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We explain how the representation theory associated with supersymmetry in diverse dimensions
is encoded within the representation theory of supersymmetry in one time-like dimension. This is
enabled by algebraic criteria, derived, exhibited, and utilized in this paper, which indicate which
subset of one-dimensional supersymmetric models describes “shadows” of higher-dimensional
models. This formalism delineates that minority of one-dimensional supersymmetric models
which can “enhance” to accommodate extra dimensions. As a consistency test, we use our
formalism to reproduce well-known conclusions about supersymmetric field theories using one-
dimensional reasoning exclusively. And we introduce the notion of “phantoms” which usefully
accommodate higher-dimensional gauge invariance in the context of shadow multiplets in
supersymmetric quantum mechanics.

1. Introduction

Supersymmetry [1–5] imposes increasingly rigid constraints on the construction of quantum
field theories [6–11] as the number of space-time dimensions increases. Thus, there are
fewer supersymmetric models in six dimensions than there are in four, and yet fewer in
ten dimensions [12]. In eleven dimensions there seems to be a unique possibility [13], at
least on-shell. (Anomaly freedom imposes seemingly distinct algebraic constraints which
make this situation even more interesting.) However, the off-shell representation theory for
supersymmetry is well understood only for relatively few supersymmetries, and remains a
mysterious subject in contexts of special interest, such asN = 4 Super Yang Mills theory, and
the four ten-dimensional supergravity theories [14].

Many lower-dimensional models can be obtained from higher-dimensional models
by dimensional reduction [15, 16]. Thus, a subset of lower-dimensional supersymmetric



2 Advances in Mathematical Physics

theories derives from the landscape of possible ways that extra dimensions can be removed.
But most lower-dimensional theories do not seem to be obtainable from higher-dimensional
theories by such a process; they seem to exist only in lower-dimensions. We refer to a lower-
dimensional model obtained by dimensional reduction of a higher-dimensional model as
the “shadow” of the higher-dimensional model. So we could rephrase our comment above
by saying that not all lower dimensional supersymmetric theories may be interpreted as
shadows.

It is a straightforward process to construct a shadow theory from a given higher-
dimensional theory. But it is a more subtle proposition to construct a higher-dimensional
supersymmetric model from a lower-dimensional model, or to determine whether a lower
dimensional model actually does describe a shadow, especially of a higher-dimensional
theory which is also supersymmetric. We have found resident within lower-dimensional
supersymmetry an algebraic key which provides access to this information. A primary
purpose of this paper is to explain this.

It is especially interesting to consider reduction to one time-like dimension, by
switching off the dependence of all fields on all of the spatial coordinates. Such a process
reduces quantum field theory to quantum mechanics. Upon making such a reduction, in-
formation regarding the spin representation content of the component fields is replaced
with R-charge assignments. But it is not obvious whether the full higher-dimensional
field content, or the fact that the one-dimensional model can be obtained in this way, is
accessible information given the one-dimensional theory alone. As it turns out, this infor-
mation lies encoded within the extended one-dimensional supersymmetry transformation
rules.

We refer to the process of restructuring a one-dimensional theory so that fields depend
also on extra dimensions in a way consistent with covariant spin(1, D − 1) assignments and
other structures, such as higher-dimensional supersymmetries, as “dimensional enhance-
ment”. This process describes the reverse of dimensional reduction. We like to envision this in
terms of the relationship between a higher-dimensional “ambient” theory, and the restriction
to a zero-brane embedded in the larger space. A supersymmetric quantum mechanics then
describes the “worldline” physics on the zero-brane. And the question as to whether this
worldline physics “enhances” to an ambient space-time field theory is the reverse of viewing
the worldline physics as the restriction of a target-space theory to the zero-brane.

If the particular supersymmetric quantum mechanics obtained by restriction of a
given theory to a zero-brane depended on the particular spin(1, D − 1)-frame described
by that zero-brane, the higher-dimensional theory would not respect spin(1, D − 1)-
invariance. Thus, if a one-dimensional theory enhances into a spin(1, D − 1)-invariant higher-
dimensional theory, then the higher-dimensional theory obtained in this way should be
agnostic regarding the presence or absence of an actual zero-brane on which such a one-
dimensional theory might live. This observation, in conjunction with the requirement of
higher-dimensional supersymmetry, provides the requisite constraint needed to resolve the
enhancement question. In particular, by imposing spin(1, D − 1)-invariance on the enhanced
supercharge operator, we are able to complete the ambient field-theoretic supercharge
operator givenmerely the “time-like” restrictions of this operator.We find this interesting and
surprising.

The proposition that one can systematically delineate those one-dimensional theories
which can enhance to higher-dimensions, and also discern how the higher-dimensional
spin structures may be switched back on, is empowered by the fact that the representation
theory of one-dimensional supersymmetry is relatively tame when compared with the
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representation theory of higher-dimensional supersymmetry, for a variety of reasons. This
enables the prospect of disconnecting the problem of spin assignments from the problem
of classifying and enumerating supersymmetry representations, allowing these concerns
to be addressed separately, and then merged together afterwards. With this motivation in
mind, we have been developing a mathematical context for the representation theory of one-
dimensional supersymmetry, also with other collaborators.

The primary purpose of this paper is to demonstrate that the landscape of supersym-
metry representation theory (in any number of space-time dimensions) resides fully-encoded
within the seemingly-restricted regime of one-dimensional worldline supersymmetry
representation theory. We find this result remarkable, compelling, and noteworthy, regardless
of how complicated it may prove to algorithmically “extract” this information. But we
demonstrate below that algorithms to perform such extractions do exist. In fact, we present
explicit examples of algorithms which delineate one-dimensional models which are shadows
of higher-dimensional models from those which are not. We do not purport that our
algorithms are optimized. And we view this paper as a plateau from which more efficient
algorithms could be developed. A cursory accounting of the complexity of the general
problem is addressed in Section 5.

In a sequence of papers [17–23], we have explored the connection between repre-
sentations of supersymmetry and aspects of graph theory. We have shown that elements
of a wide and physically relevant class of one-dimensional supermultiplets with vanishing
central charge are equivalent to specific bipartite graphs which we call Adinkras; all of the
salient algebraic features of the multiplets translate into restrictive and defining features of
these objects. A systematic enumeration of those graphs meeting the requisite criteria would
thereby supplymeans for a corresponding enumeration of representations of supersymmetry.

In [24, 25], we have developed the paradigm further, explaining how, in the case
of N-extended supersymmetry, the topology of all connected Adinkras are specified by
quotients of N-dimensional cubes, and how the quotient groups are equivalent to doubly-
even linear binary block codes. Thus, the classification of connected Adinkras is related to
the classification of such codes. In this way we have discovered an interesting connection
between supersymmetry representation theory and coding theory [26–28]. All of this is part
of an active endeavor aimed at delineating a mathematically-rigorous representation theory
in one-dimension.

In this paper we use the language of Adinkras, in a way which does not presuppose
a deep familiarity with this topic. We have included Appendix B as a brief and superficial
primer, which should enable the reader to appreciate the entirety of this paper self-
consistently. Further information can be had by consulting our earlier papers on the subject.

In this paper we focus on the special case of enhancement of one-dimensional N = 4
supersymmetric theories into four-dimensional N = 1 theories. This is done to keep our
discussion concise and concrete. Another motivating reason is because the supersymmetry
representation theory for 4D N = 1 theories is well known. Thus, part and parcel of our
discussion amounts to a consistency check on the very formalism we are developing. From
this point of view, this paper provides a first step in what we hope is a continuing process
by which yet-unknown aspects of off-shell supersymmetry can be discerned. In the context
of 4D theories, we use standard physics nomenclature, and refer to spin(1, 3)-invariance as
“Lorentz” invariance.

We should mention that the prospect that aspects of higher-dimensional supersymme-
try might be encoded in one-dimensional theories was suggested years ago in unpublished
work [29] by Gates et al. Accordingly, we had used that attractive proposition as a
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prime motivator for developing the Adinkra technology in our earlier work. This paper
represents a tangible realization of that conjecture. Complementary approaches towards
resolving a supersymmetry representation theory have been developed in [30–36]. Other
ideas concerning the relevance of one-dimensional models to higher-dimensional physics
were explored in [37, 38].

This paper is structured as follows. In Section 2 we describe an algebraic context for
discussing supersymmetry tailored to the process of dimensional reduction to zero-branes
and, vice-versa, to enhancing one-dimensional theories. We explain how higher-dimensional
spin structures can be accommodated into vector spaces spanned by the boson and fermion
fields, and how the supercharges can be written as first-order linear differential operators
which are also matrices which act on these vector spaces. This is done by codifying the
supercharge in terms of diophantine “linkage matrices”, which describe the central algebraic
entities for analyzing the enhancement question.

In Section 3 we explain how Lorentz invariance allows one to determine “space-
like” linking matrices from the “time-like” linking matrices associated with one-dimensional
supermultiplets, and thereby construct a postulate enhancement. We then use this to derive
nongauge enhancement conditions, which provide an important sieve which identifies those
one-dimensional multiplets which cannot enhance to four-dimensional nongauge matter
multiplets.

In Section 4 we apply our formalism in a methodical and pedestrian manner to the
context of minimal one-dimensional N = 4 supermultiplets, and show explicitly how the
known structure of 4D N = 1 nongauge matter may be systematically determined using
one-dimensional reasoning coupled only with a choice of 4D spin structure. We explain also
how our nongauge enhancement condition provides the algebraic context which properly
delineates the chiral multiplet shadow from its 1D “twisted” analog, explainingwhy the latter
cannot enhance.

In Section 6 we generalize our discussion to include 2-form field-strengths subject to
Bianchi identities. This allows access to the question of enhancement to vector multiplets. In
the process we introduce the notion of one-dimensional “phantom” fields which prove useful
in understanding how gauge invariance manifests on shadow theories. We use the context of
the 4DN = 1 Abelian vector multiplet as an archetype for future generalizations.

We also include five appendices which are an important part of this paper. Appendix A
is especially important, as this provides the mathematical proof that imposing Lorentz
invariance of the postulate linkage matrices allows one to correlate the entire higher-
dimensional supercharge with its time-like restriction. We also derive in this appendix
algebraic identities related to the spin structure of enhanced component fields, which should
provide for interesting study in the future generalizations of this work.

Appendix B is a brief summary of our Adinkra conventions, explaining technicalities,
such as sign conventions, appearing in the bulk of the paper. Appendix C explains the
dimensional reduction of the 4D N = 1 chiral multiplet, complementary to the nongauge
enhancement program described in Section 4. Appendix D explains the dimensional
reduction of the 4DN = 1Maxwell field-strengthmultiplet, complementary to Section 5. This
shows in detail how phantom sectors correlate with gauge aspects of the higher-dimensional
theory. Appendix E is a discussion of four-dimensional spinors useful for understanding
details of our calculations.

We use below some specialized terminology. Accordingly, we finish this introduction
section by providing the following three-term glossary, for reference purposes.
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Shadow

We refer to the one-dimensional multiplet which results from dimensional reduction of a
higher-dimensional multiplet as the “shadow” of that higher-dimensional construction.

Adinkra

The term Adinkra refers to 1D supermultiplets represented graphically, as explained in
Appendix B. We sometimes use the terms Adinkra, supermultiplet, and multiplet synony-
mously.

Valise

A Valise supermultiplet, or a Valise Adinkra, is one in which the component fields span
exactly two distinct engineering dimensions. These multiplets form representative elements
of larger “families” of supermultiplets derived from these using vertex-raising operations, as
explained below. Thus, larger families of multiplets may be unpacked, as from a suitcase (or
a valise), starting from one of these multiplets.

2. Ambient versus Shadow Supersymmetry

It is easy to derive a one-dimensional theory by dimensionally reducing any given higher-
dimensional supersymmetric theory. Practically, this is done by switching off the dependence
of all fields on the spatial coordinates, by setting ∂a → 0. One way to envision this process
is as a compactification, whereby the spatial dimensions are rendered compact and then
shrunk to zero size. Alternatively, we may envision this process as describing a restriction of
a theory onto a zero-brane, which is a time-like one-dimensional submanifold embedded in a
larger, ambient, space-time. Using this latter metaphor, we refer to the restricted theory as the
“shadow” of the ambient theory, motivated by the fact that physical shadows are constrained
to move upon a wall or a wire upon which the shadow is cast.

2.1. Ambient Supersymmetry

Supersymmetry transformation rules can be written in terms of off-shell degrees of freedom,
by expressing all fields and parameters in terms of individual tensor or spinor components.
Thus, without loss of generality, we can write the set of boson components as φi and the set
of fermion components as ψı̂, without being explicitly committal as the the spin(1, D − 1)-
representation implied by these index structures. Generically, a spin(1, D − 1)-transformation
acts on these components as

δLφi =
1
2
θμν
(

Tμν
)

i

j
φj ,

δLψı̂ =
1
2
θμν
(

˜Tμν
)

ı̂

ĵ
ψĵ,

(2.1)

where the label L is a mnemonic which specifies these as “Lorentz” transformations. Here,

(Tμν)i
j represents the spin algebra as realized on the boson fields and (˜Tμν)ı̂

ĵ
represents



6 Advances in Mathematical Physics

the spin algebra as realized on the fermion fields, while θ0a parameterizes a boost in the
ath spatial direction and θab parameterizes a rotation in the ab-plane. According to the

spin-statistics theorem, (˜Tμν)ı̂
ĵ
should describe a spinor representation and (Tμν)i

j should
describe a direct product of tensor representations. The spin representations may also involve
constraints. For example, boson components may configure as closed p-forms.

In four-dimensions the N = 1 supersymmetry algebra is generated by a Majorana
spinor supercharge with components QA subject to the anticommutator relationship
{QA,QB} = 2iGμ

AB∂μ where G
μ

AB = −(ΓμC−1)AB. A parameter-dependent supersymmetry
transformation is generated by δQ(ε) = −iεAQA, where εA describes an infinitesimal
Majorana spinor parameter, and εA = (ε†Γ0)

A is the corresponding barred spinor. It proves
helpful, for our express purpose of restricting to a zero-brane, to use a Majorana basis where
all spinor components, and all four gamma matrices, are real. (See Appendix E for specifics
related to this basis.) Furthermore, in this basis, we have the nice result G0

AB = δAB. With
this choice, we can rewrite our supersymmetry transformation as δQ(ε) = −iεAQA, where
QA = (Γ0)

B
AQB. (This merely technical reorganization facilitates dimensional reduction of 4D

multiplets, as done in Appendices C and D.) The four-dimensional N = 1 supersymmetry
algebra, written in terms of the operators QA, is then given by

{QA,QB} = 2iδAB∂τ − 2iGa
AB∂a, (2.2)

where x0 := τ is the time-like coordinate parameterizing the the zero-brane towhichwe intend
to restrict, and xa := (x1, x2, x3) are the three space-like coordinates transverse to the zero-
brane. To dimensionally reduce a four-dimensional field theory to a one-dimensional field
theory, we set ∂a = 0. In this way, the second term on the right-hand side of (2.2) disappears,
and we obtain the one-dimensionalN = 4 supersymmetry algebra.

It proves helpful to add a notational distinction, by writing δQφi = −iεA(QA)i
ı̂ψı̂ and

δQψı̂ = −iεA( ˜QA)ı̂
i
φi, appending a tilde to ˜QA when this describes a fermion transformation

rule. The supercharges may be represented as first-order linear differential operators, as

(QA)i
ı̂ = (uA)i

ı̂ +
(

Δμ

A

)

i

ı̂
∂μ,

(

˜QA

)

ı̂

i
= i(ũA)ı̂

i + i
(

˜Δμ

A

)

ı̂

i
∂μ,

(2.3)

where uA, ũA, Δ
μ

A, and ˜Δ
μ

A are real valued “linkage matrices” which play a central role in our
discussion below.

The matrices (uA)i
ı̂ describe “links” corresponding to supersymmetry maps from the

bosons φi to fermions ψı̂ having engineering dimension one-half unit greater than the bosons.
Therefore, these codify “upward” maps connecting lower-weight fermions to higher-weight
bosons. (The term “weight” refers to the engineering dimension of the field. We sometimes
use the term weight in lieu of dimension, to avoid confusion with space-time dimension. The
weight of a field correlates with the vertex “height” on an Adinkra diagram.) Similarly, the
matrices (ũA)

i
ı̂ codify “upward” maps connecting lower-weight fermions to higher-weight

bosons. The matrices (Δμ

A)i
ı̂
and ( ˜Δμ

A)ı̂
i
codify “downward” maps accompanied by their re-

spective derivatives ∂μ.
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The component fields may be construed so that the linkage matrices conform to a
special structure, known as the Adinkraic structure. This says that there is at most one
nonvanishing entry in each column and at most one nonvanishing entry in each row.
Moreover, the nonvanishing entries take the values ±1. All known higher-dimensional off-
shell representations in the standard literature satisfy this condition. (The only counter
examples that we know of were contrived by us in [20], as special deformations of one-
dimensional Adinkraic representations. And we suspect that these do not enhance. Further
scrutiny will be needed to ascertain any relevance of nonAdinkraic multiplets to physics. We
find it sensible for now to focus on Adinkraic representations, especially since all known field
theoretic multiplets are in this class.)

The supersymmetry algebra (2.2) implies

(

u(AũB)
)

i

j = 0,
(

ũ(AuB)
)

ı̂

ĵ = 0,

(

Δ(μ
(A
˜Δν)
B)

)

i

j
= 0,

(

˜Δ(μ
(AΔ

ν)
B)

)

ı̂

ĵ
= 0,

(2.4)

which describes a higher-dimensional analog of the Adinkra loop parity rule described in
[17] and below, and also implies

(

u(A
˜Δμ

B) + Δμ

(AũB)

)

i

j
= Λμ

ABδi
j ,

(

ũ(AΔ
μ

B) + ˜Δ
μ

(AuB)

)

ı̂

ĵ
= Λμ

ABδı̂
ĵ,

(2.5)

where Λμ

AB = (Γ0GμΓ0)AB = (Γ0ΓμΓ0C−1)AB, whereby Λ0
AB = G0

AB and Λa
AB = −Ga

AB. Equations
(2.5) play a central role in this paper.

The classification of representations of supersymmetry in diverse dimensions is
equivalent to the question of classifying and enumerating the possible sets of real linkage
matrices which can satisfy the algebraic requirements in (2.4) and (2.5), and identifying the

corresponding spin representation matrices (Tμν)i
j and (˜Tμν)ı̂

ĵ
.

2.2. Shadow Supersymmetry

The one-dimensional N = 4 superalgebra is specified by {QA,QB} = 2iδAB∂0, which corre-
sponds to (2.2) in the limit ∂a → 0. In this case, the supercharges are represented as

(QA)i
ı̂ = (uA)i

ı̂ + (dA)i
ı̂∂τ ,

( ˜QA)ı̂
i
= i(ũA)ı̂

i + i( ˜dA)ı̂
i
∂τ .

(2.6)

This is identical to (2.3) except the index μ is restricted to the sole value μ = 0, and the down
matrices have been renamed by writing Δ0

A as dA and ˜Δ0
A as ˜dA. As mentioned above, the

fields may be configured so that each linkage matrix has not more than one nonvanishing
entry in each row and likewise in each column, and the nonvanishing entries are ±1. This
specialized structuring enables the faithful translation of 1D supercharges in terms of helpful
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and interesting graphs known as Adinkras, as mentioned in Section 1. The reader should
consult Appendix B for a simple-but-practical overview of this concept.

The algebra obeyed by 1D linkage matrices may be obtained from (2.4) and (2.5) by
allowing only the value 0 for the space-time indices μ and ν. Thus, the linkage matrices are
constrained by

(

u(AũB)
)

i

j = 0,
(

ũ(AuB)
)

ı̂

ĵ = 0,

(

d(A ˜dB)
)

i

j
= 0,

(

˜d(AdB)
)

ı̂

ĵ
= 0.

(2.7)

These relationships imply a “loop parity” rule, described in our earlier papers, which says
that any closed bicolor loop on an Adinkra diagram must involve an odd number of edges
with odd parity. The linkage matrices are further constrained by

(

u(A ˜dB) + d(AũB)
)

i

j
= δABδi

j ,

(

ũ(AdB) + ˜d(AuB)
)

ı̂

ĵ
= δABδı̂

ĵ.

(2.8)

In this context, the algebra defined by (2.8) was called a “Garden algebra” by Gates and
Rana in [39, 40], and the the matrices uA and dA were called Garden matrices. The larger
algebra given in (2.4) and (2.5) generalizes this concept to diverse space-time dimensions,
and accordingly subsumes these smaller algebras.

A one-dimensional supermultiplet is specified by the set of linkage matrices uA, ũA,
dA, and ˜dA or equivalently by the Adinkra diagram representing these matrices. Given a
set of linkage matrices one can construct the equivalent Adinkra. Alternatively, given an
Adinkra, one can use this to “read off” the equivalent set of linkage matrices. Given either of
these, one can ascertain supersymmetry transformation rules and invariant action functionals
fromwhich one can study one-dimensional physics. The linkagematrices associatedwith any
Adinkra satisfy the algebra (2.7) and (2.8) by definition.

3. Enhancement Criteria for Shadow Supermultiplets

The requirement that the linkage matrices appearing in the supercharges (2.3) are spin(1, D −
1)-invariant has remarkable implications. One of these is the fact that the “space-like” linkage
matrices Δa

A are completely determined by the “time-like” linkage matrices Δ0
A. The proof of

this assertion is given as Appendix A, with the result

(

Δa
A

)

i

ı̂ = −(Γ0Γa)A
B
(Δ0

B)i
ı̂
,

( ˜Δa
A)ı̂

i
= −(Γ0Γa)A

B
( ˜Δ0

B)ı̂
i
.

(3.1)

It is interesting that the matrix (Γ0Γa)A
B is precisely twice a boost operator in the ath

spatial direction, in the spinor representation. It is also interesting that the result (3.1) holds
irrespective of the spin(1, D − 1)-representations described by the component fields. That is,
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the assignment of the matrices (Tμν)i
j and (˜Tμν)ı̂

ĵ
defined in (2.1) does not influence (3.1).

These nontrivial consequences are derived explicitly in Appendix A. (The Lorentz invariance
of the linkage matrices does imply interesting and interlocking constraints on the allowable

choices of (Tμν)i
j and (˜Tμν)ı̂

ĵ
. These are exhibited in Appendix A. Such correlations are

certainly expected, and we suspect that (A.4) and (A.5) have deep and useful implications,
which we hope to explore in future work.)

It is worth mentioning that the form of (3.1) agrees precisely with the linkage matrices
derived from Salam-Strathdee superfields. Also, the appearance of Γa on the right-hand side
is tied closely to the appearance of the Γa in the defining supersymmetry algebra.

The result (3.1) is the crux ingredient which allows one to determine whether
a given one-dimensional supermultiplet describes the shadow of a higher-dimensional
supermultiplet. This follows because any one-dimensional multiplet organizes as (2.3)where
the index μ assumes only the value 0. To probe whether that multiplet describes a shadow,
one creates “provisional” off-brane linkages using the powerful expression (3.1). Since there
is no algebraic guarantee that the transformation rules so-extended will properly close the
higher-dimensional superalgebra, nor that the boson and fermion vector spaces will properly
assemble into representations of the higher-dimensional spin group, the higher-dimensional
superalgebra itself, applied to this construction, provides the requisite analytic probe of that
possibility: if the one-dimensional multiplet is a shadow then the provisional construction
will close the higher-dimensional superalgebra; if it is not possible, then it will not.

The supersymmety algebra in D-dimensions closes only if (Ωμ

AB)i
j
∂μφj = 0 and

( ˜Ωμ

AB)ı̂
ĵ
∂μψĵ = 0, where we define the following useful matrices:

(

Ωμ

AB

)

i

j
=
(

u(A
˜Δμ

B) + Δμ

(AũB)

)

i

j −Λμ

ABδi
j ,

(

˜Ωμ

AB

)

ı̂

ĵ
=
(

ũ(AΔ
μ

B) + ˜Δ
μ

(AuB)

)

ı̂

ĵ −Λμ

ABδı̂
ĵ.

(3.2)

This requirement is a minor restructuring of (2.5). In this way, we have written the supersym-
metry algebra as a linear algebra problem, cast as matrix equations.

Many important supemultiplets exhibit gauge invariances, manifest as physical re-
dundancies inherent in the vector spaces spanned by the component fields. In these cases,

the matrices (Ωμ

AB)i
j
and ( ˜Ωμ

AB)ı̃
j̃
, are not unique. Instead these describe classes of matrices

interrelated by operations faithful to the gauge structure. We describe this interesting
situation, in Section 6. It is useful, however, to begin our discussion with what we call
nongauge matter multiplets, which do not exhibit redundancies of this sort. For this smaller
but nevertheless interesting and relevant class of supermultiplets, the higher-dimensional
supersymmetry algebra is satisfied only if

(

Ωμ

AB

)

i

j
= 0,

(

˜Ωμ

AB

)

ı̂

ĵ
= 0.

(3.3)
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We refer to these equations as our nongauge enhancement criteria. These enable a practical
algorithm for testing whether a given 1D supermultiplet represents the shadow of a 4D
nongauge matter multiplet.

We use the linkage matrices for a given 1D supermultiplet in conjuction with the 4D
gamma matrices to compute all of the d × d matrices Ωμ

AB and ˜Ωμ

AB, defined in (3.2). If (3.3)
is satisfied, that is, if all of these matrices are identically null, then the 1D multiplet passes an
important, nontrivial, and necessary requirement for enhancement to a 4D nongauge matter
multiplet. If these matrices do not vanish, then the 1D multiplet cannot enhance to a 4D
nongauge matter multiplet. In the latter case, further analysis must be done to probe whether
this multiplet can enhance to a gauge multiplets. Equation (3.3) represents a useful “sieve”
in the separation of 1D multiplets into groups as shadows versus nonshadows.

A second important sieve derives from the spin-statistics theorem. As it turns out, a
minority of 1D multiplets actually pass the test (3.3). But those that do come in pairs related
in-part by a Klein flip, which is an involution under which the statistics of the fields are
reversed—boson fields are replacedwith fermion fields and vice versa. Thus, we can organize
those multiplets which pass the test (3.3) into such pairs. We then ascertain which elements
of each pair satisfy the requirement that fermions assemble as spinors and the bosons as
tensors. Those multiplets that do not pass this test describe another class of multiplets which
do not describe ordinary shadows. Typically, one multiplet out of each pairing satisfies the
spin-statistics test while the other multiplet fails this test. (The important role of the Klein flip
in the representation theory of superalgebras was addressed by one of the authors (G.L.) in
previous work [41].)

In the explicit examples analyzed below in this paper, it is obvious when certain
multiplets which pass the first enhancement test (3.3) fail the spin-statistics test. This occurs
when the multiplicity of fermions with a common engineering dimension is not a multiple of
four, thereby obviating assemblage into 4D spinors. In fact our analysis below is remarkably
clean. In more general cases, we suspect that more careful attention to the implications of the
Lorentz invariance of the provisional supercharge, codified by equations such as (A.4), will
provide the requisite sophistication needed to address enhancement at higherN and higher
D. We think this will be a most interesting undertaking.

4. Nongauge Matter Multiplets

In this section we impose our enhancement equation (3.3) on the linkage matrices associated
with all of the minimal N = 4 Adinkras, of which there are 60 in total, to ascertain which of
these represent shadows of 4D N = 1 nongauge matter multiplets. Since the represention
theory for minimal irreducible multiplets in 4D N = 1 supersymmetry is well known,
this setting provides a natural laboratory for testing our technology. The principal result of
this section is that our enhancement equation properly corroborates what is known about
nongauge matter in 4D N = 1 supersymmetry, thereby passing an important consistency
test. Another principal result of this section identifies our enhancement equation as the
natural algebraic sieve which distinguishes the chiral multiplet shadow from its “twisted”
analog.

By the term “nongauge matter multiplets” we refer to 4D supermultiplets which
involve component fields neither subject to gauge transformations nor subject to differential
constraints, such as Bianchi identities. This excludes the vector and the tensor multiplets,
as well as the the corresponding field-strength multiplets. We postpone a discussion of
these interesting cases until the next section. In fact, the only nongauge matter multiplet
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in 4D N = 1 supersymmetry is the chiral multiplet. (An antichiral multiplet, which can
be formed as the Hermitian conjugate of a chiral multiplet, is not distinct from the latter
as representation of the 4D N = 1 supersymmetry algebra separate from inherent complex
structures; the assignment of possible U(1) charge assignments represents “extra” data not
considered overtly in this paper. Ignoring the complex structure, the chiral and the antichiral
multiplets have indistinguishable shadows.) As we will see, among the 60 different minimal
N = 4 Adinkras there are exactly four which satisfy our primary enhancement condition
(3.3). For two of these, the fermions configure as a spinor and the bosons configure as
Lorentz scalars. For the other two the fermions configure as Lorentz scalars while the bosons
configure as a spinor. The latter case fails the spin-statistics test, which says that fermions
must assemble as spinors, and bosons must assemble as tensors. Thus, our method identifies
the two Adinkras which can provide shadows of 4D minimal nongauge matter multiplets.
(Conceivably, the fact that there are two such enhanceable N = 4 minimal Adinkras may
relate to the fact that there are two complementary choices of complex structure, related to
the chiral and antichiral multiplets, as mentioned in the previous footnote.)

It is noteworthy that there are two separate minimal N = 4 Adinkra families, related
by a so-called twist, implemented by toggling the parity of one of the four edge colors.
Thus, the shadow of the chiral multiplet has a twisted analog which cannot enhance to
4D. That multiplet, which has been called the twisted chiral multiplet, describes 1D physics
which cannot be obtained by restriction from four-dimensions. We have long wondered what
algebraic feature distinguishes these two. (We learned about this interesting curiosity from
Jim Gates, in the context of a former collaboration.) As it turns out, the linkage matrices
for the chiral multiplet shadow satisfy the enhancement equations (3.3) whereas the linkage
matrices for the twisted chiral multiplet do not. This answers this long-puzzling question.
Details are presented below in this section.

In order to ascertain whether a given Adinkra enhances to 4D we need to subject
the corresponding linkage matrices to the space-like subset of the equations in (3.3). (The
time-like equations are satisfied automatically, since an Adinkra is a representation of
1D supersymmetry by construction.) In the case of testing enhancement to 4D N = 1
supersymmetry, each of the two conditions in (3.3) describes 30 matrix equations for each
of the 60 Adinkras to be tested, since for each of the three choices for a, the corresponding
symmetric matrices Ga

AB = Ga
(AB) have ten independent components. Thus, according to the

crudest counting argument, in order to test both the bosonic and fermionic conditions in
(3.3) for all the minimal N = 4 Adinkras, we need to check 60 × 30 × 2 = 3600 matrix
equations, each involving products of 4 × 4 matrices. This is a simple matter which we have
managed expediently using rudimentary Mathematica programming. (The complexity of the
more general problem is addresed in the following section.)

The smallest Adinkras which can possibly enhance to describe 4D supersymmetry
are N = 4 Adinkras describing 4 + 4 off-shell degrees of freedom. We therefore start by
consideringN = 4 bosonic 4-4 Valise Adinkras. There are exactly two of these not interrelated
by cosmetic field redefinitions. These are exhibited in Figure 1. In this paper we correlate the
four edge colors with choices of the index A so that purple, blue, green, and red correspond
respectively to the operators Q1,2,3,4. For purposes of setting a convention for ordering the
rows and columns of our linkage matrices, we sequence the boson fields φi and the fermion
fields ψı̂ using the obvious faithful correspondence with the index choices. Furthermore, in
the Adinkras exhibited in this section, the white vertices labeled 1, 2, 3, 4 represent the boson
fields φi with corresponding index choices, while the black vertices labeled 1, 2, 3, 4 represent
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Figure 1: The two N = 4 Valise Adinkras. The Adinkra on the right is obtained from the Adinkra on the
left by implementing a “twist”, toggling the parity of the green edges.

the fermion fields ψı̂ with corresponding index choices. This allows us to readily translate
each Adinkra into precise linkage matrices, using the technology explained in Appendix B.

The linkagematrices (uA)i
ı̂ corresponding to the first Adinkra in Figure 1 are exhibited

in Table 1. (The diligent reader should verify the correspondence between Figure 1 and
Table 1 using the simple technology explained in Appendix B.) These codify the “upward”
links connecting the bosons φi to the fermions ψı̂ having greater engineering dimension.
Since there are no edges linking downward from any of the boson vertices, it follows
that (dA)i

ı̂ = 0 in this case. Similarly, we have (ũA)ı̂
i = 0, reflecting the fact that none

of the fermions have upward directed edges. Finally, we have ( ˜dA)ı̂
j
= δABδjk(uB)k

̂kδ
̂kı̂ and

(dA)i
ĵ = δABδĵ

̂k(ũB)̂k
kδki, schematically ˜dA = uTA and dA = ũTA, reflecting the fact that every

edge describes a pairing of an upward directed term and a corresponding downward directed
term. The relationships ˜dA = uTA and dA = ũTA are characteristic of “standard Adinkras”.
Nonstandard Adinkras, which can include “one-way” upward Adinkra edges, appear in
gauge multiplet shadows, as explained below, and in also in other contexts of interest. (Some
considerations involving “one-way” Adinkra edges were described in both [21, 23].)

4.1. The N = 4 Bosonic 4-4 Adinkras

Using the features ũA = dB = 0 and ˜dA = uTA, and using the matrices Ga
AB in (E.10), we can

begin to analyze the enhancement equations associated with the left Adinkra in Figure 1.
Consider the first equation in (3.3) for the index choices (a | A,B) = (a | 1, 1). Since
Λ1

11 = −G1
11 = 0, that 4 × 4 matrix equation reads u1 ˜Δ1

1 = 0. We then use (3.1), along with
the gamma matrices in (E.3) to determine ˜Δ1

1 = − ˜Δ0
3, which is equivalent to ˜Δ1

1 = − ˜d3 using
the nomenclature ˜Δ0

A ≡ ˜dA. Thus, the first equation in (3.3) reduces for the left Adinkra
in Figure 1 and the index selections (a | A,B) = (1 | 1, 1) to the simple matrix equation
u1u

T
3 = 0, where we have also used ˜d3 = uT3 . Using Table 1, it is easy to check that this simple

requirement is not satisfied. This tells us that the left Adinkra in Figure 1 cannot enhance to a
4D nongauge matter multiplet. Since the linkage matrices associated with the right Adinkra
in Figure 1 are obtained from Table 1 by toggling the overall sign on u3 only, and since the
enhancement equation u1u

T
3 = 0 is unchanged by such an operation, it follows that neither

Adinkra in Figure 1 can enhance to a 4D nongauge matter multiplet.
The methodology explained in the last paragraph can be applied systematically for

each possible index choice (a | A,B) for any selected Adinkra. In each case the time-like
linkage matrices Δa

AB are determined using (3.1), so that the enhancement equation can be
translated to a matrix statement involving the linkage matrices specific to the 1D multiplet
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Table 1: The boson “up” linkage matrices for the left 4-4 Valise Adinkra shown in Figure 1. The upmatrices
for the right Adinkra in that figure are obtained from these by changing the sign of u3.
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directly corresponding to the Adinkra. In the following discussion we do not repeat most
of these steps. But the reader should be aware that (3.1) is used in each example which we
discuss, and the use of this equation is what allows us to cast the enhancement equation in
terms of the matrices uA, dA = Δ0

A, and their transposes.

4.2. The N = 4 Bosonic 3-4-1 Adinkras

Consider next those Adinkras obtained by raising one vertex starting with each Adinkra
in Figure 1. There are four possibilities starting from each of the two Valises, namely
one possibility associated with raising any one of the four bosons. For example, if we
raise the boson vertex labeled “4” starting from each Valise, what results are the two
Adinkras in Figure 2. In these cases, we end up with three bosons at the lowest level, four
fermions at the next level, and a single boson at the next level. We refer to Adinkras with
this distribution of vertex multiplicities as bosonic 3-4-1 Adinkras, where the sequence of
numerals faithfully enumerates the sequence of vertex multiplicities at successively higher
levels. (These alternate between boson and fermion multiplicities, naturally.) It is easy to see
that there are exactly eight bosonic 3-4-1N = 4 Adinkras, and that these split evenly into two
groups interrelated by a twist operation.

We should point out that two Adinkras are equivalent if they are mapped into each
other by cosmetic renaming of vertices, equivalent to linear automorphisms on the vector
spaces spanned by the bosons φi or fermions ψı̂, in cases where these maps preserve all
vertex height assignments. Such transformations have been called “inner automorphisms”.
The simplest examples correspond to rescaling any component field by a factor of −1. This
manifests on an Adinkra by simultaneously toggling the parity of every edge connected to
the vertex representing that field, that is, by changing dashed edges into solid edges and vice-
versa. (This is referred to as “flipping the vertex”, and was described already in [17].) Our
observation that there are two distinct families of minimal N = 4 Adinkras interrelated by
a twist operation refers to the readily-verifiable fact that one cannot “undo” a twist by any
inner automorphism. (The curious reader might find it amusing to draw Adinkra diagrams,
and investigate this statement for his or her self.) It is also true that there are only two twist
classes of minimalN = 4 Adinkras, despite the fact that there are four different colors which
can be used to implement a twist. This is so because a given twist applied using any chosen
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Figure 2: The two 3-4-1 Adinkras obtained from the Valise Adinkras in Figure 1 by raising one vertex. Here
we have raised the boson vertex labeled 4.

edge color can be equivalently implemented as a twist applied using any other edge color
augmented by a suitable inner automorphism.

When we raise an Adinkra vertex, the up and down linkage matrices accordingly
modify. For example, consider the the 3-4-1 Adinkra on the left in Figure 2, obtained from
the Adinkra on the left in Figure 1 by raising the φ4 vertex. The corresponding boson up and
down matrices, which are straightforward to read off of the Adinkra, are shown in Table 2.
Note that in this case the boson down matrices dA no longer vanish as they did in the case
of the Valise. This is because the φ4 vertex obtains downward links after being raised. The
fermion up matrices, which are determined for this standard Adinkra using ũA = dTA, are also
nonvanishing after this vertex raise, since each of the fermions obtains an upward link to the
boson φ4.

Given a standard Adinkra, it is possible to raise the nth boson vertex if and only if
the nth row of each boson down matrix is null, that is, provided (dA)n

ı̂ = 0 for all values
of ı̂. This criterion ensures that the nth boson vertex does not have any downward links
which would preclude the vertex from being raised. (Since for standard Adinkras we have
ũA = dTA, this criterion also implies that there are no lower fermions which link upward to the
boson in question.) Absent such a tethering, the boson is free to be raised. This operation
is implemented algebraically by interchanging the nth row of each boson up matrix uA
with the nth row of the respective boson down matrix dA. Thus, we implement the matrix
reorganizations (uA)n

ı̂ ↔ (dA)n
ı̂. At the same time, we must interchange the nth column of

each fermion up matrix ũA with the nth column of the respective fermionic down matrix ˜dA,
via (ũA)ı̂

n ↔ ( ˜dA)ı̂
n
. The latter operation preserves the standard relationships ũA = dTA and

˜dA = uTA. It is easy to check that the linkage matrices in Table 2 are obtained from the linkage
matrices in Table 1 by appropriately interchanging the fourth rows of the boson up and down
matrices according to the above discussion.

We now use the enhancement equation to analyze the eight standard N = 4 bosonic
3-4-1 Adinkras to ascertain if any of these can enhance to a 4D N = 1 nongauge matter
multiplet. To begin, we start with the left Adinkra in Figure 2, by using the boson linkage
matrices in Table 2 and the fermion linkage matrices determined by ũA = dTA and ˜dA = uTA.
Using theGa

AB given in (E.10), the first condition in (3.3) reduces for the choice (a | AB) = (1 |
11) to the matrix equation u1uT3 + d3dT1 = 0. Using the explicit matrices in Table 2, it is easy to
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Table 2: Linkage matrices for the left 3-4-1 Adinkra shown in Figure 2. The linkage matrices for the right
Adinkra in that figure are obtained from these by changing the sign of u3 and d3.
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see that this requirement is not satisfied. This tells us that the left Adinkra in Figure 2 cannot
enhance to a 4D nongauge matter multiplet.

Since the right Adinkra in Figure 2 is obtained from the left Adinkra in that figure
by twisting the green edges, corresponding to replacing Q3 → −Q3, the linkage matrices for
that second 3-4-1 Adinkra are obtained from those in Table 2 by scaling the matrices u3, d3, ũ3,
and ˜d3 each by a multiplicative minus sign. The (a | AB) = (1 | 1, 1) enhancement equation,
u1u

T
3 + d3d

T
1 = 0, is unchanged by this operation. So we conclude that neither Adinkra in

Figure 2 can enhance to a nongauge 4D matter multiplet. It is straightforward to repeat this
analysis for all cases associated with raising any possible single boson vertex starting with
either of the Valise Adinkras in Figure 1. It follows, after careful analysis of each case, that
the nongauge enhancement equation (3.3) is not satisfied for any of the eight bosonic 3-4-1
Adinkras.

4.3. The N = 4 Bosonic 2-4-2 Adinkras

Things become more interesting when we raise one of the lower bosons in 3-4-1 Adinkras to
obtain 2-4-2 Adinkras. In the end there are twelve minimal N = 4 bosonic 2-4-2 Adinkras—
six obtained by two vertex raises starting from the left Adinkra in Figure 1 and six obtainable
by two vertex raises starting from the right Adinkra in Figure 1. The six possibilities in each
class correspond to the six different ways to select pairs from four choices. For example, if
we raise φ3 and φ4 in either case then what results are the two 2-4-2 Adinkras shown in
Figure 3. For the left Adinkra in Figure 3, the boson linkage matrices are shown in Table 3.
(It is straightforward to read these matrices off of the Adinkra. It is also straightforward to
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Figure 3: TheN = 4 2-4-2 Adinkras may be obtained from 3-4-1 Adinkras by raising one vertex. Here we
have raised the third boson vertex starting with the two Adinkras shown in Figure 2.

obtain these matrices algebraically, as explained above, by interchanging the third rows of
the 3-4-1 up and down matrices shown in Table 2.)

We now use the enhancement equation (3.3) to analyze the twelve standard N = 4
2-4-2 Adinkras to ascertain if any of these can enhance to a 4D N = 1 nongauge matter
multiplet. To begin, we start with the left Adinkra in Figure 3, equivalently described by the
boson linkage matrices specified in Table 3 and by the fermion linkage matrices determined
from these by ũA = dTA and ˜dA = uTA.

We found above that for each of the two N = 4 Valise Adinkras and for each of the
eight 3-4-1 Adinkras the enhancement equation corresponding to (a | A,B) = (1 | 1, 1) is not
satisfied. This is equivalent to the statement that the 4 × 4 matrix determined by u1uT3 + d3dT1
does not vanish in these cases. The reader should compute this combination in those cases,
and then also compute this combination using the linkagematrices in Table 3. It is noteworthy
that in this latter case, that is, using the matrices in Table 3, the computation of u1uT3 + d3dT1
does indeed produce the 4 × 4 null matrix. So the particular obstruction which we identified
in the 4-4 and 3-4-1 Adinkras is notably absent for the specific 2-4-2 Adinkra shown on the
left in Figure 1.

Having satisfied the (a | A,B) = (1 | 1, 1) equation, it remains to analyze all of the
other possible choices for (a | A,B) and check the enhancement equations (3.3) in each case.
It is interesting to comment on the case (a | A,B) = (1 | 1, 4), for example. In this case the
enhancement equation reads

u1u
T
2 + d2dT1 + u4uT3 + d3dT4 = 0. (4.1)

Note that this is satisfied using the matrices in Table 3. So the left 2-4-2 Adinkra in Figure 3
passes this second enhancement test. (Thus, this Adinkra passes two out of 60 different tests,
counting the both the bosonic and the fermionic enhancement conditions for each of the 30
index choices (a | A,B).)

It is interesting that, unlike the left Adinkra in Figure 3, the right Adinkra in Figure 3
fails the test (4.1). This can be seen by noting that (4.1) is sensitive to the parity on any one of
the four edge colors since the overall signs on the first two terms flip upon toggling the sign
on Q1 or Q2 while the sign on the third and fourth terms flip upon toggling the sign on Q3

or Q4. More specifically, the linkage matrices for the second Adinkra in Figure 3 are obtained
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Table 3: Linkage matrices for the left 2-4-2 Adinkra shown in Figure 3. The linkage matrices for the right
Adinkra in that figure are obtained from these by changing the sign of u3 and d3.
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from Table 3 by toggling the sign on Q3, which toggles the overall sign on the matrices u3
and d3. If we substitute the linkage matrices for the right Adinkra in Figure 3, obtained in
this way, into (4.1) we find that this equation is no longer satisfied. Thus, we conclude that
the right Adinkra in Figure 3 cannot enhance to a 4D nongauge matter multiplet. Again, the
reader should check these assertions by doing a few simple matrix calculations.

Further analysis of all of the remaining 58 enhancement conditions shows that the
matrices in Table 3 pass every one of these tests. This is a nontrivial accomplishment, which
indicates that the left Adinkra in Figure 3 does represent the shadow of a 4DN = 1 nongauge
matter multiplet. As a representative example, consider the bosonic enhancement condition
for the choice (a | A,B) = (2 | 3, 2). This equation reads

u2u
T
2 + u3uT3 + d2dT2 + d3dT3 = 2, (4.2)

where the factor of 2 on the right-hand side means twice the 4 × 4 unit matrix. The reader
should verify that (4.2) is the bosonic enhancement equation described by (3.3) in this case.
The reader should also verify that (4.2) is satisfied by the linkage matrices in Table 3.

The fact that the first Adinkra in Figure 3 describes the shadow of the 4D N = 1
chiral multiplet is easy to check by performing a direct dimensional reduction of the chiral
multiplet. This is done explicitly in Appendix C. In that appendix we derive the shadow
Adinkra, shown in Figure 4, by direct translation of the 4D chiral multiplet transformation
rules. The left Adinkra in Figure 3 is obtained from the Adinkra in Figure (4) by reorganizing
fields according to the following four permutation operations: φ1 ↔ φ2, φ3 ↔ φ4, ψ1 ↔ ψ4,
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and ψ2 ↔ ψ3. This describes a cosmetic inner automorphism, indicating that the twoAdinkras
are equivalent.

The fact that the left Adinkra in Figure 3 passes the enhancement criteria while
the right Adinkra does not identifies the left Adinkra as the chiral multiplet shadow and
identifies the right Adinkra as the so-called twisted chiral multiplet. We also find that the
2-4-2 Adinkra obtained by raising the vertices φ1 and φ2 starting from the left 4-4 Valise in
Figure 1 also passes all of the enhancement criteria whereas the twisted analog of this does
not. Scrutiny of all twelve bosonic 2-4-2 Valises confirms that only those two cases in the
nontwisted family, associated with the left Valise in Figure 1, obtained by raising either the
pair (φ1, φ2) or the pair (φ3, φ4) can enhance to nongauge matter multiplets in 4D.

4.4. The Two 30-Member N = 4 Adinkra Families

It is straighforward to systematically check the enhancement conditions for all 30 Adinkras
in each of the two families—one family associated with each of the two Valises in Figure 1. In
each case, the 30-member family consists of the bosonic 4-4 Adinkra (the Valise), four bosonic
3-4-1 Adinkras, six bosonic 2-4-2 Adinkras, four bosonic 1-4-3 Adinkras, and the Klein flip of
each one of these 15 representatives. (The Klein flipped Adinkras are the fermionic 4-4 Valise
and the 14 fermionic Adinkras obtainable from this by various vertex raises.)

In total there are exactly four out of the 60minimal Adinkras which pass our nongauge
enhancement criteria (3.3). The first two are the bosonic 2-4-2 chiral multiplet shadows
obtained by raising either φ1 and φ2 or by raising φ3 and φ4 starting from the left Adinkra
in Figure 1. The other two Adinkras reside in the other (relatively twisted) family, and are
obtained from the right Adinkra in Figure 1 by first raising all four bosonic vertices, then
raising either the fermionic vertices ψ1 and ψ2 or by raising the fermionic vertices ψ3 and
ψ4. These operations produce fermionic 2-4-2 Adinkras corresponding to twisted Klein flips
of the two enhanceable bosonic 2-4-2 Adinkras. Since in these cases there are at most two
fermions at any given height assignment, it is clear that these cannot assemble as 4D spinors.
As we explained above, the Adinkras which pass the enhancement criteria come in pairs,
one element of which passes the spin-statistics test and one which does not. In this way we
conclude that of the 60 minimal Adinkras specified above only the two bosonic 2-4-2 cases
can describe shadows of nongauge 4D matter multiplets.

It might appear curious that the four bosonic 2-4-2 Adinkras obtained from the right
Adinkra in Figure 1 by raising (φ1, φ3) or (φ1, φ4) or (φ2, φ3) or (φ2, φ4) do not pass the
enhancement criteria whereas the two Adinkras obtained by raising (φ1, φ2) or (φ3, φ4) do
pass this test. The reason why certain combinations of component fields appear favored
relates to the fact that we havemade a choice of spin structure whenwe selected the particular
gamma matrices in (E.9). It is interesting that we lose no generality in making such a choice,
however, since the freedom to choose a 4D spin basis is replaced by a corresponding freedom
to perform inner automorphisms on the vector space spanned by the 1D component fields.

Upon selecting a higher-dimensional spin basis, the enhancement equations (3.3)
place restrictions on the component fields which are legitimately meaningful; the result that
exactly two out of the 60 minimalN = 4 Adinkras enhance to nongauge 4D supersymmetric
matter, along with the observation that those 1D multiplets which do enhance have 2-4-2
component multiplicities says something salient about 4D supersymmetry representation
theory. Specifically it says that any 4D N = 1 nongauge matter multiplet must have two
physical bosons, four fermions, and two auxiliary bosons. This corroborates what has long
been known about the minimal representations of 4D N = 1 supersymmetry. What is
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remarkable is that we have hereby shown that this information is fully extractable using
merely 1D supersymmetry and a choice of 4D spin structure—that this information lies fully
encoded in the 1D supersymmetry representation theory codified by the families of Adinkras,
and that the key to unlocking this information is contained in our enhancement equation
(3.3). (We believe that the extra structures, namely that the bosons complexify and that the
fermions assemble into chiral spinors, is also encoded in our formalism, using the equations
(A.5). We also believe that deeper scrutiny of those equations should provide an algebraic
context for broadly resolving natural organizations of supermultiplets, including complex
structures, and quaternionic structures in diverse dimensions. But this lies beyond the scope
of this introductory paper on this topic.)

5. Algorithmic Complexity

Much of the analysis needed to fully delineate 4D N = 1 supersymmetry representation
theory using our techniques succumbs to by-hand matrix manipulations, as explained above.
The entirety of the computation of all Adinkras which are size-appropriate to enhance to 4D
N = 1 supersymmetry may be analyzed, using our nonoptimized algorithm, in a matter
of seconds using a simple Mathematica routine. But the reader is likely more interested
in the richer (unsolved) problem implied by the unknown elements of supersymmetry
representation theory, or how realistically our equations might be used to address this larger
problem, with an aim to discover yet-unknown representations which might drive novel
supersymmetric field theories for use in physical model building.

Using our criteria, testing enhancement to D dimensions would involve at most
(1/2)(D − 1)d(d + 1) independent d × d matrix equations per Adinkra, where d is the
number of fermions or bosons in the Adinkra. The minimal-size Adinkra in the case D = 1,
N = 16 is 128+128, whereby d = 128. To ascertain whether one of these enhances to D = 10,
N = 1 supersymmetry would involve (1/2)(9)(128)(129) = 74, 304 equations, each involving
products of 128 × 128 matrices. This number is not prohibitively large given contemporary
computer resources. But we should quantify this assertion.

To test enhancement of a generic 128+128 vertex Adinkra to a ten-dimensional space-
time would require 74,304 equations, each involving a 128 × 128 matrix. This translates to a
computation on the order of a trillion floating point operations (1 teraflop). This result derives
from the fact that solving a general matrix equation of size N is an O(N3) computation.
However, with good choices of bases or a locality property, solving a matrix equation of
size N can often be improved substantially into a mere O(N) computation. On the basis of
this, we envision that some interesting algorithmic work not addressed in this paper should
enable the ready analysis of more general supersymmetry representations using the analytic
base described in this paper.

To be more precise, an eight-processor Mac Pro is capable of about 50 Gigaflops, if
all processors are used with highly optimized code. A teraflop would take only 20 seconds
on such a machine. Even without highly optimized code (but using compiled code), using
just one processor, this would take about five minutes. The full computation checking the
enhance-ability of a size-appropriate Adinkra to ten space-time dimensions is on the order
of a teraflop, which means it would take several minutes, on an eight-processor Mac Pro
computer.

Thus, the rote enhancement of a given Adinkra is never difficult computationally.
However, the sheer number of possibilities provides a separate concern. Certainly the number
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of ostensibly distinct 128+128 Adinkras is astronomical. A more precise accounting of the
combinatorics is described in [42]. However, there are interesting considerations which
strongly constrain the search for the subset of these with physical relevance. One of these is
the feature that enhancement proceeds as a filtratation as the dimensionality of the ambient
space is increased incrementally. So an algorithm based on the feature of enhancement from
one-dimension to two-dimensions, and from there to three-dimensions, and so-forth would
add great refinement to the brute-force approach we have used above.

Indeed, this is the approach advocated in a recent paper [42], where the enhancement
problem (called the extension problem in that paper) is engaged first from one to two
dimensions. The authors of that paper have already identified theorems (their Theorems 2.2
and 2.3 in that reference) which remove the great majority of Adinkras from consideration
from the outset. This shows that there are considerations which can strongly influence the
accounting for the difficulties inherent in implementing analyses based on our enhancement
equations.

Thus, until efficient algorithms beyond the scope of this paper are developed, the
problem of making systematic work of resolving interesting unknown representations of
supersymmetry using our methods remains daunting in its complexity. But there are indi-
cations, partially motivated by the ruminations in this section, which give a reason to
optimistically hope that this combinatoric problem is not an insurmountable impasse. The
development of the relevant algorithmic approach is work-in-progress.

6. Gauge Multiplets

The nongauge enhancement condition (3.3) relies on the result (3.1), which is derived in
Appendix A. An important part of that derivation uses the assumptions Δ0

A = ũTA and
˜Δ0
A = uTA. These translate into the statement that every Adinkra edge codifies both an upward-

directed term and a downward-directed term in the multiplet transformation rules. (In other
words, this result applies to “standard” Adinkras.) But the presence of gauge degrees of
freedom or Bianchi identities obviates this assumption. This is demonstrated explicitly by
dimensionally reducing the 4DN = 1 Maxwell field-strength multiplet, as described in detail
in Appendix D.

6.1. Introducing Phantoms

In field-strength multiplets, the vector space spanned by the boson components φi is larger
than the vector space spanned by the fermion components ψı̂. The physical degrees of
freedom balance, however, owing to redundancies in the space of bosons, related to the
constraints. This feature manifests in nonsquare linkage matrices, including sectors which
decouple on the shadow. We call these “phantom sectors”.

The Maxwell multiplet is characteristic of generic multiplets involving closed p-form
field-strengths, when p ≥ 2. In these cases, the field-strength divides into an “electric”
sector, including components with a time-like index, and a “magnetic” sector involving
components which have only space-like indices. The electric sector and the magnetic sector
are correlated by the differential constraints implied by the Bianchi identity. Upon reduction
to one-dimension, the magnetic sector decouples. The reason for this is that locally the
magnetic fields are pure space derivatives, which vanish upon restriction to a zero-brane.
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Thus, in order to enhance a one-dimensional gauge multiplet to a higher-dimensional
analog, not only do we have to resurrect the spatial derivatives, ∂a, but we also have to
resurrect the gauge sector. In the case of field-strength multiplets, this means reinstating the
magnetic fields. Since these are physically decoupled on the shadow, they are reintroduced
in an interesting way, at the top of one-way upward-directed Adinkra edges. These nascent
magnetic vertices play no role in the one-dimensional supersymmetry algebra respected by
the other fields on the shadow. (But they play an important role in closing the algebra in
ambient higher dimensions.) We therefore call these vertices “phantoms”.

Phantoms may be introduced into one-dimensional supermultiplets to enable possible
enhancement involving closed p-form multiplet components. Since closed 1-forms do not
involve gauge invariance, it follows that the simplest case involves closed 2-forms, such as Fμν
subject to ∂[λFμν] = 0. This allows access to the important cases involving vector multiplets.
The higher-p cases may be treated similarly, but these involve additional subtlety. In order to
keep our presentation relatively concise, we will not address cases p ≥ 3 nor will we address
cases involving gauge fermions. Our discussion will remain focussed on the ability to include
4D Abelian field-strengths. We also avoid other subtle technicalities by allowing 4D fermions
to assemble only as spin 1/2 fields; that is we will not address the case of spin 3/2, or Rarita-
Schwinger fields, in this paper. It is straightforward to generalize our technology to allow
for these possibilities. But we defer discussions of these cases to future work, for reasons of
bounding complexity.

The structure of a phantom sector is usefully codified by phantom link matrices, de-
fined as

(PA)i
ı̂ :=
(

ũTA −Δ0
A

)

i

ı̂
, (6.1)

where ũTA is the transpose of the Ath fermion “up” matrix. A nonvanishing phantom matrix
indicates the presence of one-way upward-directed Adinkra edges. If PA is nonvanishing
then this modifies the analysis in Appendix A precisely at the point where (A.9) is introduced
as the transpose of (A.8). If the phantom matrices are included and the analysis is repeated,
it is easy to show that (3.1) generalizes to

Δa
A = −

(

Γ0ΓaΔ0
)

A
− 1
2

(

Γ0ΓaP
)

A
+ T0aPA − PA ˜T0a. (6.2)

Note that the final three terms will contribute nontrivially to this equation only in the gauge
sector.

It is helpful to briefly review the particular phantom sector associated with the shadow
of the Maxwell field-strength multiplet. This provides the archetype for generalizations, and
motivates what follows.

6.2. Maxwell’s Shadow

The 4D N = 1 super Maxwell multiplet involves four boson degrees of freedom off-shell.
These organize as the auxiliary scalar D plus the three off-shell “electromagnetic” degrees of
freedom described by Fμν. It is natural to write Ea = F0a and Ba = (1/2)εabcFbc. The Bianchi
identity ∂[λFμν] = 0 correlates Ea and Ba. Locally, we can solve the Bianchi identity in terms
of a vector potential Aμ, so that Ea = ∂0Aa − ∂aA0 and Ba = εabc∂bAc. Upon restriction to the
zero-brane we take ∂a → 0, so that Ea → ∂0Aa and Ba → 0. Since the magnetic fields vanish
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on the zero-brane, it is natural to think of the Ea as more fundamental for our purposes.
The shadow is described by a fermionic 4-4 Adinkra where the bosons are (E1, E2, E3, D) and
the fermions are (λ1, λ2, λ3, λ4). To enhance this multiplet we must reintroduce ∂a and also
reintroduce the fields Ba, along with constraints. To do this, we allow for “phantom” bosons
on the worldline, which correspond to the Ba off of the worldline.

To accommodate the phantom bosons, we consider an enlarged bosonic vector space,
φi = (E1, E2, E3, D | B1, B2, B3) in conjunction with the fermionic vector space ψı̂ = (λ1,
λ2, λ3, λ4). As a useful index notation, we write these as φi = (Ea,D | Ba), where Ba is the
magnetic phantom associated with Ea. Thus, a and a each assume the values 1,2,3, and we
have φ1,2,3 = E1,2,3 and φ5,6,7 = B1,2,3, respectively. In this way, phantom fields are designated
by an over-bar on the relevant index. Boson fields not in the phantom sector are indicated
by underlined indices, so that φ1,2,3,4 = (E1, E2, E3, D). Matrices with two boson indices then

divide into four sectors, Xi
j , Xi

a, Xa
j , and Xa

b.
The shadow transformation rules associatedwith theMaxwell multiplet can bewritten

as (2.3), but the linkage matrices are not square! Instead, (ũA)ı̂
j is 7 × 4 and (Δμ

A)i
ı̂
is 4 × 7. We

exhibit the precise linkage matrices associated with the Maxwell multiplet in Appendix D.
For the Super Maxwell case, the first enhancement equation in (3.3) is a 7×7 matrix equation,
whereas the second is a 4 × 4 matrix equation. The first equation has phantom sectors which
can be shuffled away canonically via use of the Bianchi identity, as explained below.

6.3. Canonical Reshuffling

Owing to the derivatives in the enhancement condition (3.3), wemay use the Bianchi identity,
∂[λFμν] = 0, usefully rewritten as

∂0B
a = εabc∂bEc,

∂aB
a = 0,

(6.3)

to define “canonical reorganizations” of the matrices in (3.2) under which (3.3) remains un-
changed. Specifically, the first equation in (6.3) allows us to redefine

(

Ω0
AB

)

i

a −→ 0,

(

Ωa
AB

)

i

b −→ (Ωa
AB

)

i

b + εabc
(

Ω0
AB

)

i

c
,

(6.4)

whereby we exchange each appearance of ∂0Ba in a supersymmetry commutator with
an equivalent expression involving spatial derivatives on the electric field components.
Similarly, the second equation in (6.3) allows us to redefine

(

Ω1
AB

)

i

1 −→ 0,

(

Ω2
AB

)

i

2 −→
(

Ω2
AB

)

i

2 −
(

Ω1
AB

)

i

1
,

(

Ω3
AB

)

i

3 −→
(

Ω3
AB

)

i

3 −
(

Ω1
AB

)

i

1
.

(6.5)
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In this way, we define a canonical structure of the matrices (Ωμ

AB)i
j
, ensured by the trans-

formations (6.4) and (6.5), enabled by the Bianchi identity (6.3), whereby (Ω0
AB)i

a = 0 and

(Ω1
AB)i

1 = 0. The first equation in (3.3) may now be interpreted as saying that (Ωμ

AB)i
j → 0

under these transformations.
We remark that that each of the 40 7 × 7 matrices (Ωμ

AB)i
j
defined by (3.2), using the

linkage matrices exhibited in Appendix D, do satisfy (Ωμ

AB)i
j → 0 using the transformations

(6.4) and (6.5). The diligent reader is encouraged to check this assertion.

6.4. The p = 1 Gauge Enhancement Conditions

Based on the above, a means becomes apparent under which we can ascertain which one-
dimensional multiplets may enhance to 4D gauge field-strength multiplets, based only
on a knowledge of the one-dimensional transformation rules, or equivalently given an
Adinkra.

For physical gauge fields, the bosonic field-strength tensor has greater engineering
dimension than the corresponding gaugino fermions. Therefore, the ambient fermions
transform into the magnetic fields via terms in the fermion transformation rule δQλ given by
(1/2)εabcBaΓbcε or by (1/2)εabcBaΓbcΓ5ε. These are the only Lorentz covariant possibilities.
The former case involves a vector potential and the latter case involves an axial vector
potential. We focus first on the former case, and comment on axial vectors afterwards. It
is straightforward to determine the phantom “up” links and the time-like fermion “down”
links using δQλ = · · · + (1/2)εabcBaΓbcε. By rearranging this term into the form δQλi =
· · · + εA(ũA)

a
i Ba, we derive (Consistency of (6.6) with (6.1) implies usefully extractable

information about the spin representation assignments. We will not explore this arena in this
paper.)

(ũA)ı̂
a =

1
2
εabc(Γbc)ı̂A,

(Δ0
A)a

ı̂
= 0,

(6.6)

whereby using (6.1) we determine the nonvanishing part of the phantom matrix as

(PA)a
ı̂ =

1
2
εabc
(

Γbc
)

A

ı̂
. (6.7)

The entire phantom matrix has nonvanishing entries only in its final three rows.
We can resolve the Δa

A matrices in two parts, using different methods. First we resolve
the phantom part (Δa

A)a
ı̂. Then we resolve the nonphantom part (Δa

A)a
ı̂.

We determine the phantom part of the space-like boson down matrices using the
fact that (Δ0

A)a
ı̂ = 0, which says that there are no connections linking downward from the

phantoms. Thus, equation (A.4) tells us (Δa
A)a

ı̂ = −(T0a)a
i(Δ0

A)i
ı̂. Next, we use the fact that a

boost shuffles magnetic fields into electric fields, via (T0a)b
cBc = εcabEc, to determine

(

Δa
A

)

b

ı̂ = εb
ac
(

Δ0
A

)

c

ı̂
. (6.8)
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This determines the bth row in the phantom sector of the Ath space-like down matrices in
terms of “electric” rows in the time-like down matrices.

We determine the nonphantom part of the space-like down matrices by considering
the nonphantom sector in (6.2). Thus, we allow only nonphantom values for the suppressed
boson index. In this case, the second and the fourth terms on the right-hand side vanish
because (PA)a

ı̂ = 0. The third term on the right-hand side can be resolved by noting that a
boost shuffles electric fields into magnetic fields, via (T0a)b

c
Ec = εb

acBc, whereby (T0a)b
c =

εb
ac. Substituting this result, along with (6.7), we derive

(

Δa
A

)

b

ı̂ = −
(

Γ0Γa
)

A

B(

Δ0
A

)

b

ı̂
+
(

Γab
)

A

ı̂
. (6.9)

This is the same as our nongauge result (3.1), modified by the second term. (Note that the
second term in (6.9) can also be written as −2εbac(Rc)A

ı̂, where Rc generates a rotation in the
cth spatial dimension.) Taken together, (6.8) and (6.9) generate for us the entire space-like
phantom-modified down matrices, generalizing our earlier nongauge result (3.1) to the case
in which fields can assemble into closed 1-forms.

Note that the Maxwell field-strength shadow, including its phantom sectors, may be
reproduced from the minimal N = 4 Adinkras using the methods described in this section.
Presently, we explain a means to produce a representative in one of the two minimal N = 4
Adinkra families which demonstrably enhances to a 4D Maxwell multiplet. Importantly, we
can verify that this Adinkra enhances to such a 4D multiplet using only one-dimensional
reasoning.

This is done by starting with right Adinkra in Figure 1. (Note that this Adinkra is in
the family twisted relative to the family which includes the chiral multiplet shadow.) From
this starting Adinkra, we raise all four boson vertices, to obtain a fermionic 4-4 Adinkra
with the four bosons at the higher level. We then perform a permutation of the first and
the fourth boson vertices, and a permutation of the the second and the fourth boson vertices.
We then flip both the first and the fourth boson vertices. (To flip a vertex means to scale
this by an overall minus sign.) Finally we flip the third fermion vertex. We compute the
time-like up matrices ũA and the time-like down matrices Δ0

A using the resultant fermionic
4-4 Adinkra. We designate the first three boson vertices in this final orientation as our
designated “electric” components. We then apply (6.6), (6.8), and (6.9) to append phantom
sectors to these time-like linkage matrices, and to generate provisional space-like down
links Δa

A, including phantom sectors. What results from these operations are precisely the
matrices shown in Appendix D. We next compute the Ω matrices using (3.2). Finally, we
apply a canonical reshuffling of these Ω-matrices, using (6.4) and (6.5). Happily, we find

that under this operation all of the matrices (Ωμ

AB)i
j
and ( ˜Ωμ

AB)ı̂
ĵ
vanish. This illustrates that

this representative set of operations produces an Adinkra which passes our nontrivial gauge
enhancement test.

If we repeat the above search allowing for axial vector potential, we would modify
all equations in this subsection with an additional factor of Γ5. What we find is that every
multiplet which enhances to provide a vector potential also enhances to provide an axial
vector potential. This is loosely similar to the situation involving chiral versus antichiral
multiplets, which have identical shadows. It follows that the both the vector multiplet and
the axial vector multiplet shadow lie in the family of Adinkras relatively twisted relative to
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the chiral multiplet. We will not exhibit separate equations for the axial vector case, leaving
that as an exercise for the interested reader.

6.5. Algorithm

We have already explained that it is possible to systematically generate the linkage matrices
for each member of the family associated with a given Valise. For each representative, we
can sequentially select triplets of vertices as potential electric field components, and use
(6.6), (6.8), and (6.9) to generate postulate phantom sectors. For each of these, we compute
the relevant Ω-matrices using (3.2), then shuffle these into canonical form using (6.4) and
(6.5). By selecting those Adinkras for which all the canonical Ω-matrices obtained in this
way vanish, we thereby obtain an algorithmic search for all multiplets in which vertices can
assemble into closed 1-forms. This search is guaranteed to locate those multiplets which do
properly enhance. (N.B. we have explained in the previous paragraph an example which we
know works.)

In the case of closed 1-form multiplets, an enhanceable Adinkra exhibits a synergy
between the postulated electric field components and the designated magnetic phantom
sector, vis-a-vis the assignment of the component basis φi. This is because the enhancement
criteria are sensitive to the basis choice on the component boson vector via the structure of
our imposed phantom sector. (Note that designating the phantom sector using (6.8) and
(6.9) does not remove generality from the search, much as choosing 4D gamma matrices
does not remove generality, for reasons described above. Instead, this removes redundancies
from the answer set.) Practically, this requires, for a comprehensive algorithmic search for
enhanceable Adinkras, that in addition to sifting through all possible vertex raises and all
possible selections of vertex triplets, we also have to sift through vertex permutations and
vertex flips. Thus, inner automorphisms would seem to enlarge the effective search family.
Regardless, our discussion does show that the portion of 4D supersymmetry representation
theory involving closed 1-form multiplets is accessible and understandable using only 1D
supersymmetry. We find this interesting.

In summary, following is a method to test an Adinkra to see if it enhances to give a 4D
multiplet with a closed 1-form gauge field-strength.

(1) Select three boson vertices with a common engineering dimension as the presumed
electric components, and arrange the boson vector space so that φ1,2,3 correspond to
these.

(2) Compute time-like linkage matrices uA, ũA, Δ0
A, and ˜Δ

0
A from the Adinkra.

(3) Augment the boson vector space by adding on a phantom sector consisting of three
new fields φ1,2,3 with the same engineering dimension as φ1,2,3.

(4) Add phantom sectors to the up matrices ũA, by adding three extra columns, and
add phantom sectors to the time-like downmatricesΔ0

A by adding three extra rows.

(5) Populate the phantom sector of the up matrices using (6.6).

(6) Generate space-like down matrices, including phantom sectors using (6.8) and
(6.9).

(7) Use the complete set of phantom-augmented linkage matrices to determine the

matrices (Ωa
AB)i

j and ( ˜Ωa
AB)ı̂

ĵ
using (3.2).
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(8) Reshuffle the boson matrix (Ωa
AB)i

j using the prescription (6.4) and (6.5), to obtain
a new matrix, in canonical form,

(

Ωa
AB

)

i

j −→
(

̂Ωa
AB

)

i

j
. (6.10)

The presence of the hat indicates canonical form.

(9) The p = 1 gauged enhancement conditions now correspond to the original enhance-
ment conditions (3.3) augmented by the addition of phantom sectors and a
canonical reshuffle. We conclude that a necessary requirement for an Adinkra to
enhance to a p = 1 field-strength multiplet is

(

̂Ωμ

AB

)

i

j
= 0,

(

˜Ωμ

AB

)

ı̂

ĵ
= 0.

(6.11)

This is our p = 1 gauge enhancement condition. The key difference as compared to the
nongauge case is that the linkage matrices are not square in the gauge case, owing to the
presence of the phantom boson sectors. Furthermore, we must implement the canonical
reshuffling maneuver to generate the hatted ̂Ω matrices which describe the nongauge en-
hancement condition.

The way we have designed our formalism is tailored toward implementation via
computer-searches. This may require supercomputers for cases with higher N, which will
involve large matrix computations. We hope to enlarge our algorithms so that sifting through
one-dimensional multiplets is controlled by the relevant lists of doubly-even error-correcting
codes which correspond to these, as explained in the introduction. But this lies beyond
the scope of the presentation in this paper. We find it sufficiently noteworthy that such
algorithms exist, even in principle. Our hope is that this will shed light on unknown aspects
of supersymmetry which have defied attack using previous conventions.

7. Conclusions

We have presented algebraic conditions which allow one to systematically locate those
representations of one-dimensional supersymmetry which may enhance to higher dimen-
sions. Equivalently, we have explained how to discern whether a given one-dimensional
supermultiplet is a shadow of a higher-dimensional analog. This allows the representation
theory of supersymmetry in diverse dimensions to be divided into the simpler representation
theory of one-dimensional supersymmetry augmented with separate questions pertaining to
the possibility of enhancement into higher dimensions.

We have shown through explicit examples how information pertaining to four-
dimensional N = 1 supersymmetry may be extracted using only information from one-
dimensional supersymmetry.We did this comprehensively for the case of 4DN = 1 nongauge
matter multiplets. We have also explained how this systematics generalizes to cases involving
higher-dimensional gauge invariances, specializing our discussion to the case of 4D N = 1
Super-Maxwell theory.
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We intend to use the formalism and the algorithms developed above to seek inroads
towards off-shell aspects of interesting supersymmetric contexts where the off-shell physics
remains mysterious but potentially relevant.

Appendices

A. A Proof

In this appendix we prove that demanding Lorentz invariance of the linkage matrices defined
in (2.3) completely determines all of the space-like linkage matrices Δa

A in terms of the
time-like linkage matrices Δ0

A, and does so in precisely the manner specified above as
equation (3.1). We also show how this same requirements provides constraints on the spin
representation content of supermultiplet component fields.

The linkage matrices (Δμ

A)i
ı̂
transform under spin(1, D − 1), manifestly, as

δL
(

Δμ

A

)

i

ı̂
= θμν

(

Δν
A

)

i

ı̂ +
1
4
θλσ(Γλσ)A

B
(

Δμ

B

)

i

ı̂

+
1
2
θλσ(Tλσ)i

j
(

Δμ

A

)

j

ı̂ − 1
2
θλσ
(

Δμ

A

)

i

ĵ(
˜Tλσ
)

ĵ

ı̂
.

(A.1)

In (A.1), the first term indicates that on (Δμ

A)
ĵ

i the μ index is a vector index, the second term
indicates that theA index is a spinor index, and the last line accommodates the representation
content of the supermultiplet component fields.

Using (A.1), we obtain the following boost and rotation transformations for the “time-
like” linkage matrices (Δ0

A)i
ı̂:

δboost
(

Δ0
A

)

i

ı̂
= θ0a

(

Δa
A

)

i

ı̂ +
1
2
θ0a(Γ0a)A

B
(

Δ0
B

)

i

ı̂

+ θ0a
(

T0aΔ0
A

)

i

ı̂ − θ0a
(

Δ0
A
˜T0a
)

i

ı̂
,

δrotation
(

Δ0
A

)

i

ı̂
= +

1
2
θab(Γab)A

B
(

Δ0
B

)

i

ı̂

+ θab
(

TabΔ0
A

)

i

ı̂ − θab
(

Δ0
A
˜Tab
)

i

ı̂
,

(A.2)

and the following boost and rotation transformations for the “space-like” linkage matrices:

δboost
(

Δa
A

)

i

ı̂ = θa0 (Δ
0
A)i

ı̂
+
1
2
θ0b(Γ0Γb)A

B(Δa
B

)

i

ı̂

+ θ0b
(

T0bΔa
A

)

i

ı̂ − θ0b(Δa
A
˜T0b)i

ı̂
,

δrotation
(

Δa
A

)

i

ı̂ = θab (Δ
b
A)i

ı̂
+
1
4
θbc(Γbc)A

B(Δa
B

)

i

ı̂

+
1
2
θbc
(

TbcΔa
A

)

i

ı̂ − 1
2
θbc(Δa

A
˜Tbc)i

ı̂
.

(A.3)
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We demand that the linkage matrices are Lorentz invariant. This imposes that each of the
transformations in (A.2) and (A.3) must vanish. (This is similar to “demanding” that the
gammamatrices appearing in a Salam-Strathdee superfield be Lorentz invariant—in that case
they are, automatically, as a consequence of the Clifford algebra.) Requiring δboostΔ0 = 0
imposes

(

Δa
A

)

i

ı̂ = −1
2

(

Γ0Γa
)

A

B(

Δ0
B

)

i

ı̂ −
(

T0aΔ0
A

)

i

ı̂
+
(

Δ0
A
˜T0a
)

i

ı̂
. (A.4)

This determines (Δa
A)i

ı̂ in terms of (Δ0
A)i

ı̂ and in terms of the representation assignments of
the supermultiplet component fields.

The remaining consequences of imposing Lorentz invariance on the linkage matrices

(Δμ

A)i
ı̂
are the following:

1
2
(Γab)A

BΔ0
B = Δ0

A
˜Tab − TabΔ0

A,

δb
aΔ0

A =
1
2
(Γ0Γb)A

BΔa
B + T0bΔa

A −Δa
A
˜T0b,

ηa[bΔc]
A +

1
4

(

Γbc
)

A

B
Δa
B =

1
2
Δa
A
˜Tbc − 1

2
TbcΔa

A,

(A.5)

where the (·)ı̂i index structure has been suppressed on each term. These correspond,
respectively, to δrotationΔ0 = 0, δboostΔa = 0, and δrotationΔa = 0, for arbitrary transfor-
mation parameters θ0a and θab. Equations (A.5) place significant restrictions on the spin
representation content of the component fields. As explained above, we suspect that these
equations encode useful and extractable information regarding allowable complements of
spin structures in supermultiplets in diverse dimensions.

The linkage matrices (uA)i
ı̂ transform under spin(1, D − 1), manifestly, as

δ(uA)i
ı̂ =

1
4
θμν
(

Γμν
)

A

B(uB)i
ı̂ +

1
2
θμν
(

TμνuA
)

i

ı̂ − 1
2
θμν
(

uA ˜Tμν
)

i

ı̂
. (A.6)

Requiring that these transformations vanish imposes

1
2
(

Γμν
)

A

B(uB)i
ı̂ =
(

uA ˜Tμν
)

i

ı̂ − (TμνuA
)

i

ı̂
. (A.7)

This indicates correlations between the up linkage matrices and the representation content of
the component fields.

Similar conditions result from demanding invariance of (ũA)ı̂
i and ( ˜Δμ

A)ı̂
i
. These are

obtained from the above constraints by placing tildes on all matrices which do not have tildes
and removing tildes from those that do. For example, invariance of (ũA)ı̂

i imposes

1
2
(

Γμν
)

A

B(ũB)ı̂
i =
(

ũATμν
)

ı̂

i −
(

˜TμνũA
)

ı̂

i
. (A.8)
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Note that for standard Adinkras we haveΔ0
A = ũTA. (For nonstandard Adinkras, such as those

which accommodate gauge invariances, this relationship does not hold. Instead, we define
ũA = Δ0

A + PA, where PA is a so-called phantom matrix, which encodes the nexus of one-way
upward-directed Adinkra edges. This generalization is addressed in Section 6.) Thus, using
(A.8)we determine

1
2
(

Γμν
)

A

B
(

Δ0
B

)

i

ı̂
=
(

TTμνΔ
0
A

)

i

ı̂ −
(

Δ0
A
˜TTμν

)

i

ı̂
. (A.9)

This equation can be used in conjunction with (A.4) to replace that equation with an analog
in which the representation matrices are not included.

The boost matrices (T0a)i
j and (˜T0a)ı̂

ĵ
are generically symmetric (For example, if the

fermions assemble as spinors then ˜T0a = (1/2)Γ0Γa. In the Majorana basis Γ0 is antisymmetric
and real while Γa are symmetric and real, and since Γ0 and Γa anticommute, it follows that
˜T0a is symmetric in that case. For vectors Va we have (T0a)0

b = δa
b and (T0a)b

0 = −ηab; for
our metric choice ηab = −1, so that these T0a are symmetric. This reasoning generalizes to
higher-rank tensors and to all products of tensor and spinor representations. Note too, that if
the boost matrices were antisymmetric, then (A.9) and (A.4) could be used together to prove
the inconsistent result that Δa = 0.) Therefore, (A.9) can be rewritten as

(

T0aΔ0
A

)

i

ı̂ −
(

Δ0
A
˜T0a
)

i

ı̂
=

1
2
(Γ0Γa)A

B
(

Δ0
B

)

i

ı̂
. (A.10)

Substituting this result for the last two terms in (A.4), we determine

(

Δa
A

)

i

ı̂ = −
(

Γ0Γa
)

A

B(

Δ0
B

)

i

ı̂
. (A.11)

Remarkably, this relationship is completely independent of the representation content of the
component fields. This is an interesting result, which says that the space-like linkage matrices
Δa are determined from the time-like linkage matrices Δ0.

B. Adinkra Conventions

In this appendix we give a very concise overview of the graphical technology of Adinkra
diagrams. These were introduced in [17], and have formed the basis of a multidisciplinary
research endeavor, aimed at resolving a mathematically rigorous basis for supersymmetry
[18, 19, 21, 23–25]. Some of the conventions, notably as regards sign choices, have varied in
these references, in part because some of these papers aim at a physics audience and some
at a mathematics audience. Thus, one reason for this appendix is to clarify our conventions,
as used above, so that this paper can be appreciated without undue confusion. Another is to
allow this paper to be functionally self-contained.

A representation of N-extended supersymmetry in one time-like dimension consists
of d boson fields φi and d fermion fields ψı̂ endowed with a set of transformation rules,
generated by δQ(ε), where εA are a set of N anticommuting parameters, which respect
the N-extended supersymmetry algebra specified by the commutator [δQ(ε1), δQ(ε2)] =
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2iδABεA1 ε
B
2 ∂τ . The transformation rules can be written for boson fields as δQφi = −iεA(QA)i

ı̂ψı̂

and for fermion fields as δQψı̂ = −iεA( ˜QA)ı̂
i
φi, where (QA)

ı̂
i and ( ˜QA)

i
ı̂ are two sets of N

abstract d × dmatrix generators of supersymmetry. By definition these represent

(

Q(A ˜QB)

)

i

j
= iδi

j∂τ ,

(

˜Q(AQB)

)

ı̂

ĵ
= iδı̂

ĵ∂τ ,

(B.1)

where the symmetrization brackets are defined with “weight-one”, whereby X(AYB) =
(1/2)(XAYB +XBYB).

It is possible to use cosmetic field redefinitions to redefine the component fields φi and

ψı̂ into a “frame” where the generators (QA)i
ĵ and ( ˜QA)ı̂

ĵ
are first-order differential operators

with a specialized matrix structure. Specifically, it is possible to write

(QA)i
ı̂ = (uA)i

ı̂ + (dA)i
ı̂∂τ ,

( ˜QA)ı̂
i
= i(ũA)ı̂

i + i( ˜dA)ı̂
i
∂τ ,

(B.2)

where (uA)i
ı̂, (dA)i

ı̂, (ũA)ı̂
j , and ( ˜dA)ı̂

j
are four sets of N real d × d “linkage matrices” with

the features that every entry of each of these matrices takes only one of three values, 0,
1, or −1, and such that there is at most one nonvanishing entry in every row and at-most
one nonvanishing entry in every column of each of these matrices. Remarkably, we lose no
generality by specializing to generators of the sort (B.2) with these particular properties. A
mathematical proof that any one-dimensional supermultiplet can be written in this manner
is provided in [18].

A simple example in the context of N = 2 supersymmetry is given by the following
transformation rules,

δQφ1 = −iε1ψ1 − iε2ψ2,

δQφ2 = −iε1∂τψ2 + iε2∂τψ1,

δQψ1 = ε1∂τφ1 − ε2∂τφ2,

δQψ2 = ε1φ1 + ε2∂τφ2.

(B.3)

It is straightforward to verify that these satisfy the commutator relationship specified above.
The operator ∂τ carries unit engineering dimension, while supersymmetry parameters

εA carry engineering dimension one-half. (In a system where � = c = 1, a field with
engineering dimension q carries units of (Mass)q.) Thus, in order to balance units in the
transformation rules (B.3) it follows that the two fermions ψ1,2 have a common engineering
dimension one-half greater than φ1, and that φ2 has an engineering dimension one-half
greater than the fermions, and one unit greater than φ1.
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The transformation rules (B.3) can be expressed equivalently, in terms of linkage
matrices, as

(u1)i
ĵ =

(

1

0

)

, (u2)i
ı̂ =

(

1

0

)

,

(d1)i
ı̂ =

(

0

1

)

, (d2)i
ı̂ =

(

0

−1

)

,

(ũ1)ı̂
j =

(

0

1

)

, (ũ2)ı̂
j =

( −1
0

)

,

( ˜d1)ı̂
j
=

(

1

0

)

, ( ˜d2)ı̂
j
=

(

0

1

)

,

(B.4)

where blankmatrix entries represent zeros. This set of eight matrices is completely equivalent
to the transformation rules (B.3). It is straightforward to verify, using (B.2), that the algebra
(B.1) is properly represented using these matrices.

As an example, to illustrate what these matrices mean, consider the matrix ũ2 defined
in (B.4). This is the “second fermion up matrix”, where the qualifier “second” refers to
the subscript on ũ2 and indicates that this matrix encodes a mapping under the second
supersymmetry, while the qualifier “fermionic” refers to the tilde, and indicates that this
matrix encodes transformations of the fermions. The single nonvanishing term in this matrix
is in the first row, second column, which indicates that, of the two fermions, only the first
fermion ψ1 transforms under the second supersymmetry, into the second boson φ2. The fact
that this matrix entry is −1 indicates a minus sign in the transformation rule δQψ1 on the term
proportional to φ2, that is, δQψ1 = · · · − φ2ε

2, as seen in (B.3). The reason why this is called an
“up” matrix is that it encodes a mapping “upward” from from a field with lower engineering
dimension—ψ1 in this case—to a field with higher engineering dimension—φ2 in this case.

The matrices in (B.4) exhibit the properties ũA = dTA and ˜dA = uTA. It is easy to see
that this indicates a symmetric feature in the transformation rules (B.3), whereby a fermion
appearing in a boson transformation rule is correlated with that boson appearing in the
transformation rule for that fermion. In other words, terms in these transformation rules come
paired. This feature is satisfied by a wide and important class of supermultiplets, which we
call “standard”. (These are also called “Adinkraic” in the literture.)

There is a third equivalent way to represent the supersymmetry transformations given
by (B.3) and by (B.4). This method uses the observation that the generic properties of linkage
matrices facilitate a concise system under which the entire collection of linkage matrices
for a given multiplet can be faithfully represented by a graph. Such a graph, called an
Adinkra, consists of d white vertices (one for each boson) and d black vertices (one for each
fermion). Two vertices are connected by an Ath colored edge if the two fields corresponding
to those vertices are interrelated by the Ath supersymmetry. The edge is rendered solid if
the corresponding QA matrix entries are +1 and are rendered dashed if the corresponding
QA matrix entries are −1. Finally, the vertices are arranged so that their heights on the graph
correlate faithfully with the respective engineering dimension.
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Thus, if we designate Q1 using purple edges and Q2 using blue edges, then the
example multiplet described by (B.4), equivalent to (B.3), would have the following Adinkra,

1

1

2

2 (B.5)

where the numerals on the vertices specify the fields, for example, the black vertex labeled
2 represents the fermion field ψ2. As an easy exercise, the reader should confirm that (B.4)
can be recovered from (B.5) using the rules described above. There is a striking economy
exhibited by this graphical method, empowered by the fact that these graphs completely
encode every aspect of the transformation rules, in a way which allows for ready translation
from any Adinkra into linkage matrices or into parameter-dependent transformation rules.

As another example, consider the following Adinkra,

1

1

2

2

(B.6)

This describes a supermultiplet distinct from the previous example, as evidenced by the fact
that (B.6) spans only two different engineering dimensions, whereas (B.5) spans three.

We can readily extract the linkage matrices equivalent to (B.6). For example, the
boson down matrices d1 and d2 obviously vanish because the two bosons do not connect
“downward” to any lower fermion vertices. Similarly, the two fermion up matrices ũ1 and
ũ2 also obviously vanish, since there are no links “upward” from the black vertices. We can
determine the nonvanishing linkage matrices by “reading” the diagram. For example, the
boson up matrix u2 encodes blue edges connecting upward from boson vertices. Thus, since
the boson φ1 links upward via blue edge only to the fermion ψ2, and does so with a solid
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edge, this tells us that the matrix entry (u2)
2
1 = +1. In this way, we can translate the Adinkra

(B.6) into the linkage matrices described by dA = 0, ũA = 0,

(u1)i
ĵ =

(

1

1

)

, (u2)i
ı̂ =

(

1

−1

)

, (B.7)

and ˜dA = uTA.
Note that the Adinkra (B.5) can be obtained from (B.6) by an interesting operation:

by moving the vertex φ2 to a new position located one level above the fermions, while
continuously maintaining all intervertex edge connections, so that the edges swivel upward
during this process. This macrame-like move encodes a transformation which maps one
supermultiplet into another, and is called a vertex raising operation.

One of our results concerning Adinkras is a mathematical proof that any standard
supermultiplet can be obtained by a sequence of vertex raising operations starting from
an Adinkras with vertices which span only two different heights, for example, (B.6).
Accordingly, the representation theory of 1D standard multiplets breaks naturally into two
parts; first to classify all of the possible two-height Adinkras for a given value ofN, and then
to systematize the possible sequences of vertex raises using each of these as a starting point.

Owing to the special role played by the two-height Adinkras, we have given these a
special name. Standard Adinkras which span only two height assignments are called Valise
Adinkras, or Valises for short. The reason for this nomenclature is based on the observation
that a large number of multiplets can be “unpacked”, as from a suitcase (or a valise), by
judicious choices of vertex raises. (We credit Tristan Hübsch for inventing this catchy and
useful term.)

Using the information above, the reader ought to be able to verify the relationships
between the Adinkras shown in Figures 1, 2, and 3, with the corresponding linkage matrices
exhibited in the respective Tables 1, 2, and 3, and should appreciate our use of the terms
Adinkra, Valise, and the concept of vertex raising.

C. The Shadow of the Chiral Multiplet

In this appendix we explain how to dimensionally-reduce the 4D chiral multiplet to extract
its shadow.

The 4DN = 1 chiral multiplet has the following transformation rules,

δQφ = 2iεLχR,

δQχR = �∂φεL + FεR,

δQF = 2iεR�∂χR,

(C.1)

where φ is a complex scalar, F is a complex auxiliary scalar, and χR is a right-chiral
Weyl spinor field. The parameter εR is also a right-chiral spinor, while εL describes the
corresponding Majorana conjugate, that is, εL = C−1εTR. The transformation rules (C.1)
satisfy [δQ(ε1), δQ(ε2)] = 4iε[2L�∂ε1]L on all component fields φ, F, and χR. Note that we can
define a Majorana spinor parameter via ε = εR + εL, so that εR,L = (1/2)(1 ± Γ5)ε are the
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corresponding right- and left-chiral projections. In terms of the Majorana spinor, the algebra
is [δQ(ε1), δQ(ε2)] = 2iε2�∂ε1.

We express spinors in the Majorana basis described in Appendix E. (The choice of
basis is immaterial for the computing the dimensional reduction; we obtain identical results
using any other basis. We use the Majorana basis here in order to maintain consistency
with other derivations in this paper.) Accordingly, we write the spinor field and the spinor
supersymmetry parameter as

χR =
1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

χ1 + iχ2

χ2 − iχ1

χ3 + iχ4

χ4 − iχ3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, εR =
1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ε1 + iε2

ε2 − iε1
ε3 + iε4

ε4 − iε3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (C.2)

where χ1,2,3,4 are each real anti-commuting fields and ε1,2,3,4 are each real anti-commuting
constant parameters. We also write the complex boson fields as φ = φ1 + iφ2, where φ1,2 are
real bosons, and F = F1 + iF2, where F1,2 are real auxiliary bosons.

Using these definitions, setting ∂a = 0, and using the spinor identities in Appendix E,
the transformation rules (C.1) become

δQφ1 = −iε1χ3 + iε2χ4 + iε3χ1 − iε4χ2,

δQφ2 = −iε1χ4 − iε2χ3 + iε3χ2 + iε4χ1,

δQχ1 = F1ε1 − F2ε2 − φ̇1ε3 − φ̇2ε4,

δQχ2 = F2ε1 + F1ε2 − φ̇2ε3 + φ̇1ε4,

δQχ3 = φ1ε1 + φ2ε2 + F1ε3 − F2ε4,

δQχ4 = φ2ε1 − φ1ε2 + F2ε3 + F1ε4,

δQF1 = −iε1χ̇1 − iε2χ̇2 − iε3χ̇3 − iε4χ̇4,

δQF2 = −iε1χ̇2 + iε2χ̇1 − iε3χ̇4 + iε4χ̇3.

(C.3)

These rules describe the shadow of (C.1). We organize the boson fields so that φi =
(φ1, φ2, F1, F3) and the fermion fields so that ψı̂ = (χ1, χ2, χ3, χ4). Using the Adinkra
conventions described in Appendix B, along with our edge coloration scheme whereby
Q1,2,3,4 are respectively described by purple, blue, green, and red colored edges, we can
unambiguously represent (C.3) as the Adinkra shown in Figure 4.

It is easy to translate the Adinkra in Figure 4 into equivalent up and down matrices.
For example, we determine the boson up matrix u1 by looking at the purple colored edges
extending upward from boson vertices. There are two such edges: a solid edge connecting φ1

with ψ3 and solid edge connecting φ2 with ψ4. Thus, there are two nonvanishing entries in u1:
one in the first row, third column, and the other in the second row, fourth column. These both
take the value +1 because both edges are solid. In this way we determine the up matrices
shown in Table 4 and the time-like down matrices shown in Table 5.
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Figure 4: The shadow of the chiral multiplet, expressed as an Adinkra equivalent to the transformation
rules (C.3).

Table 4: The boson up linkage matrices for the chiral multiplet shadow. The fermion time-like down
matrices are determined from these via ˜dA = uTA.

u1 =

⎛

⎜

⎜

⎜

⎜

⎝

1
−1

0
0

⎞

⎟

⎟

⎟

⎟

⎠

u2 =

⎛

⎜

⎜

⎜

⎜

⎝

−1
1

0
0

⎞

⎟

⎟

⎟

⎟

⎠

u3 =

⎛

⎜

⎜

⎜

⎜

⎝

−1
−1

0
0

⎞

⎟

⎟

⎟

⎟

⎠

u4 =

⎛

⎜

⎜

⎜

⎜

⎝

1
−1

0
0

⎞

⎟

⎟

⎟

⎟

⎠

We can also determine the time-like down linkage matrices directly from (C.1). For
example, to determine the femion 1-sector down matrices, ˜Δ1

A we isolate those terms in the
fermion transformation rule δQψR involving the derivative ∂1. These are given by δ(1)Q χR =
Γ1εL∂1φ. We then use the explicit matrix Γ1 specified in (E.9), the spinor components specified
in (C.2), and we write φ = φ1 + iφ2. This allows us, after a small amount of algebra, to rewrite
the 1-sector fermion transformation rule as δQψı̂ = εA( ˜Δ1

A)
j

ı̂
∂1φj , from which we can read

off the four matrices ( ˜Δ1
A)

j

ı̂
. It is straightforward to perform this calculation, and then to

verify that the matrices thereby obtained satisfy ˜Δ1
A = −(Γ0Γ1)BA ˜Δ0

B, where ˜Δ0
A = uTA. Similar

calculations can be done for all of the time-like down matrices, providing a nice consistency
check on our powerful assertion (3.1).

D. The Shadow of the Maxwell Field Strength Multiplet

In this appendix we determine the linkage matrices for the 4DN = 4 Maxwell field-strength
multiplet. This provides a means to exhibit precisely how 1D phantom sectors arise upon
restriction of a p = 1 gauge multiplet to a zero-brane. This appendix is complementary to
Section 6 in the main text, above.



36 Advances in Mathematical Physics

Table 5: The time-like dowm linkage matrices for the chiral multiplet. The fermion up matrices are deter-
mined from these via ũA = dTA.

Δ0
1 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0

1
1

⎞

⎟

⎟

⎟

⎟

⎠

Δ0
2 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0

1
−1

⎞

⎟

⎟

⎟

⎟

⎠

Δ0
3 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0

1
1

⎞

⎟

⎟

⎟

⎟

⎠

Δ0
4 =

⎛

⎜

⎜

⎜

⎜

⎝

0
0

1
−1

⎞

⎟

⎟

⎟

⎟

⎠

The 4D N = 1 super-Maxwell field-strength multiplet has the following transforma-
tion rules,

δQλ =
1
2
FμνΓμνε − iDΓ5ε,

δQFμν = −2iεΓ[μ∂ν]λ,
δQD = εΓ5�∂λ,

(D.1)

where λ is a Majorana spinor gaugino field, D is a real auxiliary (pseudo)scalar, and the
field-strength tensor Fμν is subject to the Bianchi identity ∂[λFμν] = 0. We obtain the linkage
matrices equivalent to (D.1) by deconstructing these rules using a specific spinor basis, and
rewriting them in terms of individual degrees of freedom as specified in (2.3). It follows
simply that that ˜Δa

A = 0 and uA = 0, since the fermions λA share a common engineering
dimension of 3/2 while the bosons Fμν and D share a common engineering dimension of 2.

We use the specific Majorana basis defined in Appendix E by the gamma matrices
given in (E.9). To determine the “up” linkage matrices, it is helpful to rewrite the fermion
transformation rule in (D.1) as

δQλ = 2EaBaε + 2BaRaε − iDΓ5ε, (D.2)

where we have used the definitions Ea = F0a and Ba = (1/2)εabcFbc, for the electric and
magnetic fields, respectively. We have also used the definitions Ba = (1/2)Γ0Γa, and Ra =
(1/4)εabcΓbc for the boost and rotation generators also given in Appendix E. We now use
the explicit matrices Ba, Ra, and Γ5 specified in (E.11) and (E.9), to recast (D.2) in matrix
form: the left side as a four-component column matrix λA = (λ1, λ2 | λ3, λ4)T and the right-
hand side as a 4 × 7 matrix multiplying another four-component column matrix given by
εA = (ε1, ε2 | ε3, ε4)T . A small amount of algebra then allows us to rewrite the result in the
form δQλı̂ = εA(ũA)ı̂

jφj , where φi := (E1, E2 | E3, D| |B1, B2, B3)
T , whereupon we can read off

each of the four matrices (ũA)ı̂
j . The result is shown in Table 6. The fact that λ transforms

nontrivially into Ba manifests in the nontriviality of the rightmost three columns in these
results.
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Table 6: The four “up” linkage matrices associated with the Maxwell field-strength multiplet.

ũ1 =

⎛
⎜⎜⎝

1 0 0 0
−1 0 0 1

1 0 −1 0
1 1 0 0

⎞
⎟⎟⎠ ũ2 =

⎛
⎜⎜⎝

1 0 0 −1
1 0 0 0

−1 −1 0 0
1 0 −1 0

⎞
⎟⎟⎠

ũ3 =

⎛
⎜⎜⎝

1 0 1 0
−1 1 0 0

−1 0 0 0
−1 0 0 −1

⎞
⎟⎟⎠ ũ4 =

⎛
⎜⎜⎝

1 −1 0 0
1 0 1 0

1 0 0 1
−1 0 0 0

⎞
⎟⎟⎠

We then do a similar thing to the boson fields to determine the down matrices Δμ

A. We
do this separately for each of the four choices for μ, referring to these as the μ-sector down
matrices. For example, to extract the 0-sector down matrices, we isolate those terms in the
boson transformation rules in (D.1) proportional to the derivative ∂0λ. These are given by

δ
(0)
Q Ea = iεΓa∂0λ,

δ
(0)
Q D = εΓ5Γ0∂0λ,

δ
(0)
Q Ba = 0.

(D.3)

Note that the magnetic fields Ba = (1/2)εabcFbc do not transform into time derivatives of
the gaugino field. This is not surprising since the magnetic field is expressible locally as
Ba = εabc∂bAc. But it is worth noting that (D.3) follows simply from (D.1). This tells us
that upon restriction to a zero-brane, there are no downward Adinkra links connecting the
three magnetic field components to any other fields; in the shadow these degrees of freedom
sit at the top of one-way upward edges. In this way the magnetic fields decouple from
the multiplet upon reduction to one-dimension. By utilizing the specific gamma matrices
given in Appendix E we can use the same techniques described above to rewrite the 0-
sector transformation rules (D.3) as δQφi = −iεA(Δ0

A)i
ı̂
∂0λı̂, and then read-off the the matrices

(Δ0
A)i

ı̂. The result of this straightforward process is exhibited in Table 7. (It is easy to see that
ũTA /=Δ0

A, so that in this case the phantom matrix defined in (6.1) is nonvanishing. Although
the phantom sector is irrelevant to any one-dimensional physics, it is necessary to resurrect
this sector should we wish to enhance the shadow theory to its full ambient analog.)

By isolating the terms in (D.1) respectively proportional to ∂1,2,3λ, writing these
explicitly using the Majorana basis gamma matrices shown in (E.9), and then reconfiguring
the rules as δQφi = −iεA(Δa

A)i
ı̂∂aλı̂, allows us to read off the remaining space-like linkage

matrices. The results of this straightforward process are exhibited in Tables 8, 9, and 10.

E. 4D Spinor Bases

gamma matrices satisfy the Clifford relationship {Γμ,Γν}BA = −2ημνδBA, where ημν = diag(+ −
−−). These act from the left on spinors ψA and from the right on barred spinors ψA := (ψ†Γ0)

A.
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Table 7: The time-like down matrices associated with the Maxwell field-strength multiplet.

Δ0
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
−1

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ0
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1

1
1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ0
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1

−1
−1

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ0
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

−1
1

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 8: The 1-sector space-like down matrices for the Maxwell field-strength multiplet.

Δ1
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0

0
1

0 0 0 0
−1 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ1
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0

0
−1

0 0 0 0
0 −1 0 0
0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ1
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0

0
1

0 0 0 0
0 0 1 0
0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ1
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0

0
−1
0 0 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

In four-dimensions, the minimal solution involves 4 × 4 matrices, so the spinor index A
takes on four values. The 4D charge conjugation matrix C is defined by CΓaC−1 = −(Γa)T . In
addition, the matrix C is real, antisymmetric, and has unit determinant. A chirality operator
is defined by Γ5 := iΓ0Γ1Γ2Γ3.
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Table 9: The 2-sector space-like down matrices for the Maxwell field-strength multiplet.

Δ2
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−1

0
−1

1 0 0 0
0 0 0 0
0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ2
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−1

0
−1

0 1 0 0
0 0 0 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ2
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−1

0
1
0 0 −1 0
0 0 0 0

−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ2
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−1

0
1

0 0 0 −1
0 0 0 0
0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 10: The 3-sector space-like down matrices for the Maxwell field-strength multiplet.

Δ3
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

−1
1

0 0 0 −1
0 0 1 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ3
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

−1
−1
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ3
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

−1
−1

0 1 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ3
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

−1
1

−1 0 0 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We can change bases by replacing

ΨA −→MA
BψB,

(Γμ)A
B −→

(

MΓμM−1
)

A

B
,

C−1
AB −→ 1

√

det(M)

(

MC−1MT
)

AB
,

(E.1)
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whereM is any nonsingular 4 × 4 matrix. Two especially useful bases are the Weyl basis and
the Majorana basis. These are explained below. Note that Gμ = −ΓμC−1 transforms as

Gμ −→ 1
√

det(M)
MGμMT. (E.2)

Given any basis, this allows us to find a similarity transformation to render all spinor
components real (a Majorana basis), and moreover one for which G0

AB = δAB. The resultant
basis is then specially tailored for dimensional reduction to 1D, for the simple reason that
the four real components of the Majorana supercharge operator QA supply natural real 1D
shadow supercharges, which satisfy the algebra {QA,QB} = iδAB∂τ .

E.1. The Weyl Basis

In the Weyl basis we choose 4 × 4 matrices using the following convention:

Γ0 =

( −1

1

)

, Γa =

(

σa

σa

)

,

C =

(

ε

ε

)

, Γ5 =

(

1

−1

)

,

(E.3)

where 1 is the 2 × 2 unit matrix, a = 1, 2, 3, and σa are the Pauli matrices and ε = iσ2.
Right- and left-handed Weyl spinors satisfy the respective constraints Γ5ψR,L =

±ψR,L. In terms of the Weyl basis (E.3), this means that right- and left-handed spinors are
respectively configured as

χR =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

χ1

χ2

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, ϕL =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

0

ϕ1

ϕ2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (E.4)

where χ1, χ2, ϕ1, and ϕ2 are complex anticommuting fields. Note that Weyl spinors take an
especially tidy form in the Weyl basis, since half of the four complex spinor components
vanish.

A Majorana spinor satisfies ψ = C−1ψT . In terms of the Weyl basis (E.3), this means

ψ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ψ1

ψ2

ψ∗
2

−ψ∗
1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (E.5)
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where ψ1 and ψ2 are complex anticommuting fields. Note that Majorana spinors are relatively
awkward in the Weyl basis.

E.2. The Majorana Basis

Change bases from the Weyl basis to the Majorana basis, using (E.1), by choosing

M =
1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −1
−i −i

1 1

−i i

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (E.6)

Using the transformation (E.1), right- and left-handed Weyl spinors in the Weyl basis trans-
form into right- and left-handedWeyl spinors in the Majorana basis, as specified respectively
by

χR,L =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

χ1

∓iχ1

χ2

∓iχ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (E.7)

where χ1 and χ2 are complex fields. Note that the difference between left- and right-
handedness in this basis manifests in the relative phases appearing in (E.7). Note that Weyl
spinors are relatively awkward in the Majorana basis.

Using the transformation (E.1), a Majorana spinor in the Weyl basis, (E.5), transforms
into a Majorana spinor in the Majorana basis, as given by

ψA =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Reψ1

Imψ1

Reψ2

Imψ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (E.8)
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Note that Majorana spinors take an especially tidy form in the Majorana basis, since all four
components are independent and real. In this basis, the gamma matrices and the charge
conjugation matrices are

Γ0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1
1

1

−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, Γ1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1
1

1

−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

Γ2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

1

1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, Γ3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

−1
1

−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

−1
−1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, Γ5 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

i

−i
i

−i

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

(E.9)

as obtained by transforming (E.3) using (E.1). The corresponding G-Matrices Ga
AB =

−ηab(ΓbC−1)AB are

G0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

1

1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, G1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

1

1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

G2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

−1
−1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, G3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

1

−1
−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(E.10)

Note that G-matrices are symmetric, real, and traceless.
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Also useful are the “boost” operators Ba = (1/2)Γ0Γa and the “rotation” operators
Ra = (1/4)εabcΓbc. In the Majorana basis (E.9) these are

B1 =
1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

1

1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, R1 =
1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1
1

−1
1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

B2 =
1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

−1
−1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, R2 =
1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

1

−1
−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

B3 =
1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

1

−1
−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, R3 =
1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1
1

1

−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(E.11)

Note that the boost operators are symmetric while the rotation operators are antisymmetric.
Note too that Ga = 2Ba. The operators in (E.11) satisfy the Lorentz algebra

[Ra,Rb] = −εcabRc,

[

Ba,Bb
]

= εabcRc,

[Ba,Rb] = −εabcBc.

(E.12)

The Lorentz algebra (E.12) can be written concisely, and in a manner which is manifestly
covariant, as

[

Mμν,M
λσ
]

= δλμM
σ
ν − δσμMλ

ν + δ
σ
νM

λ
μ − δλνMσ

μ, (E.13)

where M0a = Ba and Mab = εabcRc. (Note that using our conventions, M0a = η00ηabM
0b =

−δabM0b, whereas Ba = δabBb.)
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