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We consider the initial value problem for the reduced fifth-order KdV-type equation: 0,u — d3u —
100, (%) + 100, (d5u)* = 0, £, x € R, u(0,x) = ¢(x), x € R. This equation is obtained by removing
the nonlinear term 10ud2u from the fifth-order KdV equation. We show the existence of the local
solution which is real analytic in both time and space variables if the initial data ¢ € H*(R) (s >

1/8) satisfies the condition >;;2, (A’g/k!)n(xax)k(ans < oo, for some constant Ay (0 < Ay < 1).
Moreover, the smoothing effect for this equation is obtained. The proof of our main result is based
on the contraction principle and the bootstrap argument used in the third-order KdV equation
(K. Kato and Ogawa 2000). The key of the proof is to obtain the estimate of 0. (d,1)? on the
Bourgain space, which is accomplished by improving Kenig et al.’s method used in (Kenig et al.
1996).

1. Introduction

The KdV hierarchy is well known as the series of the Lax pair formulation [1, 2], which are
presented as

1st-order KAV 0;u —0,u =0, (1.1),
3rd-order KAV o;u + aiu —6uo,u =0, (1.1),

Sth-order KAV dyu — 851 — 109 <u3> + 100 (dx)> + 10udu = 0.
(1.1),
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These equations describe mathematical models of some water waves [3, 4]. We are interested
in the existence theory of the analytic solution and the smoothing effect of the KdV hierarchy.
There are some results concerning the analyticity for the third-order KdV equation (1.1);.
To. Kato and Masuda [5] considered the initial value problem of the following equation:

Ol + a;iu +a(u)o,u=0, txeR, (1.2)

where a(\) is the real analytic and the no growth rate function in A € R They showed that
if the initial data is real analytic, then, the global solution of (1.2) is real analytic in the space
variable. Hayashi [6] also considered (1.2) in which a(X) is the polynomial. He showed that
if the initial data is analytic and has an analytic continuation to a strip containing the real
axis, then, the local solution also has the same property. When a(u) = —6u, (1.2) becomes the
third-order KdV equation (1.1),. K. Kato and Ogawa [7] proved that (1.1); has not only the
real analytic solution in both time and space variables but also the smoothing effect.

Recently, it is shown that the nonlinear dispersive equations including the KdV
hierarchy have the local analytic solution in the space variable (see [8]). However, neither
the existence of the real analytic solution in both time and space variables nor the smoothing
effect is obtained for (1.1) j with j > 2, because the bilinear estimate of uaij “'u with j>2
cannot be obtained by their method used in [9].

On the other hand, we may expect that the method used in [7] can work for the
reduced equation given by removing udy 'u from the higher-order KdV equations (1.1),
with j > 2. In this paper, as a starting point for this attempt, we consider the following initial
value problem of the reduced fifth-order KdV-type equation:

Outt — O°u = O <u3> +0:(3.u)%, txeR,
(1.3)
u0,x) =¢(x), xeR,

where we may take all coefficients of the nonlinear terms to be equal to 1 without loss of
generality. This equation is obtained by removing the nonlinear term 10ud3u from the original
fifth-order KdV equation (1.1),. Our main purpose is to prove not only the existence of a local
real analytic solution of (1.3) in both time and space variables but also the smoothing effect.

Before stating the main result precisely, we introduce the function space introduced by
Bourgain (see [10]): for s,b € R, define that

X ={fes(®)lflx <o}, (1.4)
where
115 = f f L] -8 D |Ff ) Pr e, (15)

and ¥ f is the Fourier transform of f in both x and t variables; that is,

Fixf(T,8) = (Zﬂ)lﬂRz f(t, x)e At dx. (1.6)
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Our main result is the following theorem.

Theorem 1.1. Let s > 1/8 and let b € (1/2,23/40). Then, for any ¢(x) € H*(R) such that

(x0:) p(x) e H*(R) (k=0,1,2,...),

A (1.7)

g)ﬂ”(xax)ks‘b”m < oo, forsome0<Ayg<1,

o

there exist a constant T = T (¢p) > 0 and a unique solution u € C((-T,T), H*)NX; of (1.3) satisfying

P*u e C((-T, T), H)n X2,

(1.8)

<o,
Xb

where P = 5t0; + x0x is the generator of dilation for the linear part of the equation of (1.3).
Moreover this solution becomes real analytic in both time and space variables; that is, there
exist the positive constants C and Ay such that

|a;“a;u(t, x)| < CA™ (m +1)! (1.9)

holds for all (t,x) € (<T,0)U(0,T) x Randl,m=0,1,2,....

Remark 1.2. The initial data ¢(x) has to be analytic except for x = 0 but is allowed to have
H?-singularity at x = 0. It follows from (1.9) that the singularity of ¢(x) disappears after time
passes and the regularity of the local solution of (1.3) reaches real analyticity in both time and
space variables; that is, the fifth-order KdV-type equation has the smoothing effect.

Remark 1.3. A typical example of the initial data satisfying the condition (1.7) is given by
2 . 3
|x|"e with y > -5 (1.10)

The existence results of the higher-order KdV equation are studied by many authors.
Saut [11] and Schwarz [12] proved that each equation of the KdV hierarchy has a unique
global solution in the spatially periodic Sobolev space. Kenig, Ponce, and Vega studied the
initial value problem of the higher-order dispersive equation

atu+6ij+1u+P(u,axu,...,aij_1u> =0, (1.11)

where j > 1 and P(-) is a polynomial having no constant or linear part. They proved the
local well-posedness in the weighted Sobolev space [13, 14]. Recently, Kwon [15] studied the
simplified fifth-order KdV-type equation

O + 02U + O ud2u + udu =0, (1.12)
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which is obtained by removing the term 108,(u®) from (1.1),. He showed the local well-
posedness for the IVP of this equation in H*(IR) with s > 5/2. On the other hand, Ta. Kato
[16] proved the following result for (1.1),.

Well-Posedness Theorem (Ta. Kato)

Then, the local well-posedness for the IVP of (1.1), holds in H*“(R), where

H(R) = {f € S'(R); || f]

e = ||<.g>s-“ oo}. (1.14)

(2) Let

(1.15)

I

Then, the global well-posedness for the IVP of (1.1), holds in H**(R).

The plan of this paper is as follows. In Section 2, we give the existence and uniqueness
of the local solution of (1.3), which is shown by the contraction argument consisting of
Lemmas 2.3-2.5. In Section 3, we prove Lemma 2.4 which gives the bilinear estimate for
0, (0,u)? in the Bourgain space. Kenig et al. [9] showed the bilinear estimate for ud,u of
(1.1), by estimating the potential which appears in an expression of the Bourgain norm of this
term via duality. They divided the domain of integration of the potential into 17 subregions.
However, their method of the domain decomposition is consistent with (1.1),, but not with
the fifth-order KdV-type equation. We divide this domain into 30 subregions to derive the
bilinear estimate for E)x(axu)z. In Section 4, we show the analyticity of the solution stated in
Theorem 1.1 by the bootstrap argument. The result of this paper is announced in Proceedings
of the Japan Academy [17].

Notation. Let E, be the Fourier transform in the x variable, and let ;' and ? be the Fourier
inverse transform in the ¢ and (7,¢) variables, respectively. The Riesz operator D, and its
fractional derivative (D, )° are defined by

Dy =FIFx,  (Dx)"=F.(¢) Fx, (1.16)
respectively, where (-) = (1 +|-|). Similarly, (D;)° is defined by

(Di)® = FrplI7l + 181 Foe (1.17)
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[A, B] denotes the commutator relation of two operators given by AB-BA. LY L] denotes the
space LP (R;; L1(Ry)) for 1 < p, g < oo with the norm

£ 1lpes = <fo; (fi |ft, x)|Pdt>q/P dx> 1/‘7. (1.18)

We use Sobolev spaces with both time and space variables

H;, (B) = {u € S(R): (D) 'ue LfLﬁ}, (1.19)

with the norm |- [[g: g2 = I{Dsx)® - || 2r2- Moreover, L?(R; H:) denotes the space
L?(R;; H*(R,)) with the norm || - lr2e;ms = [[{Dy)* - lIr2r2- The dual coupling is expressed
as (f, g). The convolution of f and g with both space and time variables is denoted by f * g.

For the constant Ay appearing in Theorem 1.1, we put
Aa(X)) = {£= (o fr, )i e Xp (k=0,1,..),fl, o) < o}, (1.20)

where

1£llls, (x:) = Z IIfk (1.21)

k=0

For simplicity we make use of three notations:

S- % . 3.3, ¥ % 02

k=ky+ky+ks+ky 1 =+l +1; m=my+my+ms

2. Existence and Uniqueness of the Solution

In this section, we give the proof of the existence and uniqueness of the solution of (1.3). Let
ur = PFuand ¢ (x) = (xax)k(jJ(x), and we derive the equation which uy and ¢x(x) satisfy.
Since [x0y, 0x] = —0y, it follows that

(P+Dro,=0,(P+(1-1)F, k1=0,1,2,.... (2.1)
Using (2.1) and the following relations

[at ~ 05, P] - 5<at - a;’;),

(2.2)
(at - ai) Pk = (P +5)F (at - a;’;),
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we have from (1.3)

Ok — Oquy = MNi(u), txe€R,
k=0,1,2,..., 2.3)
uc(0,x) = p(x), x€R

where

Mie(11) = 3 (P + 4)F <u3> +0x(P + 4)* (0,u)2. (2.4)

Using the Leibniz rule and (2.1), we can see that

k k
VANERSY <I;>4k-lpl (u3) £,y <I;> 351(P + 1) (0,u)>
1=0 1=0

(2.5)
k! k k
ZW4 *Ox (U, g, Uk, ) +Zm3 #(=1)" 0x ((Oxtak, ) (Oxti,))-
We will show the existence and uniqueness of the solution of (2.3).
Proposition 2.1. Let
1 11
S>_Z, be <§,§ +0>/ (26)

where 0 = min{s/5 + 1/20,3/16}. Then, for any ¢ = (¢o, $1,...) such that ¢ € H*(R) (k =
1,...)and

[EI [ 27

there exist a constant T = T(¢) > 0 and a unique solution ux € C((-T,T), H®) N X; of (2.3)
satisfying

|||“|||JAO(X;) <o, u=(ug,uy,...). (2.8)
Remark 2.2. The uniqueness of the solution of (2.3) yields ux = Pky for k = 0,1,2,....
Moreover, 1y becomes a solution of (1.3), the uniqueness of which also follows.

To prove this proposition we prepare three lemmas (Lemmas 2.3, 2.4 and 2.5), which
play an important role in applying the contraction principle to the following system of the
integral equations:

t
@ (B)ux = (e Pr + ¢ (b) f e g (F) Mg (w) ()t (2.9)
0
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where
B f =1 (e ©),

¢ (t) denotes a cut-off function in C3°(R) satisfying

1, if|f<1,
@(t) =
0, ift|>2,

and ¢r(t) = ¢(t/T).

Lemma2.3. Let 0 < T < 1 and let

seR, be (%,1), a,ae (0,%) (d <a).

Then

e g )|

t
(,u(t)f et p () dr
0

X3

lgrhlly:, < Cosa-a T * Dl ,

where Cosp, Ci,5p, and Cos—q —a are constants depending on s, b, a, and a'.

o < ConallPl

< C1,s,b||h||xg71,

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Proof. Equations (2.13) and (2.14) are obtained by replacing the generator e~ by ¢! in the
argument given by Kenig et al. [18] (see [19]). For the proof of (2.15), we refer to Lemma 2.5

in the study by Ginibre-Tsutsumi-Velo [20].

Lemma 2.4. Let

1 11
_t ) L2 <P
5> T b,b€<2,2+a) (b<b),

where 0 = min{s/5+1/20,3/16}. Then

[10x((0x24) (0x0))Ixs, | < Caspprllullx;lllx;,

where C3 51 is a constant depending on s, b, and b'.

We give for the proof of this lemma, in Section 3.

O

(2.16)

(2.17)
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Lemma 2.5. Let

1 /13 ,
_Z -2 <b). :
5>, b,be<2,4> (b<b) (2.18)
Then
[0x (uveo)|lxs < Casppllullx; [0llx;l1wllx;, (2.19)

where Cy 41 is a constant depending on s, b, and b'.

Proof. This lemma is proved by improving Chen et al.’s argument used in the case where
b=b'€(1/2,3/4) [21]. a

Proof of Proposition 2.1. We define

Xy = {£€ £, (X3); £l 1, xp) < 2CoMo }, (2.20)

where

Co=Cosp, Mo =|lI9llls, ey (2.21)

We define a map @ : X1, — X, by @(u) = (Do (1), D1 (1), ...) and
t
Dy (u) = g (t)e'® Py + (p(t)f e % ger (1) N (u) (1) At . (2.22)
0
Let b’ and T be positive constants satisfying b < b’ <1/2 + 0 and
. 2~ 4Ag A 12 4A Uk
T < min{1, <24C0C5e "M2 + 8CoCoe °M0> ) (2.23)

respectively, where

Cs = C1,spCosp-1,-1Ca s b0 Cs = C1,6pC5p-1,0-1C3,5,b,pr- (2.24)

We now show that @ is a contraction mapping from Xy, to itself. According to Lemmas 2.3,
2.4,and 2.5, we have for u € #4,(X})

k.
1Dk ()llx; < Collicllzrs +CsT D % A s s Nl M2 x5
k

Tkaks k!
(2.25)

k! .
Ol etk e g
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for any k > 0. Here u = (b’ —b)/4b' > 0. By taking a sum over k, we have

© A k
@), x) = %k—incbk(u)nxg < Colll9lll.s,, crrey

+ CsT" Z

(4A0)k4 0 kl [ee] ka [ee] ks

A A
0 0
2; ol 2 T el 30l

k4ooAksoo 0

3A
+c6:ruz( 2 zk,zk,n klnxzk,n el

k4=0
Since u € Xy, we have from (2.23)

4A 3 4A 2
P, xp) < Col19ll]y, a1y + Co™ T, ;) + Coe™ Tl IullZ,, ;)

< CoMj +8C3Cse* T+ M + 4C3Cee* T+ M3
3
< =CoM
s 5CoMo,
which implies ®(u) € Xy, Similarly, we have for v and # € #44,(X})

D) ~ D@D,

< C5€4AOT‘M
2 ~ ~12 ~
s (Il oy + Il 1 3 I Y= il

4A =~ =~
+ Cee °Tﬂ<|||“|||,4AO(Xg) + |||“|||,4A0(x;)>|||u—11|||,4A0(x;)

< (12C3Cse M3 + 4C0C6e4A°M0>T”| o=l o)

< sllw =il o) -

(2.26)

(2.27)

(2.28)

Thus, the mapping @ is contraction from X, to itself. We obtain a unique fixed point ux € X;

satisfying

t
up(t) = p(Be %Py + g (t) f i e % e (1) M () (F) At

(2.29)

on the time interval [-T,T] and k = 0,1,2,.... Uniqueness of the solution is also shown by

using Bekiranov et al.’s argument in [22]. This completes the proof.

O
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3. Proof of Lemma 2.4

In this section we prove Lemma 2.4. To prove Lemma 2.4 we prepare the following lemma.

Lemma 3.1 (see [22]). (1) Let a, p > 0 and let x = min{a, B}. If

a+p>1+x, (3.1)

then

o dx 1/2 1 1/2
SCrap| ———= ,
<f—m (1+|x—§|)“(1+|x—q|)ﬂ> ’ ﬂ<(1+|€—n|) > (32)

forany {,n €R,

where Cz 4,5 is a constant depending on a and p.

(2)Ify > 1, then

1/2
* dx
<f_oo m) < CS,)’/ fOT’ any n € R, (33)

where Cg, is a constant depending on y.

Proof of Lemma 2.4. By duality, we have

<T - ‘.35 >(b,_1) <§>s§(?t,xaxu) * (?t,xaxu)

”aX((axu)(axU))||X;,71 =

L%Lg
(3.4)

= sup
RELZL Nli2<1

7

©r
where (-,-) ;2 12 is the inner product in L?(R; x R;). Setting

[ = (-8 @O Faumd),  gmd=(r-8) O Fwom, 65
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we have

()¢
<W (Ftx0x1) * (Ft x0x0), h> L

J‘J‘R?(T <§§5§1 v

(3.6)
<J'J' &(&— &) f(m,8)8(T— 71, - &1) de1d§1>h(T,§)de§
L)@ -a) (m =) (r-n-@-&)°)
= IQo.o.o + IQo.o.ocl
where
Iy, = IJ'IJ' (é)lsié(é—§1)Pbl(T,§)f(T1,§1)g(T—Z'l,é—§1) drydiydr de,
Qo (7= ) m =) (r-m - G- 8)°) () (@ - &)’
I, = J‘J'IJ' (&)° ébél(é (T, &) f(11,6)8(T — 71,6 - &1) dryd dr de,
Sons® (7 )1 (- ) (7 - m - G- 2)°) (@)@ - &)’
(3.7)
Q00 = {(T, 71,¢,81) €R 1 |E], &), ¢ - &1l < 5}, Q000" =R \ Qoo (3.8)
We split Qo0 into three regions, Q1, Q,,and Qj3:
@ = { (rm 8 80 € Qoo s a1 < glal ]
Q= {(T, 7,8 b) € Quoo < gl <8 < 4|§1|}, (3.9)
Q3 = {(1,71,¢,¢1) € Qooo : 4l&1] < 1B},
and then, we split Q; (i = 1,2, 3) into three regions:
Qi1 = {(T/T1,§/§1) €Q;: |T1 —§f|/ |T—T1 - (§—§1)5| < |T—§5|}/
Q2 ={(rm a8 eQ:|r-&||r-n-@-&)°| <|n-¢l}, (3.10)

Qs ={(rm e d) e Qi |r-& |n-g| <|r-n-¢-2)7|}.
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We further split Q1j, Qo j, and Q3. (j=1,
Quj1={(r,11,¢ &) €
Q12

(TITllglél) € Ql] :

Q1j3=1(7,711,6é1) € Q1 :

|
|

Q11 ={(7,71,¢,&1) €01

Q10 = {(T, 71,¢,81) € 01 ¢

Q13 = {(T/ T1,¢,61) € Qo1

Q21 ={(7,71,¢,&1) €L0o:

oo = {(T/ T1,6,61) € L0
Q23 = {(T, T1,6,61) € 2

Q31 = {(T/ T1,6,61) € L3¢
Qo302 = {(T, T1,§,61) € Q3¢

Q33 ={(1,71,¢,&1) €03 :

Q34 = { (7,71,8,61) € {03
{

Qo35 =1(7,71,¢,¢1) € Q3:
Qsj1={(1,11,¢ &) € Qs :

Q32 = {(T,T1,§,§1) €82 :

Q33 = {(T/Tllélél) €€ :

so that, we have

ey, + IQo.o.ocl < ool + Z |IQi.;'.k

Advances in Mathematical Physics

2,3) into the following regions:

é>1},

8 < LRl > 1},

glial* <1},

He—éil <1,

B-ail2 10280 2187,

- &l > 1 1g- 280 <@,

I§— &l <1},

E-&l 2125 - a2 0,

HE-al 21 RE- &l <18, (3.11)
g-al<Li-alalt =1},

E-allalt <1,

E-al 21, g+ al21),
a2l -a < Rral<1y,

E-qlz1 el <k-al?,

Gl >1),

Bl <1, gt 21,

&illgl* <1},

3 + T + o) (3.12)

ijk=1
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Now we will estimate |Iq,,,l, |lo,;| (i,j, k = 1,2,3), and |Ig,,,| (I = 4,5). To estimate these

terms, we prepare some estimates. By (3.8), (3.9) we obtain

3 5 .
Z|§1| <lg-éil < Z|§1|f in Qq,

3 5 )
Sll<iE-sl< 3, in Qs
|61l >4, in€UQn53,
min{|é&], ¢} 21, in Qo \ {QuUQ13UQ,3),

min{|&],[¢]} 23, in Qy,

gl >4, in Q33U 3,

where Q4 = Qr11 U571 U €531 UL 35. Since (313) and (314) y1€1d

€ —=¢1]1 >3, in Q,Q;3,

we have by (3.9) and (3.13)—(3.15)
1 -Gl

P 1& ()
(&1)*

<Cllalt, inQ,

HE-SLE” <G, may
— 61

where Cg ; = 4151, Using (3.11), (3.14), and (3.15), we have

(&)% < 2% max {1, g]}** in Q,
(&) <28 max (1, - &|} ™ in Q,

(&) < 2% max {1,]&1]) 7> in Qs.

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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In Q; j &, ((i1.j1.k1) = (0.0.0),(1.1.3),(3.2.1),(3.2.2),(i.2.k), (i = 1,2, k = 1,2,3)), we
integrate with respect to 7 and ¢ first, then, we use Schwarz’s inequality, Fubini’s theorem,
and note that ||h|| 2 L2 <1 to have

< |lf

L2 L2

| Qi ji iy

o T ” h(7,9)g(r = 71,8 = &) (@Y RIIE - dilxan o, (771, & &) dr
(=g (@) \ M w (T8 rom - @-0)) -8 .
1/2
2| ([[ neofis = et Fagar)
1/2
Ll |.g1| ” @FRPE-ar xszqhh(T,n,éél)dédT
(=) ()" \ M (e - 5200 (- - -2 -0
1
1/2
T ” (&) 1eP1E - §1|xa,l,lkl(f,n,égnd@dr
(m =)@ \ = - )20 (o - - 0% ) (- 1)
LZLE
(3.18)
where

—_

, if (7,71, ¢, 81) € Qi ik,
Xk (7,71,8,61) = (3.19)
0, if (T, Tl/é/ ‘.31) ¢ Qil.jykl-

In Q;, ik, ((i2.j2.k2) = (i.1k), (i = 1,2,3, k = 1,2),(2.1.3),(3.1.3), (3.2.3)), we integrate with
respect to T and ¢ first, then, we use the same way as in (3.18) to have

|IQi2-/2~k2 < TLE TLE

1/2

X

(&)°1él ” &1 218 = & X, (T, 71, ¢, &) déidT
=\ Ve oy (- ) e -

LrLy
(3.20)
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In €2, 3, we use the change of variables

T=T1-T, =644 (3.21)

to obtain

ffff <‘§> §§1(§ &)h(T, &) f(11,6)8(T —T1,§ - &1) dridédr dé
Q

2 (1 — =) (rom- - 8)°) @) @8’

ffff (&1 -&)°8 & - &) (—&)h(T — T2, &1 - &) f(11,81)8 (-T2, _§2)d7-1d§1d72d§2
Q32

(ri-m-@=8°) " (r =) (r - &) (&) (&) ()"

= ]éz.s.z’
(3.22)

where

Q3o = {(T1,T2, ¢1,¢2) € Qoo : %|§1 - &l <181l <46 - &,
(3.23)

=72 -7 |- ] < |- 8], el <1},

We integrate with respect to 7> and ¢, first, then, we use the same way as in (3.18) to have

Vanss| < 112z llg

X

1/2
e J‘J‘ (&1 - &)% 1l lé - &l xs,,, (71, T2, é1, &) dédT
(m-&)"@) (ri-m-@-2°)" (- ")

LLy
(3.24)

In Qi 3k, ((i3.3.k3) = (i.3.k), (i =1,3,k =1,2,3),(2.3.1),(2.3.3),(2.3.4),(3.3.5)), we have by a
similar argument to (3.22)

Qs =SB 50 (3.25)
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where Qi3_3_k3 is the region which is obtained from €;, 3 , by the change of variables 7, = 71 -7
and & = ¢ — ¢. We integrate with respect to 71 and ¢; first, then, we use the same way as in

(3.18) to have

|]§i3.3.k3
215 12 2 1/2
y |&] ” (& - &)1l 18 - &l xs, ., (717281, &)dbdT
R @\ (nom-@ew?) med e /|
(3§26)
Now we will get bounds for
&1l ” (GF1EP1E - & X, (m,g §1)d§dr
(r=8)" 0\ a2 (o - - 20?) - )|
]
(2)°lEl f f &11212 = &Py, ., (771,28, &) dédy
R e AL LA
(3.27)
1/2
gl ” §1—§2>25|§2|2|§1—§2|2szz.3.zd§zd7'z
< ‘.31) <§ > -T) — @1 _{3 ) > <T2 _§g>2b<§2>25 .
LTlLél
_ f f (1= &)1l l - &l s, ., daidm
(-8 @\ = n - @) g e ) |
278

By using the following methods, we estimate (3.27).

The Case of Q0.0

Since

(m+@-8)°)-& =m-&-5E-2) (2 - +&), (328)
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it follows from (3.2) in Lemma 3.1 with &« = 2b, f = x = 2(1 - V') that
1/2
e f f (&) I*1 = 11 Xoun (T, 71,4, §1)d§ dr
(m =) "8\ ® (e 200 (o - - )Y e - )
< Cro1-vy,20

e <f (&) 121¢ - iy, ) d§>”2
(m=8)"(8)° U= (n =& -5 G- (& - g + ) e -4y

where Q. = {&:]¢],1¢ — &1 <5} and Qp = {&1 : |&1]| < 5}. Since (¢)° < max{1,6°}, we have

L3 Lg‘l’

Ly L;’

(3.29)

Cro(1-v),20
e < [ () [6F1¢ - 1y, @) d§>”2
(m =&)Y (e = (m -8 -5ea (¢ - a) (@2 - + ) -

1/2
< C701-1)2» max{1,6°}5 <f |§|2d§>
[&|<5

L% Lg‘l’

<Mispy,
(3.30)

where M 51,y is some constant.

The Case of 13, L33 (j =1,2), Qiss (i=1,3) and Qo3

We consider £~224342. By (3.2), we have

1/2
ol ” (&1 - &))"l - éﬂzmzs_zd@dn
(-8 @)’ cm-@-a)) (m- ) (@)

< C7201-1)26Co 52! (3.31)

181 xe, (31) < f 82X, (&) . >1/2
’ / 2
(71 - ﬁ')b R (T —gf +5¢1é2(&1 —éz)(é% —&é + §§>>2(1—b)

L% Lg‘l’

L 1L§1
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where Qc = {& ¢ |&1] > 4) and Qpy, = (& : |&] < |&1[™*). Here we have used (3.16) and (3.17)
with the change of variables ¢, = ¢; — ¢. Noting

>0, 2(1-b)>0, (3.32)

we have

|1 xa, (é1) < f & x5, &) dg >1/2
~dé
(T - ‘ﬁ)b B (1 = & +581&(8 - &) (& - &b + §§)>2(17b) 2L
1748

1/2
{|§1I4xgac @) <f ) |§2|2d§2> }
[821<11]

< (3.33)
Ly
B 1/2
<22 (16 xa @) |
Ly
<212,
Thus, (3.27) is bounded by
Mo pp = Cos2" 2 max{Cra(1-1)26, C7,25,26 } (3.34)

in Q, 3. In the same manner as (3.31)-(3.33), (3.27) arebounded by My sy in Q13,233 (j =
1,2),and Qi35 (i =1,3).

The Case of Qr11, Q221
We consider Q55 1. Since
[r-&|+|n-&|+|r-m-@-&)|
>|r-g-(n-8)-(r-n-¢-&))| (3.35)

7

= 5IEl1&111¢ - &l|¢2 - & + &

we obtain

max{[r~&|, |n - & |- - @-a|) 2 Jelede-nl|E -8 630

7

Noting that —2b < 0, we have

(rn-g) " < (s (@ -2 +8)) " Q. (6.37)
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Since (3.14) and |¢ — ¢1| < 1 yield
1611 > 3I¢ = ¢al,

we have
1
128 = &l > [61] = 2§ — &1l > §|§1I-

By (3.2), (3.16), and (3.37), we have

1/2
|«;1| ” |2121¢ = &112(8)* o, (7,71, ¢, &1)dr dé
N Y CIESR I L S L

< Crp(1-1y,26 Co s 2913

X <f (5501(¢ = 8 (&2 - 861 + ) 161"~ &P o, @) dé> 1/2
R (-8 -5 (- &) (&2 -y + &)Y

L% Lg‘l’

where Qp;: = {&1: |6 - &| <1, |&| > 4}. Using the change of variable
p=581E-4) (8- + &)

and (3.2), we have

-2b

<5§§1 (&-¢1) (éz &+ §1)> |§1|4|§ _ §1|2xQE;g @) d§> 12
(71 -8 - 58018 - &) (8 - ¢ +¢1))"

L3 Lg‘l’

< [ () laldp >”2
<singl (1 — & — ) 518128 - 8] - 288 + 28]

1/2
< f (5/6)\dp )
& () (u— (- &))"

5 -1/2
< Cro0-v),20 <5> ,

IN

L% Lg‘l’

IN

L% Lg‘l’

19

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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where we have used
5 .
5laill28 - &|¢% - 228 + 28| 2 2larl* in Qg (3.43)

which follows from (3.39) and

1,\> 1 1
28 -2+ 8] 2 [2(8- 30 ) + 58| 2 58P (344
Hence (3.27) is bounded by
w5\
M3 by = max{ Cg,z(l_b,)/ﬂ,, C7,2(1—b’),2bc7,2b,2b}C9,52|S‘ (3b +31°0 ) <8> (3.45)

in Q7,. By a similar argument to (3.37)—(3.42), (3.27) is also bounded by M35 in 75 1.

The Case of Q13, Qa23, and Q35

We consider Q3. Since (3.14) and |2¢ — & < |&1]7%/2 yield
1
126 = a1l < 5leal, (3.46)

we have

E-&12> S 0hl - 128 - 8 > gl

1 3 in 92,2,3. (347)
g — &1l < §(|§1| +28-¢&il) < Z|§1|l
By (3.9) and (3.47), we have
Sl - &2 - g8 + 8] > mlal’ (3.48)
where we have used
2
F-dh+ §%| = ‘ (é - %§1> + %gf > Z|§1|2. (3.49)

Therefore using (3.36), we have

b 5N\2%
<T1—§> S(@) &7 in Qo3 (3.50)
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By (3.2), (3.16), (3.17), (3.47), and (3.50), we have

1/2
T ” 8112 = &7 (2) 7 Y, (7, Tl§§1)de§
(=" \ 2 -2 rom - 007 a0 )|
1T

y 1\ 1-s 3\ I-s 5\ (3.51)
< -b s2° 1 "\ 14 48 |
< Cra0-1)20Co2 max{ <4> <4> }<48>

|§1| 5181 11 P oo (&1) o, ()dE >”2
R (11— & =5 (E - &) (&2 — & + &))"

LaLy
where Qr; = {&: |28 - ¢1] < &1/} and Qg = {& : |é&1] > 4}. Since [2¢ — &1| < |&1]7%/?, we have

212 2001~ 122 -4 2 5 (1l - 1677,
in Qr,,. (3.52)

1< 5001 - 122 -l < 5 (1l 187,
Noting
5> —%, 2(1-0") >0, (3.53)

we have by (3.52)
<f G761 o (1) x0rs, (©)d2 >m
R (11— & - 5881( — 1) (&2 — &1 + &)

1/2
< {|§1|1‘25mc &) <f 1 d§> }
QH;1§1

<1,

L3 Lg‘l’

(3.54)

L3 Lg‘l’

where

Qg = {65 (Il -1ar™2) <18 < 5 (il +167) | (355)
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Therefore, (3.27) is bounded by

1 1-s 3 1-s
M4,s,b,b’ = C9,32‘S| max{Cmu,b/)lzb, C7,2b,2b} max{ <Z> , <4_J:) } (356)

in £, 3. Using a similar argument to (3.47)—(3.54), we can get bounds of (3.27) in €213 and
Q35.

All the Other Cases

We consider €5 1,. By (3.9), we have

g — &1l < I¢] + |é1] < 58] (3.57)
Since 2b' < 1+ 20 and ¢ = min{s/5+1/20, 3/16} yield
3 , 3
~5 +4(2b —1) <—§+80<0, (3.58)

we have by (3.16), (3.36), and (3.57)

|§|2|<§;|>§;§>2S < Q2 B/ g [
1

(r-)"” (156>2(b/1) (ie-aleg) ™,

By (3.2), (3.17), and (3.59), we have

in 92.1.2. (359)

1/2

(@FRP f f |§1|2|§ 811X (T, 71, &, &1)dE1dTy
RZ

(- P (r-m-@-a)) @) -
L;’PLE"
v'-1)
§C7,2b,2bc9,52|5‘53/4<%) 1 (3.60)
1/2
. f 61727518 = 8l o, (B1)ddn
(-alr) (r-pasme-w@-@e8)”) |

¢

where Qp; = {&1: 1 < |& - &1, 1¢ — 2&1| > [¢]7>/?}. Noting that

s 1 3
2b>1, o= mm{5 20’ 16} (3.61)
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and using (3.3) and the change of variables

=5 -8 (- + &),

we have

|§|11/2780‘|§ _ él |1/272$+80'.X,QI;g (él)

1/2

=

) < f R17718 = &2 g, (&) 1
R (T - & 45881 - &) (&2 - gt + &)Y

IN

(- allgl) ™ (r-& + 5t - (@ - e+ 8)”

1/2
dg >

dg

LrLE

LPLE

<§)1/2 <J< d‘u >1/2
2 |pu|<3|T-¢3| <T -+ y)2b

5 -1/2
< CS,Zb(E) ,

where we used the inequality

LeLy

512l - 261[¢2 ~ 2681 + 28] > i

which follows from

1/2
|§|3/2
f % ap
w1 (7= & + ) 51l - 20118 — 2681 + 28] .
7L

in Qj;é,

|2 -2 +28] 2 S0P, lE-2m0 2l

Thus, (3.27) is bounded by

5

(b -b)-1/2
2 v-1/2
Ms,spp =57 <—> 211Cy s max { C7.2626Cs 26, C7201-1), 63" Y/ }

16

23

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

in Q1. In the other regions, we can get bounds of (3.27) by a similar argument to (3.57)—

(3.63). Therefore we omit the proof.
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Now (3.27) are shown to be bounded. Therefore, combining (3.4), (3.6), (3.12), and
(3.18)—(3.26) and setting

Caspp = Misppy +7Mosp +2M3ssppy +3Muspy +17Ms s 41, (3.67)

we have (2.17). This completes the proof of Lemma 2.4. O

Remark 3.2. We briefly state the reason why the term 10ud3u is removed from (1.1),. In order
to show the existence of the solution of (1.1),, we have to prove the following estimate:

”uaiv

o S Gsppllulixlvlix;. (3.68)
b'-1

Unfortunately, we are not able to prove it, because our method can be used to estimate
0% (0"ud"v) in the case where Imn > 1, but not in the case where Imn = 0. Therefore, it is
necessarily for us to remove the term 10ud3u from (1.1), unavoidably.

4. Analyticity

In this section we prove the analyticity of the solution u = uy given in Proposition 2.1. The

proof is established by Propositions 4.5-4.9. To prove these propositions we prepare four
lemmas (Lemmas 4.1-4.4).

Lemma 4.1 (see [21]). Let
7 11
S>_ZI be <§/§+0>/ (41)
where c = min{1/4, (4s+11)/8,(s+6)/5}. Then
102 (u0)lx: . < Mospllille [0l (4.2)

where Mg s, 1s a constant depending on s and b.

Lemma 4.2 (see [7]). Let

f e HR"), g€ H (R"). (4.3)
Suppose that
n n
< < — — <
O_s,r_2, 2_S+T (4.4)

Then, forany o1 <s+r—-mn/2,

£ &l e ®n S My| £ Hs(R7) g"H’(R") (4.5)

holds, where My = My s 10, n iS a constant depending on s, r, o1, and n.
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Lemma 4.3. Let (ty, xo) be an arbitrarily fixed point in {(-T,0) U (0,T)} x R
(1) Suppose that b € (0,1], r € (-0, 0]. Then, for a sufficiently small €1 > 0 such that

&, if—;<r§0,
fr= 1 9
&*  with a > ) -1, ifr< ~5 (4.6)

Xi }

|| (Dt,X>5bg

e e

< [, 78
[(R;HL(R)) Xpa

holds for all g € X, _, satisfying
supp g C By, (to, x0), taig, P5g €X; 4, 4.7)

where Mgy pe, = Mg 1 to,x0),e; depends on r, b, (to, xo), and e.

(2) Let p > 0. Then, for a sufficiently small &, = €* > 0,

||<Df,x>#g”LfL§ < M9:ﬂ:€z{ ||g||H;f;5(R2) + ”tbig I @) + ||P58| H{fxs(R)} (4.8)
holds for all g € HK;S(]RZ) satisfying
supp g C Ba, (to, x0), td,g, P°g € H{;S (]Ri2>, (4.9)

where Mo p1.e, = Moy, (t0,x0),¢, depends on p, (o, x0), and €.

Let p(t,x) be a smooth cut-off function around the freezing point (g, xg) such that
p € C5° (B (to, x0))-

Lemma4.4. Let s,b € R. Then

llofl

X; < MlO,s,b,p,s3537|s|79|b| ||f||Xz+4IbI/ (410)

where e3 = e* and Mig,sp,pes = 10072](e37 = &)U T F 0 cp(r, D)l -

Proof. Lemmas 4.3 and 4.4 are proved by the same method as Lemmas 3.2and 5.2in [7]. O

Proposition 4.5. Let s > 1/8, and let b € (1/2,23/40). Then, for a sufficiently small &t > 0, there
exist positive constants Ky, and Ay such that

k k
P— < Ky pAjk! (4.11)

loP el e, P

+
H}P(R2)

holds for all k =0,1,2,..., where A = 2A61 and K1, = K1,sb,(ty,x0)¢,p 1S @ constant depending on s,
b, (to, x0), € and p.
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Proof. By Plancherel Theorem and Lemma 4.3 with g = pPku, we have

”Ppku”H,{f(Rz) * ”Ppku 12(R;HY)
5b
(2 )? Ul @) (4.12)
< (2;)2 { R e I e

where

r=s-2, if%<s§2,

5 (4.13)
Y <r<0, ifs>2.
We note that 7 < s — 2 holds. Put Ko, = [||[ull[,, (xz)- Since (2.8) and Remark 2.2 yield
k
”Pku”XS <Koop(A7') K, k=0,1,2,..., (4.14)
b
it follows from Lemma 4.4 that
”PPk | < Mg b pere 1200 ”Pku|
b 1 Xzfl
(4.15)
k
< KZ,s,b—lMlO,r,b—l,p,s4Ei4lr|736|b71| <A61> k'/
5(  pk \ 5-1, pl+ky,
< +,
”p <PP u>| Xr, ~ Z —l)'l' ”P PP |Xl;1

1)'1'

Mio,rp-1,p,4€

IMm

—4Jr|-36|b-1]| ” pltky

s
bel

5! (k+D!7 4\ 1\ k
o —4|r|-36|b-1| z 1 1 !
< {)1;1?()5(]\/110 rb=1,p1,€ 2 KZ ,b—1 (5 l)'l' 2kk| (AO > <2A0 > k!

< K3 ARk,
(4.16)

where p; = p5- p, K3 is some constant and A; = (2A61).
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Now we estimate |[td3 (pP*u)||x; . By using

27

to; <pPku> =tp <6§’6Pku> + 5t6i<<6§p> <6kau>> + 5t0y <(6xp) <6iPku>> + t(@ip) Py,

<6§Pku> - _%{Pk”u - xakau} +t Nk (u),
we have

. + ”pxakau”XLl} + ”tka(u)”XLl

i (prtu),, < 5{ or

% (1(%0) (2P w)) | +5
b-1

+ ”t(@ip) Pru -

b-1

r
Xb—l

+5

In the same manner as (4.15), we have

||pPk+1u

Pk+1u )
Xia

—4|r|-36|b-1
, < MlO,r,b—l,p,s45 Irt-36ib-1] |
X
b-1

Al -3l k+1)!/ _ “1\k
< Mg po pere 100 1|K2,s,b—1%<A01> <2A01> k!

< Ky ARk,
where K4 is some constant. By Lemmas 4.1 and 4.4, we have

”pxakau

Ox (P xpku> ”x;1 *

g S (0x(p))Pu

b-1

< Merp||px|| X2 ”Pku”XZ,2 + Mi0,rb-1,0,(px) e*€

k
—4|r|-36/b—1 -1
< {Mé,r,b”f’x”xg* + MlO,r,b—l,ax(Px),s45 Irt-36l I}KZ,S/b <A0 > k!.

—4|r|-36|b-1] ” Pru
.

b-1

0. (H(0:p) (B3P ) ) ”x;,l

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)



28 Advances in Mathematical Physics
By Lemmas 2.4, 2.5, and 4.4, we have

[[tp Ak (w) ”x;1

—4|r|-36|b-1
< MlO,r,bfl,tp,g4£ Irt-36[6-1}

Pry PRy

X3

. Py .
X3 X3

X; X;

kigks
x4 Cap > || PRy
{ 4'S’b§k1!k2!k3!k4!”
ki3k
+C — _ _|IPhu
3'5'*’; ki katks k! ”

—4|r|-36/b-1
< MlO,r,b—l,tp,£45 Iri=36ib-1]

4ks ki +ka+ks 3ks ki+k
3 E A -1 2 2 -1
X {C4/srbK2,s,b H( 0 ) + C3,s/bK2,S,b —k3|k4| <A0 > }k'
K ! X Kyl

—4]r|~36|b— - k+1 k+1)(k+2 N\
< MlO,r,bfl,tp,g45 4lrl=36lb 1|€4/A01 {C4,s,bK§/s/b% + C3,s,bK2 M } <2A01> k!

2,8,b 2k
< KsA¥k!,
(4.22)
where K5 is some constant. We also have
5(0(5) (P ) <[o-((5) 0P )
< Cuaralloupll [P
< CoatpKaarsl|t0epll o (457 KL
(4.23)
Oy <t(6xp) <6iPku>> ”XLl < C3,s_2,b||tp||xz,2 6§Pku| X
<Coalll [l
< C3,s—2,bK2,s,b ||tp||X§—2 <A61>kk!.
In the same manner as (4.15), we have
”t(aif’) Pfu xr < MlO,r,b—l,taip,e“KZ,S,bfl <A61>kk!- (4.24)

b-1

Hence

103 (pP*u) ”x;,l < KeAkKl, (4.25)
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where K is some constant. Putting

3
—41r|-36/b-1
Kip = 2—ﬂ_2M8,r,b,54 max{ Koo p1Migrp1,peie 70071, Ky, K }, (4.26)

we have (4.11). O

Proposition 4.6. Under the same assumption as in Proposition 4.5, there exist Ky and A, such that

o

k
i S KAk (4.27)

X

holds for all k = 0,1,2, ..., where py is a smooth cut-off function such that

pa < min{p, p4},

(4.28)
ps=1 on <t0 —54, to +54> X <x0 —54,x0 +54>.
Proof. At first, we show that there exists a constant K71,, and Az such that
||p4pku||H;;2(Rz) < KpipAkkl, k=0,1,2,.... (4.29)
Applying Lemma 4.3 with p = 1/2 and g = psP*u, we have
[Py 2puPha .
(4.30)
< M9’1/2’54{ ||P4Pku||H,j,‘f/2(R2) " ”tai (p4Pku> ||H;3/2(R2) " ||P5 <p4Pku> ||HL2/2(R2)}'
By Proposition 4.5, we have
||p4Pku||H;2/Z<RZ) < Kl/mA’fk!,
D] ORED e Ll P
PN e = &G -1)! P L e 1P L2, (82
(4.31)
_ 2 51 (k+D!'/ _\l/.  \K
< Kapfuax P Lmn; (G- 2kk! <A11> <2A11> K

< K1,Ks <2A;1)kk!,

where Kg is some constant.
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Now we estimate ||t053 (psP*u)|| HY R Using (4.18) and

5
Bpif) = 2 f + SV e (e P, 4.32)

we obtain

k
" ||p4x6xP u”H,z/z(Rz)}

x <<6§p4> Pku> ”Htjj“(RZ)'

"<p4pku> ”H,jj/z(RZ) . %{”mPkHu

5 5!
+ ||tp4./Uk(u)||H;j/2(R2) * Zm
¢ =1 '

H,; 3 (RY)

(4.33)
By Proposition 4.5, we have
1 1
EHP“PM” H2r S s1Pellizre pP*iu L213
1 (k+1)!, N
< gKl/P”p‘l”L?’L%’W<A11> <2A11> k!
<K, K9(2A;1>kk!, (4.34)
1 1 .
§||p4x6xP u HEP®Y) §<”xP4”L°°L°° + |02 (xp4)||L°°L°°> pP ”L 22
1
§<”xP4”Lt°°L;° + ||0x (xp4) ”L;"’L?’)KLPA,l(k!'

where Ky is some constant. By Sobolev embedding theorem and Proposition 4.5, we have

||tp4p4ax <Pk2” Phu Pk4u> ”H,jz/Z(Rz)

< a1+ 1772

212 <||axtP4||Lf°L§° + ||tp4||L?°L§;°> ”P”Lf"L?f’

X ||pPk2u pP*u pP*u

L L L

pP*u

ks

pP*y pP*u

< K101*7/2”P”Lf°L§°

H,(R2) H2(R?) HP(R?)

< Kuo772[lpll 1 K3, A kalkathal,
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|tosp*0: (@ P waPRu)||

9/2 RZ)
SKlo,—7/2||Pzaka1u 29, PRu g2
t Lox
2
< Koo (louplisns + lolloss ) JoPoul [P
< Kio-72( | xP”Lt L ”P"Lt ) ||P ey 1P ()

< K11 7/2K2 Akﬁkzk 'kz!,

where K1,-7/2, Ki1,-7/2 are some constants. Therefore, we have by (4.35)
” tpa N (u) ” H22(R?)

< ||tp4p4JUk (u) ||

H22®?)

—Zm”tmﬁ‘a (PRuPtuPsw)|

k
Z klygi;]q ||tp4p4ax<<6xpkzu> <6xpk1u>> ||H;2/2(R2)

R

< KlO 7/2||p”L°°L°° k Zk 'Ak1+k2+k3 +K11 7/2K1Pk Zk 'K4 Ak1+k2

< <K10,77/2 ”p”L?QL;oKiP + K11,77/2K12/p>€4/A1 Alfk'
By Proposition 4.5, we have

pP*u

8ifl<<ta’ p4> Pky, >||H;2/2(R2) < 25: '(551 l)|||ta;p4

< KipKy,AfK!,

5
,Z '(5—1)'

LeLg

where K1, is some constant. Hence

|| t° <p4Pku> || K13k, K2 MAX { 2A7, Ay }kk!,

<
H92(R2)
where K3k, ,Kio_7» 1S some constant. Putting Az = max{ZAil, A1},

K712 = K711/21Kl,p1K10,77/2 = 3M9,1 /2,e4 ax { KLPU KLPKS/ K141K1,p/K10,77/2 }/

212

31

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)
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we have (4.29). Similarly, we can prove by (4.8) with y = 3/2 and (4.29)

o

<K Ak,
HY2®R2) 7,3/2,K7,1/2,K10,-5/2434 (4.40)

where Ay = max{ZAgl, As}. By (4.8) with y =5/2 and (4.40), we have

o

k
Hfs,iz ®2) < K7/5/2/K7,3/2,K10,0 A5k!/ (4.41)

where As = max{2A;", A4} and K100 = (|0xtpallrzre +|tpallzrz)|plliz 1 - Repeating the same
method as in above, we obtain

o

K
<K |
HIPRY S 7.7/2,Kss0,M; A k!,

o

k
HY2(R?) < K7:9/2,K8,7/2,M7A7k!/ (4.42)

k k
||P4P u| < K7,11/2,K8,9/2,K10,0Azk!'

H}Y*(R2)

where Ag = max{ZAgl,A5}, A; = max{ZAgl,A6} and A; = max{ZA;l,Ay}. Putting K7 =
K7,11/2, K502, K100 W€ have (4.27). O

Remark 4.7. When p = 7/2, u = 9/2, we can obtain the similar estimates to (4.35) by using
Lemma 4.2 and Sobolev embedding theorem.

Proposition 4.8. Suppose that (4.27) holds for all k = 0,1,2,.... Then

sup (t1/56x>lPku < K7 AR (K + 1)1 (4.43)
tely, H (L)
holds for all k,1=10,1,2, ..., where
L, = <t0 - 54, to + 54>, L, = <x0 - 54,x0 + £4>,
Ag > max{ <|t0| + 54>1/5, Ay, <|x0| +et+ 1) <|t0 - 54|>_1/5 +1, (4.44)

4/5 -2/5
<|t0|+54> Kye*/4s max{|t0—£4| , K7}}.
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Proof. We prove (4.43) by induction on [. When I = 0,1,2, 3,4, we use the trace theorem and
(4.27) to obtain

< <|t0| +54>l/5| aiPku|

sup” (tl/Sax)lPku|

tely,

H(Iy,) HS)/rZ(I,OxIXO)

< (Itol + 54>1/5||P4Pk”||H;1/2(R2> (4.45)

1/5
< K7<|t0| + 54) Akt

< K7 AE" k!

We assume that (4.43) holds for any I > 5. Now we will prove

I+1
sup <t1/58x> " pky < K7A’8‘+l+1(k +1+ 1)L (4.46)
tel;, H(I,,)
Since
1
(9790, Phu = 0905015 (107 P
(4.47)
1 1
- ——t(l‘5)/56§_5{Pk+1u - xakau} + <t1/5> 05 e (u),
we have
1
1/5~ \+1 pk L4 (-4)/5 Al-4 pk+1
f;P”(t 3,)"'P u”Hl(Ixo) < g||eeatp u(t)”Hl(Ixo)
fo
+ 1||t(l—4)/5al—4xa <Pku>” + <t1/5>l+1al—4ﬂk(u)
5 * * H'(I) * H'(Iy,)
(4.48)
By (4.43), we have
1 1
2|1 ea-4)/5 Al-4 pk+1 2 k+1-3 Ay
5||t olip u(t)”Hl(Ixo) < K AF (k4 1-3)L (4.49)
Since
tD/5914(x0,) = x50 4 (1-4)tY594 (1=56,7,..)), (4.50)



34 Advances in Mathematical Physics

we have by (4.43)

Hesnaton (i,

l{nxa $(- 4)/56l 4pky, ” (1_4)||t(l—4)/56§—4pku| }
-5 H(I,) H'(Iy,)
1 4 4|7Y3|,0-3)/5 413 pk 1 k+l-4 |
§§<|x0|+5 +1>|t0—5 | ”t o3P u||Hl(Im)+§(1—4:)1<7A8 (k+1—4)!
-1/5
< %<|x0| +et 1)|t0 —£4| K7 A3k + 1= 3)1 + %KyA’g*H(k +1-3)!
1 k+1-2
< SKPAE T2k +1-3)L
(4.51)
Now we estimate ||(£/5)*1 014 Ay (1) || i1 (I,,)- We have
1+1 4/5
H<t1/5> O i (u) < (Jtol + ')
H(I)
M ||$U-3)/51-3 ( pka ko k3
A Sl (P ),
k!3k
_ KIS® |e-3)/541-3 i ko
* 2 KTtk k] #0752 (ocPmu o, ”>||H1a,o>}'
(4.52)
Since
BN
Ty (4A5")" (L +Kk)! (b + ko)t (I3 + k3)! (1-3)!k! <M (14 k-2), (4.53)
% ky! kq'ly! ko!lo! kslls! (I+ k- 3)' -

we have

(1) S5 (P P P

o ks lhey! H'(Iyy)
4/5 (1-3)!  kldks L
< t 4 t1/5 » Pkl
< (Jol+°) 21:%:11!12!13! ko | (170x) i Mty
1/55 \2 pks 1/55 \lpks
£7°0y) P®u (t'7°0,)°P"u )
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4/5
< <|f0| + 54> K;(l +k— 3)!Aé+k_3

o+ k) (L + k)t (I + ks)! (1 - 3)IK!

(443) ! ! ! Ik!
X;% k! kLl kol kel (I+k-3)!

4/5
< <|t0| + g4> K3ALF3eY45(1 4 k - 2)!

11<7A’<+l(k +1-2).

U‘l

(4.54)

Similarly,

<|to|+£> Zm”# V503 (0PM U 0 PRu )|

H'(I)

(1-3)! 3kl
S(|t°|+5> 2 Z L kikalkslky!

1-3=l+

x || (t/50,)1 0, PF1u || )20, Prey (4.55)

HI(I H (L)

4/5 -2/5 (1=3)tmimy _ 3k!
< (|t0| +€4> |t0 - 54| Z Z |m21! : k1'kolkslky!

I-1=m1+m, k

o GRS " (£750,)™ PRy

7

|H1 (I) |H1 (L)

where my = I; + 1 and m; = I, + 1. By m7 > my and m3 > my, we have
1
mimy = E{(1— 1) - (m} +m§)} < {(1— 12— (m +m2)} <(1-2)(1-1). (4.56)

Thus, we have by (4.56), (4.43)

3ka gl

o5 (1-3)! !
(Itol +¢*) <|t°|+5> > Z Tt KTtk !

I-1=my+my

x ||(t1/56x)m1pkl ( 1/56 )mzpkz

H(I,) H (L)
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< (il +¢") Jto- &' K20+ k- D1l

(BAN) LA (my + k) (o + o)t (1= 1)1K!

X

I-1=m1+my k

4/5 -2/5
< <|t0| + g4> |t0 - g4| K245 (1 + k)1 ALk

< K7 AFTH(K + D)L

Combining (4.48)—(4.57), we have (4.46). This completes the proof.

k3! k4' k1m1! kzﬂ’lz! (l +k - 1)'

(4.57)

Proposition 4.9. Suppose that (4.43) holds for all k,I = 0,1,2,.... Then, there exists Ag > 0

depending on As, (to, xo), and € such that

sup”a;”aﬁcu

teItO

< m+l +I)!
sy S Koo )

holds for all m,1 =0,1,2,....

Proof. By induction on m, we prove

||(xax)magp’<u|| "

In the case m = 0, we have by (4.43)

aﬁcPku|

sup < K7 Al Af (k +1)!

tely HI(L,)

<KAM(k+1)1, k,1=0,1,2,...,

where Ajg = max{Aslt) — £*|71/5, Ag}. We assume (4.59) is valid up to any m. Since

O0x(x0,)™ = (x0, + 1)™0, (m=0,1,2,..),

: < K ARPmBM(k+1+m)! k,1l,m=0,1,2,....

(4.58)

(4.59)

(4.60)

(4.61)



Advances in Mathematical Physics 37

we have

|| (x0x )m+1a;P’<u|

H (L)

< <|x0| +et+ 1) ”(xax + 1)m6§+1Pku|

H'(Iy)
< <|XQ| T+t 4 1) i L”(xa )m1al+1Pku||
< mlzoml!(m —ml)! x x H(Iy)
< (ol + € + 1) Ky AR ™ B (K + m + 1+ 1) (4.62)

. i (AwB) "™ ml (k+my +1+1)!
(m-my)! m! (k+m+1+1)!

mp=0
< (ol +&* +1)e 0P K A B (K +m +1+1)!
< Ky ARy Bl (e o + 1+ 1)1,
where By > (|xo| + &* + 1)e~4181, Since td; = (P - x0,)/5 and
PHYE = 9 (P—mp)™  (n1,m2=0,1,2,..), (4.63)
it follows from (4.59) that

|| (t0:) "0k u

< 57 Z # ||(xax)m1Pm26£Cu
1'mp!

|H1(1x0) |H1(Ix0)

m=mi+my

<57 3 |00 0P =D

m=mi+my

|H1<Ix0>

m!
< 5m s d. )™ al pm
- ;mﬂmﬂmﬂ (x X) x " Hl(IxO)
- m! l+m-ms pm (my +my +1)! (4.64)
<5"Ky(1+m)!y — 448 — B e ——
< 7(1+m) ;mﬂmz!ms! 10 1 (I +m)!

-m l+m pm m! —m3 p=m
<5 MK;Alm B! (l+m)!§m(1‘\1131) ‘B,

-m l+m -1, p1\"
< 57Ky max { A1y, B} (14 m)! (1 + (AwB1) " + B')

< KA1+ m)!,
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where Aj; = max{1,57(1 + (A10B1) + Bil)} -max{Ay9Bi, B1}. Thus,

(G

1 —
|H1u,0> <K AWM (I+m)! Lm=0,1,2,.... (4.65)

By induction on j we prove that (4.65) implies

”(tat)ma{a;u < 1<7A””“’B’ (j+m+D)! jl,m=0,1,2,.... (4.66)

|H1 (L)
In the case j = 0, we have by (4.65)

sup ” (tdy) "0k u

teIt

<K A1 +m)! k1=0,1,2,.... (4.67)

H'(I)

We assume that (4.66) is valid up to any j. Noting that

(t0)™0r = 0y (to, - 1)™  (j=0,1,2,...), (4.68)

we have

|| (t0)™0]" ol u

|H1(1,0) < ”at(tat ~1)"d0ku

H (L)

-1 m
< |t _£4| —” ta m1+1a]al |
- | 0 Z il (m —m)! (t0:) H(Iy,)

-1 . .
<|to-&| KA By 1+ m 1)
(4.69)

(m"”) l(j+l+m1+1)'

Z (m m)!mi! (j+1+m+1)!

m1—0

-1 . .
<|to-et| et KAl Bl G+ 1+ m+ 1))
<K AP G T emo+ 1),

where B, > |ty — £*['e~41. Thus (4.66) holds.
Choosing m = 0 and A9 = max{A11B,, A11} in (4.66), we have (4.58). This completes
the proof of Proposition 4.9. O
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