos[ω(t − t1)]. (2.2)
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In this expression

μ̃(z) =
∫∞

0
dteiztμ(t); Im(z) > 0 (2.3)

is nothing but the Fourier transformation of μ(t). The coupling to the bath is given by the
function μ̃(z).

Now this function has three important mathematical properties corresponding to
some very important physical principles [5, 7].

(1) The Im(z) > 0 condition states that the function is analytic in the upper half plane.
This is a consequence of causality.

(2) The second condition is the “positivity condition” stated as

Re
[
μ̃(ω + i0+)

] ≥ 0; −∞ < ω <∞. (2.4)

This is a consequence of the 2nd law of thermodynamics.

(3) The third condition is the reality condition stated as

μ̃(−ω + i0+)∗ = μ̃(ω + i0+). (2.5)

This follows from the fact that x is a Hermitian operator. These properties are very
elaborately explained by Ford and his coauthors. Based on these three properties, the function
can be specified to belong in a restricted class of functions, having a general representation in
the upper half plane

μ̃(z) = −icz + 2iz
π

∫∞

0
dω

Re
[
μ̃(ω + i0+)

]
z2 −ω2

, (2.6)

where c is a positive constant, which can be absorbed in the particle mass.
Ford and his collaborators have considered harmonic oscillator potential U(x) =

(1/2)mω2x2 as a simple example. Under this potential, the quantum Langevin equation takes
the form

mẍ +
∫∞

0
dt′μ

(
t − t′)ẋ +mω2

0x = F(t). (2.7)

This equation can be solved by the method of Fourier transformation. We get the Fourier
transformation of the coordinate operator x as

x̃(ω) = η(ω)F̃(ω), (2.8)

where η(ω) is called the susceptibility and expressed as

η(ω) =
[
−mω2 +mω2

0 − iωμ̃(ω)
]−1

. (2.9)



4 Advances in Mathematical Physics

We consider an inverted harmonic oscillator potential of the formU(x) = (1/2)mΩ2
0(d

2 −x2),
where 2d is the width of the barrier. In the absence of dissipation we have an exact expression
for the transmittance by the WKB approximation method

D0 = exp

[
−πmΩ0

2�

(
d2 − 2E

mΩ2
0

)]
. (2.10)

If dissipation is included, the tunneling frequency will be changed. Then the expression will
be modified by replacing the frequency in the nondissipative case by that in the dissipative
case.

In case of the inverted harmonic oscillator potential the susceptibility takes the form

η(ω) =
[
−mω2 −mΩ2

0 − iωμ̃(ω)
]−1

. (2.11)

The normal mode frequencies of this coupled system are the poles of the susceptibility.
However, there is an isolated imaginary normal mode frequency corresponding to a pole
of the susceptibility, which is classically forbidden and can be interpreted as the tunneling
frequency ω = iΩ(Ω). The determining equation for Ω is

[
η(iΩ)

]−1 = mΩ2 −mΩ2
0 + Ωμ̃(iΩ) = 0. (2.12)

Putting the expression of μ̃(iΩ) from (2.6), we get

Ω2 +
2Ω2

mπ

∫∞

0
dω

Re
[
μ̃(ω + i0+)

]
Ω2 +ω2

= Ω2
0. (2.13)

Since the left-hand side of (2.13) is a monotonically increasing function, the value of Ω will
always be less than Ω0.

Let us consider a simple frictional coefficient “γ”. Under which the frequency
determining equation becomes

Ω2 + γΩ −Ω2
0 = 0. (2.14)

Since Ωmust be real and positive, we take the positive solution of this quadratic equation

Ω = −γ
2
+ Ω0

(
1 +

γ2

4Ω2
0

)−1
. (2.15)

Considering γ � Ω0, we get Ω ≈ Ω0 − (γ/2).
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Then by replacingΩ0 byΩ in the expression of transmittance, we get the transmittance
for dissipative medium:

D = exp
[
−πmΩ

2�

(
d2 − 2E

mΩ2

)]
, (2.16)

that is, D = D0 exp

[
πmγd2

2�
+
πEγ

�Ω2
0

]
, (2.17)

where D and D0 are the transmittance with and without dissipation, respectively.
Now the presence of dissipation can be incorporated in the potential function. The

potential barrier without dissipation is V0(x) = (1/2)mΩ2
0(d

2 − x2).
The potential barrier with dissipation can be expressed as V (x) = (1/2)mΩ2(d2 − x2).

Relating these two, we get

V (x) ≈ V0(x)
(
1 − γ

Ω0

)
. (2.18)

So we can say that dissipation reduces the potential function. The dissipative contribution is
included in the tunneling frequency Ω. We will use this fact to calculate the tunneling time
and incorporate effect of dissipation in it.

3. Tunneling Time

In case of quantummechanical tunneling through a barrier, it is well known how to calculate
the probability of tunneling, the escape rate, and the lifetime in initial well. But the question is
if there is a time analogous to classical time spent in the barrier region how long does it take a
particle to tunnell through a barrier? The subject of this so-called tunneling time or traversal
time has been covered by many authors in numerous independent approaches [3, 10–15].
Brouard et al. [5] have discussed various aspects of tunneling time in a very systematic
approach. The very elegant review of Hauge and Støveng [3] lists at least seven different
types of tunneling time of which the phase time (group delay) and dwell time are considered
well established.

3.1. Relation between Phase Time and Dwell Time

The group delay or phase time measures the delay between appearance of a wave packet at
the beginning and the end of the barrier. By the method of stationary phase, it is given by the
energy derivative of the transmission phase shift:

tpT = �
dφT
dE

. (3.1)
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Here φT = φt +kL, where L is the length of the barrier. Similarly the group delay for reflection
is given by

tpR = �
dφR
dE

, (3.2)

where φR is the reflection phase shift. The total group delay is defined as the total group
delay:

tp = |T |2tpT + |R|2tpR, (3.3)

where T and R are the transmission and reflection coefficients, respectively. In case of
symmetric barriers tp = tpT = tpR.

Regardless of transmission or reflection, the dwell time is a measure of the time spent
by a particle in the barrier region A < x < B. It is given by the expression

td =

∫B
A

∣∣ψ(x)∣∣2dx
jin

, (3.4)

where ψ(x) is the wave function corresponding to energy E and jin = �k/m is the flux of the
incident particles. This equation gives us the time that the incident flux has to be turned on,
to provide the accumulated particle storage in the barrier. Winful [4] has discussed that delay
time and dwell time are related by a linear relation:

tp = td + ti, (3.5)

where ti is called the self-interference term given by the expression

ti = − Im(R)
k

�
∂k

∂E
. (3.6)

The self-interference term comes from the overlap of incident and reflected waves in front of
the barrier. This term is of considerable importance at low energies, when the particle spends
most of its time dwelling in front of the barrier, interfering with itself. In the relation given by
(3.5), the self-interference term is disentangled and given by a separate expression in (3.6).

3.2. Calculation of Dwell Time and Self-Interference Term in
Dissipative Case

The delay time can be calculated considering the effect of dissipation. In order to do that, first
we will calculate the dwell time for the parabolic barrier we have taken as a model potential.
Following Er-Juan and Qi-Qing [16] we begin with the parabolic potential barrier and then
subdivide the potential into infinitesimal rectangular barrier elements and then summing up
the individual dwell times spent by the particles inside the barrier elements, and the dwell
time of the parabolic barrier is calculated.
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Let us take a rectangular potential

V (x) = Vi for xi−1 < x < xi,

V (x) = 0 for x > xi−1 or x < xi.
(3.7)

The solutions for the three regions can be written as

ψ1(x) = eikx + Re−ikx for x < xi,

ψ2(x) = Ceκx +De−κx for xi−1 < x < xi,

ψ3(x) = Teikx for x > xi.

(3.8)

After some manipulations

C = T
(
1
2

)(
1 + i

k

κ

)
eikΔ−κΔ,

D = T
(
1
2

)(
1 − ik

κ

)
eikΔ+κΔ.

(3.9)

Now the transmission coefficient can be found as

T =
−4ikκe−κΔe−ikΔ

(κ − ik)2 − (κ + ik)2e−2κΔ
, (3.10)

and the probability of transmission is

P = |T |2 = 16k2κ2∣∣∣(κ − ik)2 − (κ + ik)2e−2κΔ
∣∣∣2
. (3.11)

For thin barrier we have e−2κΔ ≈ 1. Then the transmission coefficient and probability of
transmission, respectively, become T ≈ e−κΔe−ikΔ and P ≈ e−2κΔ. The dwell time td is defined
as td = (1/j)

∫
B |ψ2|2dx. Substituting these values, we get

td =
1
j

∫
B

e−2κΔdx =
1
j

∫
B

|T |2dx =
1
j

∫
B

P dx. (3.12)

Considering such barrier as a succession of the adjacent thin rectangular barrier elements in
width Δi = xi − xi−1,

The corresponding dwell time for the ith barrier

tid =
1
j

∫
Δi

Pidx =
e−2κiΔi

j
Δi =

PiΔi

j
. (3.13)
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The dwell time for the entire barrier becomes

td =
P1Δ1

j
+
P1P2Δ2

j
+
P1P2P3Δ3

j
+ · · · +

(∏i
n=1Pn

)
Δi

j
+ · · ·

=⇒ td =
∞∑
i=1

(∏i
n=1Pn

)
Δi

j
=

1
j

∞∑
i=1

(
e−2

∑
i κ̃i(x)Δi

)
Δi.

(3.14)

Since the length of each barrier is very small, the summation can be replaced by integral:

td =
1
j

∫x2

x1

(
e
−2 ∫xx1 κ̃(x)dx

)
dx, (3.15)

where κ̃(x) =
√
2m(V − E)/�2, V = (1/(x2 − x1))

∫x2
x1
V (x)dx is a kind of average height

approximation for the potential barrier V (x). Our model potential is the inverse harmonic
oscillator potential of the form V (x) = (1/2)mΩ2(d2 − x2). Therefore V = (1/3)VD

0 + (2/3)E,
where VD

0 = (1/2)mΩ2d2.
Therefore, the integrant becomes

Px = e
−2 ∫xx1 [

√
2m(V−E)/�2]dx

,

that is, Px = e
−2[

√
2m(V−E)/�2][x−

√
d2−(2E/mΩ2)]

.

(3.16)

Now td = (1/j)
∫x2
x1
Pxdx. Finally putting the value of Px, we get

td =
√
m

2E
e−2κ̃A

κ̃
sinh 2κ̃A, (3.17)

where κ̃A =
√
2m(V − E)/�2

√
d2 − (2E/mΩ2) = d

√
2m/3�2VD

0 (VD
0 − E).

The effect of dissipation is included in VD
0 , where VD

0 = (1/2)mΩ2d2 = (1/2)mΩ2
0d

2(1−
(γ/2Ω0))

2 ≈ V0(1 − (γ/Ω0)), γ is the coefficient of friction.
Now we have to calculate the self-interference term ti = −(Im(R)/k)�(∂k/∂E). To

calculate this term, we have to know the reflection coefficient R for the concerned potential.
By the method of WKB approximation the reflection coefficient R can be easily shown

as

R =
((θ/4) − (1/θ))
((θ/4) + (1/θ))

ei(π/2). (3.18)
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Therefore,

Im(R) =
((θ/4) − (1/θ))
((θ/4) + (1/θ))

, (3.19)

where

θ = exp

(
−
∫x2

x1

κ(x)dx

)
= exp

[
−πmΩd2

4�

(
1 − 2E

mΩ2d2

)]
= e−α. (3.20)

For small θ,

Im(R) ≈ − (3 + 5α)
(5 + 3α)

. (3.21)

Therefore, the self-interference term is found to be

ti =
�

2E
(3 + 5α)
(5 + 3α)

. (3.22)

So from (3.17) and (3.22), we find the complete expression of the group delay for the case of
a particle tunneling through a barrier of inverse harmonic oscillator potential:

tp =
√
m

2E
e−2κ̃A

κ̃
sinh 2κ̃A +

�

2E
(3 + 5α)
(5 + 3α)

. (3.23)

3.3. Effect of Dissipation in Self-Interference Term

Now we will estimate the effect of dissipation in the self-interference term. The effect of
dissipation is included in the frequency term Ω = (Ω0 − (γ/2)). From (3.20) we can write

α =
πmΩd2

4�
− πE

2�Ω

≈
(
πmΩ0d

2

4�
− πE

2�Ω0

)
−
(
mΩ0πd

2

8�
+

πE

4�Ω0

)
γ

Ω0
.

(3.24)

Hence, we can write

α = α0 − α′
γ

Ω0
, (3.25)

where α0 = ((πmΩ0d
2/4�) − (πE/2�Ω0)) and α′ = ((mΩ0πd

2/8�) + (πE/4�Ω0)).
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Therefore,

ti =
5�
6E

(
1 − 1.067

(1.67 + α0) − α′
(
γ/Ω0

)
)
, (3.26)

α′ and γ are both positive terms. Therefore, the denominator of the 2nd term on the right-
hand side will reduce due to them and the 2nd term will increase. It will reduce the whole
term. So the presence of dissipative term reduces the self-interference effect.

Now if we take Im(R) = 0, then

γ =
(
α0 + 0.603

α′

)
Ω0. (3.27)

Therefore, it is evident that, for a critical value of dissipation coefficient given by (3.27), the
self-interference term vanishes. Let us now apply the approach to a biological phenomena,
that is, transport of potassium ion through ion channels.

4. Potassium Ion Transfer through Ion Channel

Here we will consider a special case for potassium ion transport through ion channel.
From the above discussion we can emphasize on the fact that the memory function μ is
the all important function in this theory. It signifies the nature of the dissipative medium.
By choosing this memory function properly, we can determine the tunneling coefficients
and tunneling times for various dissipative media. Now at this very moment, our memory
function representing the potassium ion transfer through ion channel comes into play. Ion
channels are transmembrane protein structures that selectively allow given ion species to
travel across the cell membrane. Zhou et al. [17] demonstrate that the channel protein
transiently stabilizes three K+ states, two within the selectivity filter and one within the water
basket towards the intracellular side of the selectivity filter. Experimental evidence indicates
that the selectivity filter is devoid of water molecules other than single water molecule
between K ions [18]. The memory kernel of our specific problem [7] can be written as

μ
(
t − t′) = a0δ

(
t − t′) + a1

τ1
e−|t−t

′ |/τ1 − a2
τ2
e−|t−t

′ |/τ2 . (4.1)

The oscillatory ionic dynamics in K+ ion channels is proposed to occur at the limit of
the weak non-Markovian approximation associated with a time reversible Markov process,
at the selectivity filter. This reversible stochastic process belongs to a different time scale to
that governing diffusion across the rest of the channel, which is determined by the glue-like
properties of water at the water basket. The framework of stochastic mechanics provides a
model for such dissipative force in terms of quantum theory. That channel ionic permeation
can be associated with nonlinear Schrödinger equation which addresses the issue of de-
coherence and time scale considerations. Now the memory kernel contains both Markovian
and non-Markovian contributions that allows a continuous change from Markovian to non-
Markovian dynamics and enables identification of both the terms. The non-Markovian
process has two time scales τ1 and τ2 whose contributions are dominated by the parameters
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a1 and a2. The first term contains the Markovian contribution. It is also clear that a1, a2 � a0
is the weak non-Markovian limit.

Averaging over t′ and taking the Fourier transformation over the memory kernel, we
get

Re
[
μ̃(ω)

]
= (a0 + a1 − a2) − a1τ1

1 +ω2τ21
+

a2τ2

1 +ω2τ22
. (4.2)

The determining equation of the tunneling frequency (Ω) is given by (2.13). Under the
present circumstances, the equation becomes

Ω2 +
1
m

[
(a0 + a1 − a2) −

(
a1τ1

1 + Ωτ1
− a2τ2
1 + Ωτ2

)]
Ω −Ω2

0 = 0. (4.3)

Here we consider an approximation Ωτ1,Ωτ2 � 1. That is, Ω � 1/τ1, 1/τ2. That is, the time
scales τ1 and τ2 are very small. Since ω is a finite positive quantity, it is very small compared
to the inverse of τ1 and τ2.

Taking up to the first order of the binomial terms, we get

Ω2 +
1
m
[(a0 + a1 − a2) − a1τ1(1 −Ωτ1) + a2τ2(1 −Ωτ2)]Ω −Ω2

0 = 0. (4.4)

Neglecting the second-order terms of τ1 and τ2, we get

Ω2 +
1
m
[(a0 + a1 − a2) − (a1τ1 − a2τ2)]Ω −Ω2

0 = 0. (4.5)

Let γ = (1/m)[(a0+a1−a2)−(a1τ1−a2τ2)]. So (4.5)may be written in the same form of (2.14),

Ω2 + γΩ −Ω2
0 = 0. (4.6)

The tunneling coefficient is found to be

D = D0 exp

[(
πmd2

2�
+
πE

�Ω2
0

)
· 1
m
[(a0 + a1 − a2) − (a1τ1 − a2τ2)]

]
. (4.7)

In case of weak non-Markovian limit (a0 � a1, a2), we neglect the a1, a2 part, and

Dwnm = D0 exp

[(
πmd2

2�
+
πE

�Ω2
0

)
· a0
m

]
. (4.8)

This is similar to (2.17).
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For the strong non-Markovian case, we get

Dsnm = Dwnm exp

[(
πmd2

2�
+
πE

�Ω2
0

)
· 1
m
[(a1 − a2) − (a1τ1 − a2τ2)]

]
. (4.9)

If we put this γ in the tunneling time expression, we get the group delay for this specific case
of potassium ion transfer too.

The expression of delay time is given by (3.23), where κ̃A = d
√
2m/3�2VD

0 (VD
0 − E).

The effect of dissipation is included in VD
0 ≈ V0(1 − (γ/Ω0)). So we get

κ̃A = d

√
2m

3�2V0

(
1 − γ

2Ω0

)−1(
V0 − E − V0γ

Ω0

)

≈ d
√

2m
3�2V0

(V0 − E) − d
√

2m
3�2V0

γ

2Ω0
(V0 + E).

(4.10)

In this case of potassium ion channel with the memory kernel as given in (4.1), the
expression of the delay time will be

tp =
√
m

2E
e−2κ̃A

κ̃
sinh 2κ̃A +

�

2E
(3 + 5α)
(5 + 3α)

, (4.11)

with

κ̃A = d

√
2m

3�2V0
(V0 − E) − d

√
2m

3�2V0

(1/m)[(a0 + a1 − a2) − (a1τ1 − a2τ2)]
2Ω0

(V0 + E),

α = α0 − α′ 1
mΩ0

[(a0 + a1 − a2) − (a1τ1 − a2τ2)].
(4.12)

So the delay time or phase time will depend on the parameter values a0, a1, a2, τ1,
and τ2.

5. Possible Implications

It is evident from the above analysis that the effect of dissipation on group delay can be
estimated directly in terms of the frictional coefficient. It is also possible to express the self-
interference term in terms of the friction coefficient (γ), and we can estimate the critical
value of γ for which the interference term vanishes. The chosen biological example indicates
that the present approach may play an important role in understanding the ion transport
at nanoscale which will be considered in subsequent papers. We are also interested in the
numerical estimation of tunneling time and the effect of dissipation on it. For that purpose,
currently we have the required data for electron tunneling through water. But when one
considers electron tunneling through water, the electron-phonon interaction must also play
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an important role. This interaction will contribute in the potential in a considerable manner.
But at nanoscale water behaves more like frozen ice [19]. In that frozen water configuration,
the electron transfer through water is only weakly affected by electron-phonon interaction
[20]. But currently we do not have sufficient data for that numerical calculation. We hope to
present this thorough numerical estimation of tunneling times in subsequent papers.
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[11] M. B. Büttiker, “Larmor precession and the traversal time for tunneling,” Physical Review. B, vol. 27,

no. 10, pp. 6178–6188, 1983.
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