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We study a hyperbolic (telegrapher’s equation) free boundary problem describing the pressure-
driven channel flow of a Bingham-type fluid whose constitutive model was derived in the work
of Fusi and Farina (2011). The free boundary is the surface that separates the inner core (where
the velocity is uniform) from the external layer where the fluid behaves as an upper convected
Maxwell fluid.We present a procedure to obtain an explicit representation formula for the solution.
We then exploit such a representation to write the free boundary equation in terms of the initial
and boundary data only. We also perform an asymptotic expansion in terms of a parameter tied to
the rheological properties of the Maxwell fluid. Explicit formulas of the solutions for the various
order of approximation are provided.

1. Introduction

In this paper we study the well posedness of a hyperbolic free boundary problem arisen
from a one-dimensional model for the channel flow of a rate-type fluid with stress threshold
presented in [1]. The model describes the one-dimensional flow of a fluid which behaves as
a nonlinear viscoelastic fluid if the stress is above a certain threshold τo and like a rate type
fluid if the stress is below that threshold. The problem investigated here belongs to a series of
extensions of the classical Bingham model we have proposed in recent years (see [2–5]).

In particular, in [1]we describe the one-dimensional flow of such a fluid in an infinite
channel, assuming that in the outer part of the channel the material behaves as a viscoelastic
upper convected Maxwell fluid, while in the inner core as a rate-type Oldroyd-B fluid.
The general mathematical model is derived within the framework of the theory of natural
configurations developed by Rajagopal and Srinivasa (see [6]). The constitutive equations are
obtained imposing how the system stores and dissipates energy and exploiting the criterion
of the maximization of the dissipation rate.
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The main practical motivation behind this study comes from the analysis of materials
like asphalt or bitumen which exhibit a stress threshold beyond which they change its
rheological properties. Indeed from the papers [7–9], it is clear that such materials have a
viscoelastic behaviour (for instance, upper convected Maxwell fluid)which is observed if the
applied stress is greater than a certain threshold (see, in particular, [7]).

The mathematical formulation for the channel flow driven by a constant pressure
gradient consists in a free boundary problem involving a hyperbolic telegrapher’s equation
(Maxwell fluid) and a third-order equation (Oldroyd-B fluid). The free boundary is the sur-
face dividing the two domains: the inner channel core and the external layer. Due to the high
complexity of the general problem, here we have considered a simplified version which arises
when the order of magnitude of some physical parameters involved in the general model
ranges around particular values. In such a case we have that the velocity of the inner core is
constant in space and time, while the outer part behaves as a viscoelastic upper convected
Maxwell fluid (see [1] for more details). The mathematical formulation turns out to be a
hyperbolic free boundary problem which, in the authors knowledge, is new since it involves
a telegrapher’s equation coupled with an ODE describing the evolution of the interface.

The paper is structured as follows. In Section 2 we formulate the problem, namely,
problem (2.1), and specify the basic assumptions. In Section 3 we give an equivalent
formulation of the problemwhich leads to a nonlinear integrodifferential equation for the free
boundary. We prove local existence and uniqueness for such an equation (see Theorem 3.3),
under specific assumptions on the data.

The interesting aspect of the mathematical analysis lies on the technique we employ
to reduce the complete problem to a single integrodifferential equation from which
some mathematical properties can be derived (the free boundary equation can be solved
autonomously from the governing equation of the velocity field). Such a methodology is a
generalization of a technique already introduced in [2].

In Section 4 we perform an asymptotic expansion in terms of a coefficient ω
(representing the ration between the elastic characteristic time and the relaxation time of the
viscoelastic material), which typically is of the orderO(10−1). This procedure allows to obtain
approximations of the actual solution up to any order through an iterative procedure. We do
not prove the convergence of the asymptotic approximations to the actual solution (whose
existence is proved in Theorem 3.3), limiting ourselves to develop only the formal procedure.
Indeed, the main advantage of this procedure is that, for each order of approximation, the
governing equation for the velocity field is the “standard” wave equation, which is by far eas-
ier to handle than the telegrapher’s equation. We end the paper with few conclusive remarks.

2. Mathematical Formulation

In this section we state the mathematical problem. We refer the reader to [1] for all the details
describing how this simplified model was derived from the general one. In the general case,
in the region [0, s], the fluid behaves as anOldroyd-B type fluid. The problemwe are studying
here is a particular case of such a model, which stems from some specific assumptions
on the physical parameters (fulfilled by materials like asphalt and bitumen). Under such
assumptions, the inner core [0, s] moves with uniform constant velocity Vo.

We consider an orthogonal coordinate system xoy and assume that the fluid is
confined between two parallel plates placed at distance 2L. We assume that the motion takes
place along the x-direction and that the velocity field has the form �v(y, t) = v(y, t)�i. We rescale
the problem (in a nondimensional form) and, because of symmetry, we study the upper part
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Figure 1: Upper part of the channel.

of the layer y ∈ [0, 1] (the space variable is rescaled by L). The geometry of the system we
investigate is depicted in Figure 1.

The mathematical model is written for the velocity field v(y, t) in the viscoelastic
region which is separated from the region with zero strain rate (uniform velocity) by the
moving interface y = s(t).

The nondimensional formulation is the following:

vtt + 2ωvt = vyy + β2 y ∈ (s, 1), t > 0,

v
(
y, 0
)
= vo

(
y
)

y ∈ (so, 1),

vt

(
y, 0
)
= 0 y ∈ (so, 1),

v(1, t) = 0 t > 0,

v(s, t) = Vo t > 0,

vy(s, t) + ṡvt(s, t) = −β2 Bnt > 0,

s(0) = so, so ∈ (0, 1).

(2.1)

where

(i) ρ is the material density,

(ii) η is the viscosity of the fluid,

(iii) μ is the elastic modulus,

(iv) β2 is a positive parameter depending on the viscosity η (see [1]),

(v) Bn is the Bingham number,

(vi) Vo is the velocity of the inner core,

(vii) 2ω = te/tr ,

(viii) te = L
√
ρ/μ is the characteristic elastic time,

(ix) tr = η/2μ is the relaxation time.

In the case of asphalt typical values are (see [8, 9])

μ = 1MPa, ρ = 1.5 × 103 Kg/m3, η = 102 MPa · s. (2.2)
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Taking L = 500m we get

te = 15 s, tr = 50 s, =⇒ ω = 0.15. (2.3)

Remark 2.1. In [1] we have proved that problem (2.1) admits a stationary solution provided

Vo � β2
(
1
2
+ Bn

)
(2.4)

and that the stationary solution is given by

v∞
(
y
)
= −β

2

2
(
s − Bn − y

)2 +
β2Bn

2
+ Vo,

s∞ = 1 + Bn −
√

Bn2 +
2Vo

β2
.

(2.5)

3. An Equivalent Formulation

Before proceeding in proving analytical results of problem (2.1) we introduce the new
coordinate system

x = 1 − y, ⇐⇒ y = 1 − x, (3.1)

and the new variable

U(x, t) = exp(ωt)v(1 − x, t), ⇐⇒ v
(
y, t
)
= U
(
1 − y

)
exp(−ωt). (3.2)

With transformations (3.1)-(3.2), problem (2.1) becomes

Uxx −Utt +ω2U = −β2 exp(ωt), x ∈ (0, ξ), t > 0,

U(x, 0) = Uo(x), x ∈ (0, ξo),

Ut(x, 0) = U1(x), x ∈ (0, ξo),

U(0, t) = 0, t > 0,

U(ξ, t) = exp(ωt)Vo, t > 0,

Ux(ξ, t) + ξ̇Ut(ξ, t) − ξ̇ωU(ξ, t) = exp(ωt)β2Bn, t > 0,

ξ(0) = ξo, ξo ∈ (0, 1),

(3.3)

where

ξ(t) = 1 − s(t), ξo = 1 − so, Uo(x) = vo(1 − x), U1(x) = ωUo(x). (3.4)
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Figure 2: Sketch of the domain.
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Figure 3: The domain DI .

Notice that, by means of (3.2), the evolution equation for the new variableU(x, t) has become
a nonhomogeneous Klein-Gordon equation [10].

The domain of problem (3.3) is depicted in Figure 2. We begin by considering the
domain DI (see Figure 3). Here the solution has the representation formula (see [11])

U(x, t) =
1
2
[Uo(x − t) +Uo(x + t)] +

1
2

∫x+t

x−t
[R(x, t; ζ, 0)U1(ζ) − Rθ(x, t; ζ, 0)Uo(ζ)]dζ

+
β2

2

∫ t

0
exp(ωθ)dθ

∫x+t−θ

x−t+θ
R(x, t; ζ, θ)dζ,

(3.5)

where R(x, t; ζ, θ) is the Riemann’s function that solves the problem (see again Figure 3)

Rζζ − Rθθ +ω2R = 0 (ζ, θ) ∈ Ω(x, t),

R(x, t;x + t − θ, θ) = 1 θ ∈ [0, t],

R(x, t;x − t + θ, θ) = 1 θ ∈ [0, t],

Ω(x, t) = {(x, t) : x − t + θ � ζ � x + t − θ, 0 � θ � t}.

(3.6)



6 Advances in Mathematical Physics

To determine the solution of problem (3.6) we set

z =
√
(t − θ)2 − (ζ − x)2, (3.7)

where

z2θ − z2ζ = 1,

zθθ − zζζ =
1
z
.

(3.8)

By means of (3.7) problem (3.6) becomes

R′′(z) +
R′(z)
z

−ω2R(z) = 0

R(0) = 1,
(3.9)

where (3.9)(1) is the modified Bessel equation of zero order. The solution of (3.9) is given by

R(z) = R(x, t; ζ, θ) = Io

(
ω
√
(t − θ)2 − (ζ − x)2

)
, (3.10)

where Io is the modified Bessel function of zero order. It is easy to prove that the function
defined by (3.10) satisfies problem (3.6). Moreover, since [12]

I ′o(x)
x

=
1
2
[Io(x) − I2(x)], (3.11)

one can prove that

Rθ(x, t; ζ, θ) =
ω2(θ − t)

2

[
Io

(
ω
√
(t − θ)2 − (ζ − x)2

)
− I2

(
ω
√
(t − θ)2 − (ζ − x)2

)]
, (3.12)

where I2 is the modified Bessel function of second order. Recalling that U(x, 0) = Uo(x) and,
by (3.3)(3), (3.4), that

Ut(x, 0) = ωUo(x), (3.13)

we see that

[R(x, t; ζ, 0)ω − Rθ(x, t; ζ, 0)]Uo(ζ)

=

[

Io

(
ω
√
t2 − (ζ − x)2

)(

ω +
ω2t

2

)

− ω2t

2
I2

(
ω
√
t2 − (ζ − x)2

)]

Uo(ζ),
(3.14)
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Figure 4: The domain DII .

and representation formula (3.5) can be rewritten as

U(x, t) =
1
2
[Uo(x − t) +Uo(x + t)]

+
1
2

∫x+t

x−t

[

Io

(
ω
√
t2 − (ζ − x)2

)(

ω +
ω2t

2

)

− ω2t

2
I2

(
ω
√
t2 − (ζ − x)2

)]

Uo(ζ)dζ

+
β2

2

∫ t

0
exp
(
kθ

2

)
dθ ·

∫x+t−θ

x−t+θ
Io

(
ω
√
(t − θ)2 − (ζ − x)2

)
dζ.

(3.15)

Let us now write a representation formula for U(x, t) in the domain DII (see Figure 4). We
once again make use of (3.6), where now Uo has to be extended to the domain [−ξo, 0].
Following [2], we extend Uo imposing condition (3.3)(4), that is, U(0, θ) = 0. From the
representation formula we get

0 =
1
2
[Uo(−t∗) +Uo(t∗)] +

1
2

∫ t∗

−t∗
[R(0, t∗; ζ, 0)ω − Rθ(0, t∗; ζ, 0)]Uo(ζ)dζ

+
β2

2

∫ t∗

0
exp(ωθ)dθ

∫ t∗−θ

−t∗+θ
R(0, t∗; ζ, θ)dζ,

(3.16)

where

t∗ = t − x (3.17)

is the coordinate of the intersection of the characteristic ζ = x− t+θ with ζ = 0. Relation (3.16)
can be rewritten as

0 =
1
2
[Uo(x − t) +Uo(t − x)] +

1
2

∫ t−x

x−t
[R(0, t − x; ζ, 0)ω − Rθ(0, t − x; ζ, 0)]Uo(ζ)dζ

+
β2

2

∫ t−x

0
exp(ωθ)dθ

∫ t−x−θ

x−t+θ
R(0, t − x; ζ, θ)dζ.

(3.18)
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From (3.18), the extended function Usx
o (x), defined in [−ξo, 0], fulfills the following Volterra

integral equation of second type:

Usx
o (x − t) −

∫x−t

0
[R(0, t − x; ζ, 0)ω − Rθ(0, t − x; ζ, 0)]Usx

o (ζ)dζ

= −Uo(t − x) +
∫0

t−x
[R(0, t − x; ζ, 0)ω − Rθ(0, t − x; ζ, 0)]Uo(ζ)dζ

− β2

2

∫ t−x

0
exp(ωθ)dθ

∫ t−x−θ

x−t+θ
R(0, t − x; ζ, θ)dζ.

(3.19)

Equation (3.19) can be put in the more compact form

Usx
o

(
χ
) −
∫χ

0
Ksx(χ, ζ

)
Usx

o (ζ)dζ = Fsx(χ
)
, (3.20)

where χ = x − t ∈ [−ξo, 0] and

Ksx(χ, ζ
)
=

[

Io
(
ω
√
χ2 − ζ2

)(

ω − ω2χ

2

)

+
ω2χ

2
I2
(
ω
√
χ2 − ζ2

)]

,

Fsx(χ
)
= −Uo

(−χ) +
∫0

−χ

[
R
(
0,−χ; ζ, 0)ω − Rθ

(
0,−χ; ζ, 0)]Uo(ζ)dζ

− β2

2

∫−x

0
exp(ωθ)dθ

∫−x−θ

x+θ
R(0,−x; ζ, θ)dζ.

(3.21)

Due to the regularity of the kernel Ksx(χ, ζ) the function Usx
o (χ) (which can be determined

using the iterated kernels method, [13]) is a smooth function. Thus we extend Uo(x) as

Uo(x) =

⎧
⎨

⎩

Usx
o (x), x ∈ [−ξo, 0],

Uo(x), x ∈ [0, ξo],
(3.22)

and the solution U(x, t) in the domain DII is given by

U(x, t) =
1
2
[Uo(x + t) −Uo(t − x)] +

1
2

∫x−t

t−x
[R(0, t − x; ζ, 0)ω − Rθ(0, t − x; ζ, 0)] Uo(ζ)dζ

+
1
2

∫x+t

x−t
[R(x, t; ζ, 0)ω−Rθ(t, x; ζ, 0)]Uo(ζ)dζ +

β2

2

∫ t−x

0
eωθdθ

∫x−t+θ

t−x−θ
R(0, t − x; ζ, θ)dζ

+
β2

2

∫ t

0
eωθdθ

∫x+t−θ

x−t+θ
R(x, t; ζ, θ)dζ.

(3.23)
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Remark 3.1. We notice that, considering the representation formulae (3.5) and (3.23),

lim
x→ t+

U(x, t) = lim
x→ t−

U(x, t). (3.24)

Moreover, taking the first derivatives (with respect to time t and space x) of U(x, t) for the
domains DI and DII it is easy to prove that, assuming the compatibility condition Uo(0) = 0,

lim
x→ t+

Ux(x, t) = lim
x→ t−

Ux(x, t), t ∈
[
0,

ξo
2

]
,

lim
x→ t+

Ut(x, t) = lim
x→ t−

Ut(x, t), t ∈
[
0,

ξo
2

]
,

(3.25)

where the derivatives in limits on the l.h.s. of (3.25) are evaluated using (3.5), while the ones
on the r.h.s. using (3.23). This implies that the solution is C1 across the characteristic x = t,
that is, the line that separates the domains DI and DII .

We now write the representation formula for U(x, t) in the domain DIII . We proceed as in
[2] assuming that the velocity of the free boundary x = ξ(t) is less than the velocity of the
characteristics (i.e., |ξ̇| < 1) and extending Uo to the domain [ξo, ξ(ξo) + ξo] (see Figure 2) in a
way such that U(ξ, t) = exp(ωt)Vo (i.e., imposing the free boundary condition (3.3)(5)).

Given a point (x, t) in the domain DIII we define the point (ξ∗, t∗) as the intersection
of the characteristic (with negative slope) passing from (x, t) and the free boundary x = ξ(t)
(see Figure 5). It is easy to check that

ξ∗ + t∗ = x + t, =⇒ t∗ = t∗(x, t), (3.26)

∂t∗

∂t
=

1
ξ̇(t∗) + 1

,
∂t∗

∂x
=

1
ξ̇(t∗) + 1

. (3.27)
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We consider once again the representation formula (3.5) and impose condition (3.3)(5), getting

2eωt∗Vo = Uo(ξ∗ − t∗) +Uo(ξ∗ + t∗) +
∫ ξ∗+t∗

ξ∗−t∗
[R(ξ∗, t∗; ζ, 0)ω − Rθ(ξ∗, t∗; ζ, 0)]Uo(ζ)dζ

+ β2
∫ t∗

0
eωθdθ

∫ ξ∗+t∗−θ

ξ∗−t∗+θ
R(ξ∗, t∗; ζ, θ)dζ.

(3.28)

From (3.28) we see that the extension Udx
o to the domain [ξo, ξ(ξo) + ξo] is the solution of the

following Volterra integral equation of second kind:

Udx
o (ξ∗ + t∗) +

∫ ξ∗+t∗

ξo

[R(ξ∗, t∗; ζ, 0)ω − Rθ(ξ∗, t∗; ζ, 0)]Udx
o (ζ)dζ

= 2eωt∗Vo −Uo(ξ∗ − t∗) −
∫ ξo

ξ∗−t∗
[R(ξ∗, t∗; ζ, 0)ω − Rθ(ξ∗, t∗; ζ, 0)]Uo(ζ)dζ

− β2
∫ t∗

0
eωθdθ

∫ ξ∗+t∗−θ

ξ∗−t∗+θ
R(ξ∗, t∗; ζ, θ)dζ.

(3.29)

Recalling (3.26) and proceeding as for the domain DII , the above can be rewritten as

Udx
o

(
χ
)
+
∫χ

ξo

Kdx(χ, ζ
)
Udx

o (ζ)dζ = Fdx(χ
)
, (3.30)

where χ = x + t and

Kdx(χ, ζ
)
=

[

Io

(
ω
√(

t∗
(
χ
))2 − (ζ − ξ∗

(
χ
))2
)(

ω +
ω2t∗

(
χ
)

2

)

− ω2t∗
(
χ
)

2
I2

(
ω
√(

t∗
(
χ
))2 − (ξ∗(χ) − ζ

)2
)]

,

Fdx(χ
)
=

[

2eωtVo −Uo(x − t) −
∫ ξo

x−t
[R(x, t; ζ, 0)ω − Rθ(x, t; ζ, 0)]Uo(ζ)dζ

−β2
∫ t

0
eωθdθ

∫x+t−θ

x−t+θ
R(x, t; ζ, θ)dζ

]∣∣∣∣∣
(x=ξ∗(χ),t=t∗(χ))

.

(3.31)

Once again the regularity of the kernelKdx(χ, ζ) ensures the regularity of the solutionUdx
o (χ).

The function Uo(x) can thus be defined in the interval [−ξo, ξ(ξo) + ξo] as

Uo(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Usx
o (x), x ∈ [−ξo, 0],

Uo(x), x ∈ [0, ξo],

Udx
o (x), x ∈ [ξo, ξ(ξo) + ξo].

(3.32)



Advances in Mathematical Physics 11

The solution in the domain DIII is thus given by

U(x, t) = eωt∗Vo +
1
2
[Uo(x − t) −Uo(ξ∗ − t∗)] +

1
2

∫x+t

x−t
P(x, t; ζ, 0)Uo(ζ)dζ

− 1
2

∫x+t

ξ∗−t∗
P(ξ∗, t∗; ζ, 0)Uo(ζ)dζ +

β2

2

∫ t

0
eωθdθ

∫x+t−θ

x−t+θ
R(x, t; ζ, θ)dζ

− β2

2

∫ t∗

0
eωθdθ

∫x+t−θ

ξ∗−t∗+θ
R(ξ∗, t∗; ζ, θ)dζ,

(3.33)

where for simplicity of notation we have introduced

P(x, t; ζ, θ) = R(x, t; ζ, θ)ω − Rθ(x, t; ζ, θ), (3.34)

and where Uo(x) is given by (3.32). Therefore for any fixed C1 function ξ(t) with |ξ̇| < 1 we
have that the solution to problem (3.3)(1−5) is given by (3.5), (3.23), (3.33) with Uo defined
by (3.32). At this point we make use of (3.3)(6) to determine the evolution equation of the
free boundary x = ξ(t). We begin writing the derivativesUt(x, t) andUx(x, t). To this aim we
exploit formula (3.33) since Ut and Ux have to be evaluated on x = ξ(t), which belongs to
domain DIII . Differentiating (3.33) with respect to x we get

Ux(x, t) =
1
2

[

U′
o(x − t) −U′

o(ξ
∗ − t∗)

ξ̇(t∗) − 1
ξ̇(t∗) + 1

]

+

(
ωVoe

ωt∗

ξ̇∗ + 1

)

+
1
2
[P(x, t;x + t, 0)Uo(x + t) − P(x, t;x − t, 0)Uo(x − t)]

− 1
2

[

P(ξ∗, t∗;x + t, 0)Uo(x + t) − P(ξ∗, t∗; ξ∗ − t∗, 0)Uo(ξ∗ − t∗)
ξ̇(t∗) − 1
ξ̇(t∗) + 1

]

− 1
2

∫x+t

ξ∗−t∗

[
Px(ξ∗, t∗; ζ, 0)ξ̇(t∗) + Pt(ξ∗, t∗; ζ, 0)

] Uo(ζ)
ξ̇(t∗) + 1

dζ

+
1
2

∫x+t

x−t
Px(x, t; ζ, 0)Uo(ζ)dζ +

β2

2

∫ t

0
eωθdθ

∫x+t−θ

x−t+θ
Rx(x, t; ζθ)dζ

− β2

2

∫ t∗

0
eωθ

[

R(ξ∗, t∗;x + t − θ, θ) − R(ξ∗, t∗; ξ∗ − t∗ + θ, θ)
ξ̇(t∗) − 1
ξ̇(t∗) + 1

]

dθ

− β2

2

∫ t∗

0
eωθ

∫x+t−θ

ξ∗−t∗+θ

[
Rx(ξ∗, t∗; ζ, θ)ξ̇(t∗) − Rt(ξ∗, t∗; ζ, θ)

] dζ

ξ̇(t∗) + 1
,

(3.35)
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while, differentiating (3.33) with respect to t, we obtain

Ut(x, t) =
1
2

[

−U′
o(x − t) −U′

o(ξ
∗ − t∗)

ξ̇(t∗) − 1
ξ̇(t∗) + 1

]

+

(
ωVoe

ωt∗

ξ̇∗ + 1

)

+
1
2
[P(x, t;x + t, 0)Uo(x + t) + P(x, t;x − t, 0)Uo(x − t)]

− 1
2

[

P(ξ∗, t∗;x + t, 0)Uo(x + t) − P(ξ∗, t∗; ξ∗ − t∗, 0)Uo(ξ∗ − t∗)
ξ̇(t∗) − 1
ξ̇(t∗) + 1

]

− 1
2

∫x+t

ξ∗−t∗

[
Px(ξ∗, t∗; ζ, 0)ξ̇(t∗) + Pt(ξ∗, t∗; ζ, 0)

] Uo(ζ)
ξ̇(t∗) + 1

dζ + β2
∫ t

0
eωθdθ

+
1
2

∫x+t

x−t
Pt(x, t; ζ, 0)Uo(ζ)dζ +

β2

2

∫ t

0
eωθdθ

∫x+t−θ

x−t+θ
Rt(x, t; ζθ)dζ

− β2

2

∫ t∗

0
eωθ

[

R(ξ∗, t∗;x + t − θ, θ) − R(ξ∗, t∗; ξ∗ − t∗ + θ, θ)
ξ̇(t∗) − 1
ξ̇(t∗) + 1

]

dθ

− β2

2

∫ t∗

0
eωθ

∫x+t−θ

ξ∗−t∗+θ

[
Rx(ξ∗, t∗; ζ, θ)ξ̇(t∗) − Rt(ξ∗, t∗; ζ, θ)

] dζ

ξ̇(t∗) + 1
.

(3.36)

Notice that

P(x, t;x + t, 0) = P(x, t;x − t, 0) = ω +
ω2t

2
,

R(x, t;x + t − θ, θ) − R(x, t;x − t + θ, θ) = 0.

(3.37)

Now we evaluate (3.35) and (3.36) on the free boundary x = ξ(t), that is,

Ux(ξ, t) =
U′

o(ξ − t)
ξ̇ + 1

−
(

ω +
ω2t

2

)

Uo(ξ − t)
1

ξ̇ + 1
+

(
ωVoe

ωt

ξ̇ + 1

)

+
1
2

∫ ξ+t

ξ−t
[Px(ξ, t; ζ, 0) − Pt(ξ, t; ζ, 0)]

Uo(ζ)dζ
ξ̇ + 1

− β2
∫ t

0

eωθ

ξ̇ + 1
dθ

+
β2

2

∫ t

0
eωθ

∫ ξ+t−θ

ξ−t+θ
[Rx(ξ, t; ζ, θ) − Rt(ξ, t; ζ, θ)]

dζ

ξ̇ + 1
,

Ut(ξ, t) = −U
′
o(ξ − t)ξ̇

ξ̇ + 1
+

(

ω +
ω2t

2

)

Uo(ξ − t)
ξ̇

ξ̇ + 1
+

(
ωVoe

ωt

ξ̇ + 1

)

+
1
2

∫ ξ+t

ξ−t
[Pt(ξ, t; ζ, 0) − Px(ξ, t; ζ, 0)]

ξ̇Uo(ζ)dζ
ξ̇ + 1

+ β2
∫ t

0

eωθξ̇

ξ̇ + 1
dθ

+
β2

2

∫ t

0
eωθ

∫ ξ+t−θ

ξ−t+θ
[Rt(ξ, t; ζ, θ) − Rx(ξ, t; ζ, θ)]

ξ̇dζ

ξ̇ + 1
.

(3.38)
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At this point we insert (3.38), (3.3)(5) in (3.3)(6), obtaining

(
ξ̇−1)

[(

ω+
ω2t

2

)

Uo(ξ−t)−U′
o(ξ−t)+

β2

ω

(
eωt−1)+ 1

2

∫ ξ+t

ξ−t
[Pt(ξ, t; ζ, 0)−Px(ξ, t; ζ, 0)]Uo(ζ)dζ

+
β2

2

∫ t

0
eωθdθ

∫ ξ+t−θ

ξ−t+θ
[Rt(ξ, t; ζ, θ) − Rx(ξ, t; ζ, θ)]dζ

]

= eωtβ2Bn,

(3.39)

which is a nonlinear integrodifferential equation of the first order and where Uo is defined
by (3.32). Equation (3.39) is the free boundary equation which, as we mentioned in the
introduction, does no longer depend on the velocity fieldU(x, t).

Next we remark that (3.39) can be further simplified. Indeed, recalling (3.10) and
(3.12),

Rx(x, t; ζ, θ) = −Rζ(x, t; ζ, θ), Rθx(x, t; ζ, θ) = −Rθζ(x, t; ζ, θ), (3.40)

so that, on (ξ(t), t; ζ, θ), we have

∫ ξ+t−θ

ξ−t+θ
Rxdζ = −

∫ ξ+t−θ

ξ−t+θ
Rζdζ = R(ξ, t; ξ + t − θ, θ) − R(ξ, t; ξ − t + θ, θ) = 0, (3.41)

while, on (ξ(t), t; ζ, θ),

∫ ξ+t

ξ−t
Pxdζ = −

∫ ξ+t

ξ−t
Rζωdζ +

∫ ξ+t

ξ−t
Rθζdζ

= ω[R(ξ, t; ξ − t, 0) − R(ξ, t; ξ + t, 0)] + [Rθ(ξ, t; ξ + t, 0) − Rθ(ξ, t; ξ − t, 0)] = 0.

(3.42)

Hence (3.39) reduces to

(
ξ̇ − 1

)
[(

ω +
ω2t

2

)

Uo(ξ − t) −U′
o(ξ − t) +

β2

ω

(
eωt − 1

)

+
1
2

∫ ξ+t

ξ−t
Pt(ξ, t; ζ, 0)Uo(ζ)dζ+

β2

2

∫ t

0
eωθdθ

∫ ξ+t−θ

ξ−t+θ
Rt(ξ, t; ζ, θ)dζ

]

= eωtβ2Bn.

(3.43)
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Remark 3.2. The function U(x, t) is continuous across the characteristic x + t = ξo. Indeed

lim
x+t→ ξ+o

U(x, t) = lim
x+t→ ξ−o

U(x, t), (3.44)

where the limit limx+t→ ξ+o is evaluated using (3.33) and the limit limx+t→ ξ−o using (3.5) or
(3.23). If we evaluate the derivatives Ux and Ut on the characteristic x + t = ξo we get two
different results depending on whether we are evaluating such derivatives in DI or DIII . We
can prove that

lim
x+t→ ξ−o

Ux(x, t) =
1
2
[
U′

o(x − t) +U′
o(ξo) + P(x, t; ξo, 0)Uo(ξo) − P(x, t;x − t, 0)Uo(x − t)

]

+
1
2

∫ ξo

x−t
Px(x, t; ζ, 0)Uo(ζ)dζ +

β2

2

∫ t

0
eωθdθ

∫ ξo−θ

x−t+θ
Rx(x, t; ζ, θ)dζ,

(3.45)

lim
x+t→ ξ+o

Ux(x, t) =
1
2

[

U′
o(x − t) −U′

o(ξo)
ξ̇o − 1
ξ̇o + 1

+ P(x, t; ξo, 0)Uo(ξo) − P(x, t;x − t, 0)Uo(x − t)

]

+
ωVo

ξ̇o + 1
+
1
2

∫ ξo

x−t
Px(x, t; ζ, 0)Uo(ζ)dζ +

β2

2

∫ t

0
eωθdθ

∫ ξo−θ

x−t+θ
Rx(x, t; ζ, θ)dζ,

(3.46)

lim
x+t→ ξ−o

Ut(x, t) =
1
2
[
U′

o(ξo) −U′
o(x − t) + P(x, t; ξo, 0)Uo(ξo) + P(x, t;x − t, 0)Uo(x − t)

]

+β2
∫ t

0
eωθdθ+

1
2

∫ ξo

x−t
Pt(x, t; ζ, 0)Uo(ζ)dζ+

β2

2

∫ t

0
eωθdθ

∫ ξo−θ

x−t+θ
Rt(x, t; ζ, θ)dζ,

(3.47)

lim
x+t→ ξ+o

Ut(x, t) =
1
2

[

−U′
o(x − t)−U′

o(ξo)
ξ̇o − 1
ξ̇o + 1

+P(x, t; ξo, 0)Uo(ξo)−P(x, t;x − t, 0)Uo(x − t)

]

+
ωVo

ξ̇o + 1
+
1
2

∫ ξo

x−t
Pt(x, t; ζ, 0)Uo(ζ)dζ + β2

∫ t

0
eωθdθ

+
β2

2

∫ t

0
eωθdθ

∫x+t−θ

x−t+θ
Rx(x, t; ζ, θ)dζ,

(3.48)

where ξ̇o = ξ̇(0). It is easy to check that, imposing that (3.45) equals (3.46) and that (3.47)
equals (3.48), we get the following condition:

ξ̇oU
′
o(ξo) = ωUo(ξo) = ωVo, (3.49)
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which is the condition that must be fulfilled if we want the first derivatives of U(x, t) to be
continuous across the characteristic x + t = ξo.

If we assume that the free boundary equation (3.3)(6) holds up to t = 0 we get

U′
o(ξo) = β2Bn. (3.50)

Moreover, from (3.43) we have that, when t = 0,

(
ξ̇o − 1

)[
ωUo(ξo) −U′

o(ξo)
]
= β2Bn. (3.51)

We can therefore prove the following.

Theorem 3.3. If one assumes that compatibility conditionUo(ξo) = Vo and hypotheses (3.49), (3.50),
(3.51) hold, then necessarily either Vo = 0 or ω = 0 and problem (3.3) admits a unique local C1

solution (U, ξ), such that ξ̇(0) = 0. If one does not assume hypothesis (3.49) (meaning that the first
derivatives of U are not continuous along the characteristic x + t = ξo), then problem (3.3) admits a
unique local solution (U, ξ), such that −1 < ξ̇(t) < 0 if and only if

Vo <
β2Bn

2ω
. (3.52)

Proof. If we suppose that (3.49), (3.50), (3.51) hold then we have

(
ξ̇o − 1

)[
U′

o(ξo)ξ̇o −U′
o(ξo)

]
= β2Bn, =⇒ ξ̇o = 0 or ξ̇o = 2. (3.53)

The initial velocity ξ̇o = 2 is not physically acceptable since existence of a solution requires
that |ξ̇| < 1. Therefore ξ̇o = 0 and, recalling (3.49), we have either Vo = 0 or ω = 0, since
U′

o(ξo) = β2Bn/= ± ∞. If, on the other hand, we suppose that condition (3.49) does not hold,
but we assume (3.52), then it is easy to show that

−1 <
ωVo

ωVo − β2Bn
= 1 +

β2Bn

ωVo − β2Bn
= ξ̇o < 0, (3.54)

so that for a sufficiently small time t > 0 there exists a unique solution with −1 < ξ̇ < 0. The
existence of such a solution can be proved using classical tools like iterated kernels method
(see [13]).
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Remark 3.4. Let us consider the limit case in which ω = 0 and β2 = 0. In this particular
situation the Riemann’s function R(x, t; ζ, θ) ≡ 1 and the solution U(x, t) is given by

U(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2
[Uo(x + t) +Uo(x − t)], in DI,

1
2
[Uo(x + t) −Uo(t − x)], in DII,

1
2
[Uo(x − t) −Uo(ξ − t)] + Vo, in DIII ,

(3.55)

and the free boundary equation is the characteristic with positive slope passing through
(ξo, 0), that is,

(
ξ̇ − 1

)
U′

o(ξ − t) = 0 =⇒ Uo(ξ − t) = Uo(ξo), (3.56)

namely,

ξ(t) = ξo + t =⇒ ξ̇(t) = 1. (3.57)

So, setting to = 1 − ξo, for t ≥ to, the region with uniform velocity (the inner core) has
disappeared. For t ≥ to, the solution U(x, t) is thus found solving

Uxx = Utt, 0 � x � 1, t � 1 − ξo

U(x, 1 − ξo) = U∗
o(x), 0 � x � 1,

Ut(x, 1 − ξo) = U∗
1(x), 0 � x � 1,

U(0, t) = 0 t � 1 − ξo,
U(1, t) = Vo t � 1 − ξo,

(3.58)

where U∗
o(x) and U∗

1(x) are determined evaluating (3.55) at time t = to. To solve problem
(3.58)we introduce the new variable

W(x, t) = U(x, t) − xVo (3.59)

and rescale time with

θ = t − to. (3.60)

Problem (3.58) becomes

Wxx = Wθθ, 0 � x � 1, θ � 0,

W(x, 0) = U∗
o(x) − Vo(x), 0 � x � 1,

Wθ(x, 0) = W1(x) = U∗
1(x), 0 � x � 1,

W(0, θ) = 0, θ � 0,

W(1, θ) = 0, θ � 0,

(3.61)
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whose solution is [11]

W(x, θ) =
∞∑

i=1

[An cos(πnθ) + Bn sin(πnθ)] sin(πnx), (3.62)

where

An = 2
∫θ

0
Wo(z) sin(πnz)dz, Bn =

2
πn

∫θ

0
W1(z) sin(πnz)dz,

U(x, t) = W(x, t − 1 + ξo) + xVo.

(3.63)

4. Asymptotic Expansion

In this section we look for a solution to problem (3.3)(1) in the following form:

U(x, t) =
∞∑

i=0

ωiU(i)(x, t). (4.1)

This allows to obtain a sequence of problems for each i = 0, 1, 2 . . . with the free boundary
being given by ξ(i)(t). (We remark that the sequence {ξ(i)(t)} is not, in general, an asymptotic
sequence.) Such an analysis is motivated by the fact that, in practical cases (asphalt and
bitumen), ω = O(10−1) (see (2.3)). Hence, it makes sense to look for a “perturbative”
approach for the system (3.3).

We do not discuss the issue of the convergence of series (4.1) and of the sequence
{ξ(i)(t)}, which is beyond the scope of the present paper. We limit ourselves to a formal
derivation of the free boundary problems that can be obtained plugging (4.1)(1) into (3.3):

∞∑

i=0

[
ωiU

(i)
xx(x, t) −ωiU

(i)
tt (x, t) +ωi+2U(i)(x, t)

]
= −β2

∞∑

i=0

(ωt)i

i!
. (4.2)

Hence, for each i = 0, 1, 2, . . ., we have

i = 0, U
(o)
xx (x, t) −U

(o)
tt (x, t) = −β2,

i = 1, U
(1)
xx (x, t) −U

(1)
tt (x, t) = −β2t,

i = 2, U
(2)
xx (x, t) −U

(2)
tt (x, t) = −β2 t

2

2!
−U(o)(x, t),

...

i > 2, U
(i)
xx(x, t) −U

(i)
tt (x, t) = −β2 t

i

i!
−U(i−2)(x, t)

(4.3)
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and the following free boundary problems

i = 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U
(o)
xx (x, t) −U

(o)
tt (x, t) = −β2

U(o)(x, 0) = Uo(x),

U
(o)
t (x, 0) = 0,

U(o)(0, t) = 0,

U(o)(ξ(o), t
)
= Vo

U
(o)
x

(
ξ(o), t

)
+ ξ̇(o)U

(o)
t

(
ξ(o), t

)
= β2Bn,

ξ(o)(0) = ξo,

(4.4)

i = 1,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U
(1)
xx (x, t) −U

(1)
tt (x, t) = −tβ2

U(1)(x, 0) = 0,

U
(1)
t (x, 0) = Uo(x),

U(1)(0, t) = 0,

U(1)(ξ(1), t
)
= Vot

U
(1)
x

(
ξ(1), t

)
+ ξ̇(1)U

(1)
t

(
ξ(1), t

) − ξ̇(1)Vo = tβ2Bn,

ξ(1)(0) = ξo,

(4.5)

i ≥ 2,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U
(i)
xx(x, t) −U

(i)
tt (x, t) = − t

i

i!
β2 −U(i−2)(x, t)

U(i)(x, 0) = 0,

U
(i)
t (x, 0) = 0,

U(i)(0, t) = 0,

U(i)(ξ(i), t
)
=

ti

i!
Vo

U
(i)
x

(
ξ(i), t

)
+ ξ̇(i)U

(i)
t

(
ξ(i), t

) − ξ̇(i)Vo
ti−1

(i − 1)!
=

ti

i!
β2Bn,

ξ(i)(0) = ξo.

(4.6)

We immediately remark that, in each problem, the governing equation is no longer a
telegrapher’s equation, but a nonhomogeneous wave equation. Hence, using classical
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d’Alembert formula, we can write the representation formula for each domain DI , DII , DIII

and for each order of approximation i = 0, 1, .... In particular, in DI we have

DI

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(o)(x, t) =
1
2
[Uo(x + t) +Uo(x − t)] +

β2t2

2!
,

U(1)(x, t) =
1
2

∫x+t

x−t
Uo(ζ)dζ +

β2t3

3!
,

...

U(i)(x, t) =
β2

2

∫ t

0

∫x+t−θ

x−t+θ
U(i−2)(ζ, θ)dζdθ +

β2 ti+2

(i + 2)!
, i � 2,

(4.7)

while in DII

DII

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(o)(x, t) =
1
2
[Uo(x + t) −Uo(t − x)] +

β2t2

2!
− β2(x − t)2

2!
,

U(1)(x, t) =
1
2

∫x+t

t−x
Uo(ζ)dζ +

β2t3

3!
− β2(t − x)3

3!
,

...

U(i)(x, t) =
β2

2

∫ t

0

∫x−t+θ

t−x+θ
U(i−2)(ζ, θ)dζdθ +

β2

2

∫ t

0

∫x+t−θ

x−t+θ
U(i−2)(ζ, θ)dζdθ

+
β2ti+2

(i + 2)!
− β2(t − x)i+2

(i + 2)!
, i � 2,

(4.8)

and in DIII

DIII

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(o)(x, t) = Vo +
1
2
[
Uo(x − t) −Uo

(
ξ(o)∗ − t∗

)]
+
β2t2

2!
− β2t∗2

2!
,

U(1)(x, t) = Vot
∗ +

1
2

∫ ξ(1)∗−t∗

x−t
Uo(ζ)dζ +

β2t3

3!
− β2t∗3

3!
,

...

U(i)(x, t) =
β2

2

∫ t

0

∫x+t−θ

x−t+θ
U(j−2)(ζ, θ)dζdθ − β2

2

∫ t∗

0

∫x+t−θ

ξ(i)∗−t∗+θ
U(i−2)(ζ, θ)dζdθ

+Vo
(t∗)i
i!

+
β2ti+2

(i + 2)!
− β2(t∗)i+2

(i + 2)!
. i ≥ 2.

(4.9)
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Proceeding as in Section 3 we can show that the evolution equations of the free boundary
x = ξ(i)(t) at each step are given by

i = 0,
(
ξ̇(0) − 1

)[
β2t −U′

o

(
ξ(o) − t

)]
= β2Bn, (4.10)

i = 1,
(
ξ̇(1) − 1

)[

Uo

(
ξ(1) − t

)
− Vo + β2

t2

2!

]

= tβ2Bn, (4.11)

i � 2,
(
ξ̇(i) − 1

)[β2(i + 2)ti+1

(i + 1)!
− Vot

i−1

(i − 1)!
+ β2

∫ t

0
U(i−2)

(
ξ(i) − t + θ, θ

)
dθ

]

=
ti

i!
β2Bn.

(4.12)

At the zero order, assuming the compatibility condition U′(ξo) = β2Bn (see problem (4.4)),
we have

(
1 − ξ̇

(o)
o

)
U′

o(ξo) = β2Bn, =⇒ ξ̇
(o)
o = 0. (4.13)

At the first order (see problem (4.5)), we assume that the compatibility condition of second
order holds in the corner (ξo, 0). This means that we can differentiate the free boundary
equation (4.5)(6) and take the limit for t → 0. We have

U
(1)
xx

(
ξ(1), t

)
ξ̇(1) +U

(1)
xt

(
ξ(1), t

)
+ ξ̈(1)U

(1)
t

(
ξ(1), t

)
+ ξ̇(1)

2
U

(1)
xt

(
ξ(1), t

)
− ξ̈(1)Vo = β2Bn, (4.14)

which, when t → 0, reduces to

U
′
o(ξo)

(
1 + ξ̇

(1)2
o

)
= β2Bn, =⇒ ξ̇

(1)
o = 0. (4.15)

For the generic ith order (see problem (4.6)), we assume that the compatibility conditions in
the corner (ξo, 0) hold up to order (i − 1). Therefore we can take the (i − 1)th derivative of
(4.6)(6), obtaining

di−1

dti−1

[
U

(i)
x

(
ξ(i), t

)]
+

di−1

dti−1

[
ξ̇(i)
]
U

(i)
t

(
ξ(i), t

)
+ ξ̇(i)

di−1

dti−1

[
U

(i)
t

(
ξ(i), t

)]

− ξ̇(i)Vo − Vo
ti−1

(i − 1)!
di−1

dti−1

[
ξ̇(i)
]
= tβ2Bn,

(4.16)

which, in the limit t → 0, reduces to

−ξ̇(i)o Vo = 0 =⇒ ξ̇
(i)
o = 0. (4.17)

We therefore conclude that, assuming enough regularity for each problem i = 0, 1, 2, . . .,
(4.10)–(4.12) posses a unique local solution with ξ(i)(0) = ξo and ξ̇(i)(0) = 0.
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Before proceeding further we suppose that U(x) has the following properties:
(H1) Uo(x) ∈ C∞([0, ξo]),
(H2) 0 < Uo(x) < Vo for all x ∈ (0, ξo),Uo(0) = 0, Uo(ξo) = Vo,
(H3) U′

o(x) > 0 for all x ∈ [0, ξo] andU′(ξo) = β2Bn,
(H4) Uo(x) satisfies all the compatibility conditions up to any order in the corner

(ξo, 0).

4.1. Zero-Order Approximation

We introduce the new variable φ(o) = ξ(o) − t, so that (4.10) can be rewritten as

φ̇(o)
[
β2t −U′

o

(
φ(o)
)]

= β2Bn, (4.18)

with φ(o)(0) = ξo. Then we look for the solution t = t(φ(o))which fulfills the following Cauchy
problem:

β2Bn
dt

dφ(o)
=
[
β2t −U′

o

(
φ(o)
)]

,

t(ξo) = 0,

(4.19)

that is,

t
(
φ(o)
)
= − 1

β2Bn

∫φ(o)

ξo

U′
o(z) exp

(
φ(o) − z

Bn

)

dz. (4.20)

Recalling that |ξ̇(o)| < 1, that is,

∣∣∣φ̇(o) + 1
∣∣∣ < 1, =⇒ −2 < φ̇(o) < 0, =⇒ dt

dφ(o)
< −1

2
, (4.21)

from (4.19)(1) we realize that (4.21) is fulfilled if

ξo +
Bn

2
<

1
β2

inf
z∈[0,ξo]

U′
o(z). (4.22)

Therefore, under hypothesis (4.22), local existence of a classical solution is guaranteed. Such
a solution is given by ξ(o)(t) = φ(o)(t) + t, where φ(o)(t) is determined inverting (4.20).



22 Advances in Mathematical Physics

4.2. First-Order Approximation

We now have to solve the problem

(
ξ̇(1) − 1

)[

Uo

(
ξ(1) − t

)
− Vo + β2

t2

2!

]

= tβ2Bn, (4.23)

with ξ(1)(0) = ξo. Proceeding as in Section 4.1 we introduce the new variable φ(1) = ξ(1) − t, so
that (4.23) becomes

φ̇(1)

[

Uo

(
φ(1)
)
− Vo +

β2t2

2!

]

= tβ2Bn, (4.24)

and we have to solve the following Cauchy problem:

dt

dφ(1)
=

1
tβ2Bn

[

Uo

(
φ(1)
)
− Vo +

β2t2

2!

]

,

t(ξo) = 0.

(4.25)

We notice that (4.25)(1) is a Bernoulli equation. Therefore, setting w = t2, problem (4.25)
becomes

dw

dφ(1)
=

w

Bn
+ 2

[
Uo

(
φ(1)) − Vo

β2Bn

]

,

w(ξo) = 0.

(4.26)

whose solution is given by

t2
(
φ(1)
)
=
∫φ(1)

ξo

2 exp

{
φ(1) − s

Bn

}[
Uo(s) − Vo

β2Bn

]
ds, (4.27)

which make sense only if φ(1) � ξo. Integrating (4.27) by parts we get

t2
(
φ(1)
)
= 2
∫φ(1)

ξo

exp

{
φ(1) − s

Bn

}[
U′

o(s)
β2

]
ds +

2
β2

[
Vo −Uo

(
φ(1)
)]

. (4.28)

We recall from the previous section that the condition |ξ̇(1)(t)| < 1 is guaranteed if

dt

dφ(1)
< −1

2
, (4.29)
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which, by virtue of(4.25)(1), is equivalent to require that

t2 + Bnt +
2
β2

(
U
(
φ(1)
)
− Vo

)
< 0. (4.30)

Hence, under assumption (H2), the discriminantΔ = Bn2 +8β−2(Vo −Uo(φ(1))) > Bn2 > 0, and
(4.30) is fulfilled when

−Bn −
√
Δ

2
< 0 � t <

−Bn +
√
Δ

2
. (4.31)

Therefore, in order to have a unique local solution, we must require that

t2 <
Bn2 + Δ − 2

√
ΔBn

4
<
Bn2

2
+

2
β2

[
Vo −Uo

(
φ(1)
)]

, (4.32)

which, exploiting (4.28), becomes

2
∫φ(1)

ξo

exp

{
φ(1) − s

Bn

}[
U′

o(s)
β2

]
ds <

Bn2

2
. (4.33)

The latter is automatically satisfied, under assumption (H3), recalling that φ(1) � ξo. So, also
for the first order we have local uniqueness and existence of the solution ξ(1)(t) = φ(1)(t) + t,
where φ(1)(t) is obtained inverting (4.28).

4.3. ith-Order Approximation

We now consider here the ith-order approximation. The evolution equation of the free
boundary is given by (4.12). Proceeding as in the previous sections we set φ(i) = ξ(i) − t,
so that (4.12) can be rewritten as

φ̇(i)

[
β2(i + 2)ti+1

(i + 1)!
− Vot

i−1

(i − 1)!
+ β2

∫ t

0
U(i−2)

(
φ(i) − t + θ, θ

)
dθ

]

=
ti

i!
β2Bn, (4.34)

with φ(i)(0) = ξo. Once again we look for t = t(φ(i)), solving this Cauchy problem

dt

dφ(i)
=

(i + 2)
(i + 1)

t

Bn
− Voi

β2Bnt
+

i!
tiBn

∫ t

0
U(i−2)

(
φ(i) − t + θ, θ

)
dθ t(ξo) = 0,

t(ξo) = 0.

(4.35)

Now, hypothesis (H4) and (4.17) entail

lim
t→ 0+

dφ(i)

dt
= lim

t→ 0+

dt

dφ(i)
= −1. (4.36)
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Therefore

Voi

β2
= lim

t→ 0+

i!
ti−1

∫ t

0
U(i−2)

(
φ(i) − t + θ, θ

)
dθ. (4.37)

So for t sufficiently small, we can approximate the integral on the r.h.s. of (4.37) in the
following way:

∫ t

0
U(i−2)

(
φ(i) − t + θ, θ

)
dθ = Ci

(
φ(i)
)
ti−1, (4.38)

where Ci is a smooth function of φ(i), determined exploiting (4.7), (4.8), and (4.9). In
particular,

Ci(ξo) =
Vo

(i − 1)!β2Bn
. (4.39)

Hence, setting

Ai =
i + 2
i + 1

1
Bn

, Bi

(
φ(i)
)
=

[
i!Ci

(
φ(i))

Bn
− iVo

β2Bn

]

, (4.40)

problem (4.35) acquires the following structure:

dt

dφ(i)
= Ait + Bi

(
φ(i)
)1
t
, t(ξo) = 0,

t(ξo) = 0,

(4.41)

provided t sufficiently small. From (4.37) it is easy to check that in a right neighborhood of
t = 0 the function (Recall thatU(i−2)(x, t) are everywhere non negative for every i), Bi(φ(i)) < 0
and Bi(ξo) = 0. Equation (4.41)(1) is once again a Bernoulli equation which can be integrated
providing

t2
(
φ(i)
)
=
∫φ(i)

ξo

2Bi(s) exp
{
2Ai

(
φ(i) − s

)}
ds, (4.42)
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where we recall once again that φ(i) � ξo. Also in this case we can integrate by parts getting

t2
(
φ(i)
)
= − Bi

Ai
+
∫φ(i)

ξo

2
B′
i(s)
Ai

exp
{
2Ai

(
φ(i) − s

)}
ds. (4.43)

Proceeding as before we derive the conditions ensuring |ξ̇(i)| < 1. Hence, making use of (4.41)
we obtain the following ineqaulity:

t2 +
t

2Ai
+

Bi

Ai
< 0, (4.44)

which is satisfied if

t2 <
1

8A2
i

− Bi

Ai
. (4.45)

Therefore, |ξ̇(i)| < 1 when

∫φ(i)

ξo

2B′
i(s) exp

{
2Ai

(
φ(i) − s

)}
ds <

1
8Ai

. (4.46)

So, if condition (4.46) is fulfilled, the solution is given by ξ(i)(t) = φ(i)(t) + t, where φ(i)(t) is
obtained inverting (4.42).

5. Conclusions

We have studied a hyperbolic (telegrapher’s equation) free boundary problem derived from
the model for a pressure-driven channel flow of a particular Bingham-like fluid described
in [1]. The motivation of this analysis comes from the study of the rheology of materials
like asphalt and bitumen. Exploiting the representation formulas, determined by means of
modified Bessel functions, we have shown that the free boundary equation (which has turned
out to be a nonlinear integrodifferential equation) can be rewritten only in terms of the initial
and boundary data of the problem. In other words, the free boundary dynamics can be solved
autonomously from the problem for the velocity field.

We have shown that local existence and uniqueness is guaranteed under some
appropriate assumptions on the initial and boundary data (Theorem 3.3). Moreover, when
ω < 1 (and this is the case of asphalt and bitumen), we approximate the solution performing
an asymptotic expansion in which each term can be iteratively evaluated. We did not prove
the convergence of the asymptotic series.

A further extension of the analysis we have performed in this paper (which is a limit
case of the model presented in [1]) would be to study the one-dimensional problem in
its general structure, in which the inner part of the layer is treated as an Oldroyd-B fluid
(with nonuniform velocity). Of course this problem is by far more complicated than the one
described in this paper. Nevertheless the procedure we have employed here seems to be a
promising tool.
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