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We study the generalized quantum isotonic oscillator Hamiltonian given by H = −d2/dr2 + l(l +
1)/r2+w2r2+2g(r2−a2)/(r2 + a2)2, g > 0. Two approaches are explored. A method for finding the
quasipolynomial solutions is presented, and explicit expressions for these polynomials are given,
along with the conditions on the potential parameters. By using the asymptotic iteration method,
we show how the eigenvalues of this Hamiltonian for arbitrary values of the parameters g,w, and
amay be found to high accuracy.

1. Introduction

Recently, Cariñena et al. [1] studied a quantum nonlinear oscillator potential whose
Schrödinger equation reads

[
− d2

dx2
+ x2 + 8

2x2 − 1

(2x2 + 1)2

]
ψn(x) = Enψ(x). (1.1)

The interest in this problem came from the fact that it is exactly solvable in a sense that the
exact eigenenergies and eigenfunctions can be obtained explicitly. Indeed, Cariñena et al. [1]
were able to show that
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ψn(x) =
Pn(x)

(2x2 + 1)
e−x

2/2,

En = −3 + 2n, n = 0, 3, 4, 5, . . . ,

(1.2)

where the polynomials factors Pn(x) are related to the Hermite polynomials by means of

Pn(x) =

⎧⎨
⎩
1, if n = 0,

Hn(x) + 4nHn−2(x) + 4n(n − 3)Hn−4(x), if n = 3, 4, 5, . . . .
(1.3)

In a more recent work, Fellows and Smith [2] showed that the potential V (x) = x2 + 8(2x2 −
1)/(2x2 + 1)2 as well as, for certain values of the parametersw, g, and a, the potential V (x) =
w2x2 + 2g(x2 − a2)/(x2 + a2)2 of the Schrödinger equation

[
− d2

dx2
+w2x2 + 2g

x2 − a2
(x2 + a2)2

]
ψn(x) = 2Enψ(x) (1.4)

are indeed supersymmetric partners of the harmonic oscillator potential. Using the
supersymmetric approach, the authors were able to construct an infinite set of exact soluble
potentials, along with their eigenfunctions and eigenvalues. Very recently, Sesma [3], using a
Möbius transformation, was able to transform (1.4) into a confluent Heun equation [4], and
thereby obtain an efficient algorithm to solve the Schrödinger equation (1.4) numerically.

The purpose of the present work is to provide a detailed solution, by means of the
quasipolynomial solutions and the application of the asymptotic iteration method [5–8], for
the Schrödinger equation

[
− d2

dr2
+
l(l + 1)
r2

+w2r2 + 2g
r2 − a2

(r2 + a2)2

]
ψ(r) = 2Eψ(r), (1.5)

where l is the angularmomentum number l = −1, 0, 1, . . .. Our results show that the quasiexact
solutions of Sesma [3] as well the results of Cariñena et al. [1] follow as special cases of our
general approach. The present paper is organized as follows. In Section 2, some preliminary
analysis of the Schrödinger equation (1.5) is presented. A general approach for finding
polynomial solutions of (1.5), for certain values of parameters w and g, is presented and
is based on a recent work of Ciftci et al. [6] for solving the second-order linear differential
equation

(
3∑
i=0

a3,ix
i

)
y′′ +

(
2∑
i=0

a2,ix
i

)
y′ −

(
1∑
i=0

τ1,ix
i

)
y = 0. (1.6)

More general quasiexact solutions, including the results of Sesma [3], are discussed in
Section 3. Unrestricted solutions of (1.5) based on the asymptotic iteration method are
discussed in Section 4.
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2. Generalized Quantum Isotonic Oscillator—Preliminary Results

A simple scaling argument, using r = a2x, allows us to write (1.5) as

[
− d2

dx2
+
l(l + 1)
x2

+
(
wa2

)2
x2 + 2g

x2 − 1

(x2 + 1)2

]
ψ(x) = 2Ea2ψ(x). (2.1)

A further substitution z = x2+1 yields a differential equation with two regular singular points
at z = 0, 1 and one irregular singular point of rank 2 at z = ∞. The roots μ’s of the indicial
equation for the regular singular point z = 0 reads μ± = 1/2(1 ± √

1 + 4g), while the roots
of the indicial equation at z = 1 are μ+ = (l + 1)/2 and μ− = −l/2. Since the singularity for
z → ∞ corresponds to that for x → ∞, it is necessary that the solution for z → ∞ behave
as ψ(x) ∼ exp(−wa2x2/2). Consequently, we may assume the general solution of (2.1)which
vanishes at the origin and at infinity takes the form

ψn(x) = xl+1
(
x2 + 1

)μ
e−(wa

2/2)x2
fn(x). (2.2)

A straightforward calculation shows that fn(x) are the solutions of the second-order homo-
geneous linear differential equation

f ′′(x) +
(
2(l + 1)

x
+

4μx
x2 + 1

− 2wa2x
)
f ′(x)

+

[
2Ea2 −wa2(2l + 3 + 4μ

)
+
2μ

(
2l + 3 + 2wa2

)
+ 4μ

(
μ − 1

) − 2g
x2 + 1

+
4
(
g − μ(μ − 1

))
(x2 + 1)2

]

× f(x) = 0.
(2.3)

In the next sections, we attempt to give a general solution of this equation. For now, we
assume that μ takes the value of the indicial root

μ ≡ μ− =
1
2

(
1 −

√
1 + 4g

)
, (2.4)

which allows us to write (2.3) as

f ′′
n(x) +

(
2(l + 1)

x
+

4μx
x2 + 1

− 2wa2x
)
f ′
n(x)

+

[
2Ea2 −wa2(2l + 3 + 4μ

)
+
2μ

(
2l + 3 + 2wa2

)
+ 2μ

(
μ − 1

)
x2 + 1

]
fn(x) = 0.

(2.5)
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We now consider the cases where the following two equations are satisfied:

2μ
(
2l + 3 + 2wa2

)
+ 2μ

(
μ − 1

)
= 0,

g = μ
(
μ − 1

)
.

(2.6)

The solutions of this system, for g and μ, are given explicitly by

g = 0, or g = 2
(
1 + l + a2w

)(
3 + 2l + 2a2w

)
,

μ = 0, or μ = −2(1 + l + a2w)
.

(2.7)

Next, we consider each case of these two sets of solutions.

2.1. Case 1

The first set of solutions (g, μ) = (0, 0) reduces the differential equation (2.3) to

xf ′′
n(x) +

[
−2wa2x2 + 2(l + 1)

]
f ′
n(x) +

(
2Ea2 −wa2(2l + 3)

)
xfn(x) = 0, (2.8)

which is a special case of the general differential equation

(
a3,0x

3 + a3,1x2 + a3,2x + a3,3
)
y′′ +

(
a2,0x

2 + a2,1x + a2,2
)
y′ − (τ1,0x + τ1,1)y = 0, (2.9)

with a3,0 = a3,1 = a3,3 = a2,1 = τ1,1 = 0, a3,2 = 1, a2,0 = −2wa2, a2,2 = 2(l + 1), and τ1,0 =
−2Ea2 +wa2(2l+ 3). The necessary and sufficient conditions for polynomial solutions of (2.9)
are given by the following theorem [6].

Theorem 2.1. The second-order linear differential equation (2.9) has a polynomial solution of degree
n if

τ1,0 = n(n − 1)a3,0 + na2,0, n = 0, 1, 2, . . . , (2.10)

along with the vanishing of (n + 1) × (n + 1)-determinant Δn+1 given by

Δn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 α1 η1

γ1 β1 α2 η2

γ2 β2 α3 η3

. . .
. . .

. . .
. . .

γn−2 βn−2 αn−1 ηn−1

γn−1 βn−1 αn

γn βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (2.11)
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where

βn = τ1,1 − n((n − 1)a3,1 + a2,1),

αn = −n((n − 1)a3,2 + a2,2),

γn = τ1,0 − (n − 1)((n − 2)a3,0 + a2,0),

ηn = −n(n + 1)a3,3,

(2.12)

and τ1,0 is fixed for a given n in the determinant Δn+1 = 0.

Thus, the necessary condition for the differential equation (2.8) to have polynomial
solutions fn(x) =

∑n
i=0 cix

i is

2Ena2 = wa2
(
2n′ + 2l + 3

)
, n′ = 0, 1, 2, . . ., (2.13)

while the sufficient condition, (2.12), is

Δn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 α1 0 0

γ1 0 α2 0

γ2 0 α3 0

. . . . . . . . . . . .

γn−2 0 αn−1 0

γn−1 0 αn

γn 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if n = 0, 2, 4, . . . ,

(n−1)/2∏
j=0

(−1)2j+1α2j+1γ2j+1 = 0, if n = 1, 3, 5, . . . .,

(2.14)

where βn = 0, αn = −n(n + 2l + 1) and γn = 2wa2(n − n′ − 1).
If l = −1, the determinant Δn+1 is identically zero for all n, which is equivalent to the

exact solutions of the one-dimensional harmonic oscillator problem.
For l /= − 1, we have for n = 0, 2, 4, . . ., Δn+1 ≡ 0, and we obtain the exact solutions of

the Gol’dman and Krivchenkov (or Isotonic) HamiltonianH0, where

H0ψnl(x) ≡
[
− d2

dx2
+
l(l + 1)
x2

+w2a4x2
]
ψnl(x) = 2Eg=0

nl
a2ψnl(x), 0 ≤ x < ∞. (2.15)

These exact solutions are given by [9]

2a2Eg=0
nl

= wa2(4n + 2l + 3), n = 0, 1, 2, . . . ,

ψnl(x) = xl+1e−wa
2x2/2

1F1

(
−n; l + 3

2
;wa2x2

)
, n = 0, 1, 2, . . . ,

(2.16)
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where the confluent hypergeometric function 1F1(−n; a; z) defined in terms of the Pochham-
mer symbol (or Gamma function Γ(a))

(a)k =
Γ(a + k)
Γ(a)

=

⎧⎨
⎩
1, if (k = 0, a ∈ � \ {0}),

a(a + 1)(a + 2) · · · (a + k − 1), if (k = �, a ∈ � ),
(2.17)

as

1F1(−n; a; z) =
n∑
k=0

(−n)kzk
(a)kk!

. (2.18)

The polynomial solutions fn(x) = 1F1(−n; l + (3/2);wa2x2) are easily obtained by using
the asymptotic iteration method (AIM), which is summarized by means of the following
theorem.

Theorem 2.2 (Ciftci et al. [7, equations (2.13)-(2.14)]). Given λ0 ≡ λ0(x) and s0 ≡ s0(x) in C∞,
the differential equation

f ′′(x) = λ0(x)f ′(x) + s0(x)f(x) (2.19)

has the general solution

f(x) = exp
(
−
∫x

α(t)dt
)[

C2 + C1

∫x

exp

(∫ t

(λ0(τ) + 2α(τ))dτ

)
dt

]
, (2.20)

if for some n ∈ �+ = {1, 2, . . .}

sn
λn

=
sn−1
λn−1

= α(x), or δn(x) = λnsn−1 − λn−1sn = 0, (2.21)

where

λn = λ′n−1 + sn−1 + λ0λn,

sn = s′n−1 + s0λn.
(2.22)

For the differential equation (2.8)with

λ0(x) = −
(−2wa2x2 + 2(l + 1)

)
x

,

s0(x) = −
(
2Ea2 −wa2(2l + 3)

)
,

(2.23)
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the first few iterations with δn = λnsn−1 − λn−1sn = 0, using (2.20), imply

f0(x) = 1,

f1(x) = 2wa2x2 − (2l + 3),

f2(x) = 4w2a4x4 − 4wa2(2l + 5)x2 + (2l + 3)(2l + 5),

...

(2.24)

which we may easily generalized using the definition of the confluent hypergeometric
function, (2.18), as

fn(x) = 1F1

(
−n; l + 3

2
;wa2x2

)
, (2.25)

up to a constant.

2.2. Case 2

The second set of solutions

(
g, μ

)
=

(
2
(
1 + l + a2w

)(
3 + 2l + 2a2w

)
,−2

(
1 + l + a2w

))
(2.26)

allow us to write the differential equation (2.3) as

f ′′
n(x) +

(
2(l + 1)

x
− 8

(
l + 1 + a2w

)
x

x2 + 1
− 2wa2x

)
f ′
n(x)

+
(
2Ea2 +wa2

(
6l + 5 + 8wa2

))
fn(x) = 0.

(2.27)

A further change of variable z = x2 + 1 allows us to write the differential equation (2.27) as

4z(z − 1)f ′′(z) −
(
4a2wz2 + 2

(
6l + 5 + 6wa2

)
z − 16

(
l + 1 +wa2

))
f ′(z)

+
(
2Ea2 +wa2

(
6l + 5 + 8wa2

))
zf(z) = 0,

(2.28)

Again, (2.28) is a special case of the differential equation (2.9) with a3,0 = a3,3 = τ1,1 = 0,
a3,1 = 4, a3,2 = −4, a2,0 = −4wa2, a2,1 = −2(6l + 5 + 6wa2), a2,2 = 16(l + 1 + wa2), and τ1,0 =
−2Ea2 −wa2(6l+5+8wa2). Consequently, the polynomial solutions fn(x) of (2.28) are subject
to the following two conditions: the necessary condition (2.10) reads

2Ena2 = wa2
(
4n′ − 6l − 5 − 8wa2

)
, n′ = 0, 1, 2, . . ., (2.29)
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and the sufficient condition; namely, the vanishing of the tridiagonal determinant (2.12),
reads

Δn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 α1

γ1 β1 α2

γ2 β2 α3

. . .
. . .

. . .

γn−2 βn−2 αn−1

γn−1 βn−1 αn

γn βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (2.30)

where

βn = −2n
(
2n − 6l − 7 − 6wa2

)
,

αn = 4n
(
n − 4l − 5 − 4a2w

)
,

γn = 4wa2
(
n − n′ − 1

)
,

(2.31)

and n′ = n is fixed for the given dimension of the determinant Δn+1. From the sufficient
condition (2.31), we obtain the following conditions on the parameters:

Δ2 = 0 =⇒ a2w
(
l + 1 + a2w

)
= 0,

Δ3 = 0 =⇒ a2w
(
l + 1 + a2w

)(
1 + 2l + 2a2w

)
= 0,

Δ4 = 0 =⇒ a2w
(
l + 1 + a2w

)(
1 + 2l + 2a2w

)(
3(1 + 6l) + 14a2w

)
= 0,

Δ5 = 0 =⇒ a2w
(
l + 1 + a2w

)(
1 + 2l + 2a2w

)(
3(6l − 1)(6l + 1) + 4(38l + 1)a2w + 44a4w2

)
= 0,

Δ6 = 0 =⇒ a2w
(
l + 1 + a2w

)(
1 + 2l + 2a2w

)

×
(
3(2l − 1)(6l − 1)(6l + 1) + 2

(
208l2 − 54l − 5

)
a2w + 200la4w2

)
= 0,

... =
... .

(2.32)
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For a physically meaningful solution, we must have a2w > 0. This is possible for a very
restricted value of the angular momentum number l. Since β0 = 0, we may observe that

Δn+1 =
(
l + 1 + a2w

)(
1 + 2l + 2a2w

)
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β2 α3

γ3 β3 α4

γ4 β4 α5

. . . . . . . . .

γn−2 βn−2 αn−1

γn−1 βn−1 αn

γn βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(
l + 1 + a2w

)(
1 + 2l + 2a2w

)
×Ql

n−1
(
a2w

)
,

(2.33)

where Ql
n−1(a

2w) are polynomials in the parameter product a2w.
For physically acceptable solutions, we must have l = −1 and the factor (l + 1 + a2w)

yields a2w = 0, which is not physically acceptable, so we ignore it. The second factor (1 +
2l + 2a2w) implies a special value of a2w = 1/2, for all n, which we will study shortly in full
detail. Meanwhile, the polynomials Ql

n(a
2w)

Ql=−1
n−1

(
a2w

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if n = 2,

14a2w − 15, if n = 3,

44a4w2 − 148a2w + 105, if n = 4,

200a4w2 − 514a2w + 315, if n = 5,

...

(2.34)

give new values, not reported before, of a2w that yield quasiexact solutions of the
Schrödinger equation (with one eigenstate)

−ψ ′′
n(x) +

[(
wa2

)2
x2 + 4a2w

(
1 + 2a2w

) (
x2 − 1

)
(x2 + 1)2

]
ψn(x) = wa2

(
4n + 1 − 8a2w

)
ψn(x),

(2.35)

where

ψn(x) =
(
x2 + 1

)−2a2w
e−wa

2x2/2fn(x), (2.36)
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Figure 1: Plot of the unnormalized wave function ψ3(x) and the potential V3 = (225/196)x2 +(660/49)(x2 −
1)/(x2 + 1)2.

and fn(x) are the solutions of

4z(z − 1)f ′′(z) −
(
4a2wz2 + 2

(
−1 + 6wa2

)
z − 16wa2

)
f ′(z) + 4nwa2zf(z) = 0, z = x2 + 1.

(2.37)

For example,Δ4 = 0 implies, using (2.34), that a2w = 15/14, and thus, we have for

−ψ ′′
3(x) +

[
225
196

x2 +
660
49

(
x2 − 1

)
(x2 + 1)2

]
ψ3(x) =

465
98

ψ3(x), (2.38)

the exact solution

ψ3(x) =
(
x2 + 1

)−15/7
e−(15/28)x

2
(
45x6 + 225x4 + 315x2 − 49

)
, (2.39)

with a plot of the wave function and potential given in Figure 1.
Further, Δ5 = 0, equation (2.34) implies

a2w =
37
22

±
√
214
22

, (2.40)
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and we have for

− ψ ′′
4(x) +

⎡
⎣
(

37
22

±
√
214
22

)2

x2 + 2

(
37
11

±
√
214
11

)(
48
11

±
√
214
11

) (
x2 − 1

)
(x2 + 1)2

⎤
⎦ψ4(x)

=

(
37
22

±
√
214
22

)(
39
11

∓ 4
√
214
11

)
ψ4(x),

(2.41)

the exact solutions

ψ±
4 (x) =

(
x2 + 1

)−((37/11)±(
√
214/11))

e−((37/44)±(
√
214/44))x2

×
(
1575x8 +

(
9660 ± 420

√
214

)
x6 +

(
26250 ± 2100

√
214

)
x4 +

(
29820 ± 2940

√
214

)
x2

−
(
1129 ± 188

√
214

))
.

(2.42)

Similar results can be obtained for Δn+1 = 0, for n ≥ 5.

2.3. Exactly Solvable Quantum Isotonic Nonlinear Oscillator

As mentioned above, for l = −1 and a2w = 1/2, it clear that Δn+1 = 0 for all n and the one-
dimensional Schrödinger equation

[
− d2

dx2
+
x2

4
+
4
(
x2 − 1

)
(x2 + 1)2

]
ψn(x) =

(
2n − 3

2

)
ψn(x), n = 0, 1, 2, . . . (2.43)

has the exact solutions

ψn(x) =
(
x2 + 1

)−1
e−x

2/4fn(x), (2.44)

where fn(x) are the polynomial solutions of the following second-order linear differential
equation (z = x2 + 1)

4z(z − 1)f ′′
n(z) −

(
2z2 + 4z − 8

)
f ′
n(z) + 2nzfn(z) = 0. (2.45)
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By using AIM (Theorem 2.2, (2.20)), we find that the polynomial solutions fn(x) of (2.45) are
given explicitly as

f0(x) = 1,

f1(x) = x2 − 2,

f2(x) = x3 − 6x2 + 8,

f3(x) = x4 − 16x3 + 52x2 − 52,

f4(x) = x5 − 30x4 + 250x3 − 580x2 + 464,

...

(2.46)

a set of polynomial solutions that can be generated using

f0(x) = 1,

fn(x) = −3x(2n + 1)1F1

(
−n; 3

2
;
1
2
(x − 1)

)
+ 6((n + 1)x − 1) 1F1

(
−n + 1;

3
2
;
1
2
(x − 1)

)
,
(2.47)

up to a constant factor, where, again, 1F1 refers to the confluent hypergeometric function
defined by (2.18). Note that the polynomials fn(x) in (2.47) can be expressed in terms of the
associated Laguerre polynomials [10] as

f0(x) = 1,

fn(x) =
3(−1)n√πΓ(n)
2Γ(n + 3/2)

×
[(

(1 + n)(x − 1)2 + n
)
L1/2
n

(
x − 1
2

)
− (x − 1)((1 + n)x − 1)L3/2

n

(
x − 1
2

)]
.

(2.48)

3. Quasipolynomial Solutions of the Generalized
Quantum Isotonic Oscillator

In this section, we study the quasipolynomial solutions of the differential equation (2.3). We
note first, using the change of variable z = x2, equation (2.3) can be written as

f ′′
n(z) +

(
2l + 3
2z

+
2μ
z + 1

−wa2
)
f ′
n(z)

+

[
2Ea2 −wa2(2l + 3 + 4μ

)
4z

+
μ
(
2l + 3 + 2wa2

)
2z(z + 1)

− g

2
(z − 1)

z(z + 1)2
+
μ
(
μ − 1

)
(z + 1)2

]
fn(z) = 0.

(3.1)
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By means of the Möbius transformation z = t/(1 − t) that maps the singular points {−1, 0,∞}
into {0, 1,∞}, we obtain

f ′′
n(t) +

(
2l + 3

2t(1 − t) +
2
(
μ − 1

)
1 − t − wa2

(1 − t)2
)
f ′
n(t)

+

[
μ
(
2l + 3 + 2wa2

)
2t(1 − t)2

− g

2
(2t − 1)

t(1 − t)2
+
μ
(
μ − 1

)
(1 − t)2

]
fn(t) = 0,

(3.2)

where we assume that

2Ea2 − (
2l + 3 + 4μ

)
wa2 = 0. (3.3)

The differential equation (3.2) can be written as

(
t3 − 2t2 + t

)
f ′′
n(t) +

[
−2(μ − 1

)
t2 +

(
2μ −wa2 − l − 7

2

)
t +

(
l +

3
2

)]
f ′
n(t)

+
[(
μ
(
μ − 1

) − g)t + g

2
+ μ

(
l +

3
2
+wa2

)]
fn(t) = 0,

(3.4)

which we may now compare with equation (2.9) in Theorem 2.1 with a3,0 = 1, a3,1 = −2,
a3,2 = 1, a3,3 = 0, a2,0 = −2(μ−1), a2,1 = (2μ−wa2− l−7/2), a2,2 = (l+3/2), τ1,0 = −(μ(μ−1)−g),
τ1,1 = −g/2 − μ(l + 3/2 +wa2). We, thus, conclude that the quasipolynomial solutions fn(t) of
(3.4) are subject to the following conditions:

g =
(
μ − k)(μ − k − 1

)
, k = 0, 1, 2, . . ., (3.5)

along with the vanishing of the tridiagonal determinant Δn+1 = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 α1

γ1 β1 α2

γ2 β2 α3

. . . . . . . . .

γn−1 βn−1 αn

γn βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (3.6)



14 Advances in Mathematical Physics

where

βn = −1
2

(
g +

(
μ − n)(3 + 2l + 4n + 2a2w

))
,

αn = −n
(
n + l +

1
2

)
,

γn = g − (
μ − n + 1

)(
μ − n).

(3.7)

Here, again, g = (μ − k)(μ − k − 1) is fixed for given k = n, the fixed size of the determinant
Δn+1.

3.1. Particular Case: n = 0

For k(fixed) ≡ n = 0, the differential equation (3.4) has the exact solution f0(t) = 1 if g and μ
satisfy, simultaneously, the following system of equations:

g + μ
(
3 + 2l + 2a2w

)
= 0, g = μ

(
μ − 1

)
. (3.8)

Solving this system of equations for g and μ, we obtain the following values of

g = 2
(
1 + l + a2w

)(
3 + 2l + 2a2w

)
, μ = −2

(
l + 1 +wa2

)
, (3.9)

and the ground-state energy, in this case, is given by (3.3); namely,

Ea2 = −1
2
a2w

(
5 + 6l + 8a2w

)
, (3.10)

which in complete agreement with the results of Section 2.2.

3.2. Particular Case: n = 1

For k(fixed) ≡ n = 1, the determinant Δ2 = 0 of (3.7) yields

g2 + g
(−1 + 10μ + 2l

(
2μ + 1

)
+ 2a2w

(
2μ − 1

))
+μ

(
μ − 1

)(
15 + 4l2 + 8l

(
2 + a2w

)
+ 4a2w

(
5 + a2w

))
= 0,

g − (
μ − 1

)(
μ − 2

)
= 0,

(3.11)

where the energy is given by use of (3.3), for the computed values of μ and g, by

E =
(
l +

3
2
+ 2μ

)
w. (3.12)
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Further, (3.11) yields the solutions for l as functions of μ and a2w

l =
2 − (

5 + 4a2w
)
μ − 2μ2 ±

√
4 − 4(3 + 8a2w)μ + 9μ2

4μ
≥ −1, (3.13)

where the energy states are now given by (3.12) along with l given by (3.13). We may also
note that for

a2w =
1
2
(k + 1), k = 0, 1, 2, . . ., (3.14)

a2E± = − 1
8μ

(k + 1)
(
−2 + (2k + 1)μ − 6μ2 ±

√
4 − 4(4k + 7)μ + 9μ2

)
. (3.15)

Further, for g = (μ − 1)(μ − 2), we obtain the unnormalized wave function (see (2.2))

ψ1,l(x) = xl+1
(
1 + x2

)μ−1
e−wa

2x2/2

(
1 +

1 + 2l + μ + 2a2w
5 + 2l + μ + 2a2w

x2
)
. (3.16)

Thus, we may summarize these results as follows. The exact solutions of the Schrödinger
equation (2.1) are given by (3.15) and (3.16) only if g and μ are the solutions of the system
given by (3.11). In Tables 1 and 2, we report few quasiexact solutions that can be obtained
using this approach.

3.2.1. Particular Case n = 2

For k(fixed) ≡ n = 2, the determinant Δ3 = 0 along with the necessary condition (3.7) yields

g3 + 3g2(7μ − 1 + 2l
(
1 + μ

)
+ 2a2w

(
μ − 1

))
−g[18 + 56l + 8l2 + 18(7 + 2l)μ − 3(5 + 2l)(7 + 2l)μ2 − 12a2w

(
μ − 1

)(
(7 + 2l)μ − 4

)
− 4a4w2(2 + 3

(
μ − 2

)
μ
)]

+μ
(
μ − 2

)(
μ − 1

)(
105 + 142l + 60l2 + 8l3 + 6a2w(5 + 2l)(7 + 2l)

+ 12a4w2(7 + 2l) + 8a6w3) = 0,

g − (
μ − 2

)(
μ − 3

)
= 0,

(3.17)

where, again, the energy is given, for the computed values of μ and g using (3.3) and (3.17),
by

E =
(
l +

3
2
+ 2μ

)
w. (3.18)
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Table 2: Conditions on the value of the parameters g and μ for the quasipolynomial solutions in the case
of Δ2 = 0 with different values ofwa2 and l.

n l wa2 Conditions Ewa
2

n,l
≡ Ewa2

n,l
(μ, g)

0 3/2
μ = −11/3 + B

E3/2
1,0 = −1/6(35 − 12B)w

g = (−14/3 + B)(−17/3 + B)
B = 1/3�(A1/3 + 43A−1/3), A = −98 + 9i

√
863

μ = −11/3 − B,
E1
1,0 = −1/6(35 + 12B)wg = 1/9(17 + 3B)(14 + 3B)

B = 1/6�(43(1 + i
√
3)A−1/3 + (1 − i√3)A1/3), A = −98 + 9i

√
863

μ = −11/3 − B,
E1
1,0 = −1/6(35 + 12B)wg = 1/9(17 + 3B)(14 + 3B)

B = 1/6�(43(1 − i√3)A−1/3 + (1 + i
√
3)A1/3), A = −98 + 9i

√
863

2
μ = −13/3 + B

E3/2
1,0 = −1/6(43 − 12B)wg = 1/9(−16 + 3B)(−19 + 3B)

B = 1/3�(A1/3 + 55A−1/3), A = −55 + 165i
√
6

μ = −13/3 − B,
E1
1,0 = −1/6(43 + 12B)wg = 1/9(16 + 3B)(19 + 3B)

B = 1/6�(55(1 + i
√
3)A−1/3 + (1 − i√3)A1/3), A = −55 + 165i

√
6

μ = −13/3 − B,
E1
1,0 = −1/6(43 + 12B)wg = 1/9(16 + 3B)(19 + 3B)

B = 1/6�(55(1 − i√3)A−1/3 + (1 + i
√
3)A1/3), A = −55 + 165i

√
6

In Table 3, we report the numerical results for some of the exact solutions of μ and g using
(3.17) and the values of (l, wa2) = (−1, 1/2), (l, wa2) = (−1, 1), (l, wa2) = (−1, 3/2), (l, wa2) =
(−1, 2), (l, wa2) = (0, 1/2), and (l, wa2) = (0, 2), respectively. We have also computed the
corresponding eigenvalues Ewa

2

2,l ≡ Ewa22,l (μ, g).

4. Numerical Computation by the Use of the Asymptotic
Iteration Method

For the potential parameters w, a2, and g, not necessarily obeying the conditions for quasi-
polynomial solutions discussed in the previous sections, the asymptotic iteration method can
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Table 3: Exact eigenvalues for different values of l and wa2 in the case Δ3 = 0.

n l wa2 Conditions En,l ≡ Ewa2n,l
(μ, g)

2 −1 1/2 μ1 = −6.301870878994198
E1/2
2,−1 = −6.051870878994198

g1 = 77.22293097048609
μ2 = −2.4855365082108594

E1/2
2,−1 = −2.2355365082108594

g2 = 24.605574274703333

1 μ1 = −7.398182984326876
E1
2,−1 = −7.148182984326876

g1 = 97.7240263912181
μ2 = −3.3550579014968194

E1
2,−1 = −3.1050579014968194

g2 = 34.03170302988033
μ3 = 0.9498105417574756

E2
2,−1 = 1.1998105417574756

g3 = 2.1530873564462514

3/2 μ1 = −8.469623341124414
E3/2
2,−1 = −8.219623341124414

g1 = 120.08263624614156
μ2 = −4.27750521216504

E1
2,−1 = −4.02750521216504

g2 = 45.684576900924284
μ3 = 0.9282653601757613

E1
2,−1 = 1.1782653601757613

g3 = 2.2203497780234294

2 μ1 = −9.525122115065386
E2
2,−1 = −9.275122115065383

g1 = 144.35356188223463
μ2 = −5.226942179911145

E2
2,−1 = −4.976942179911145

g2 = 59.45563545168999
μ3 = 0.9186508169859244

E2
2,−1 = 1.1686508169859244

g3 = 2.250665238619284
2 0 1/2 μ1 = −8.032243023438463

E2
2,−1 = −7.282243023438463

g1 = 110.67814310476818
μ2 = −4.32825470612182

E2,−1 = −3.57825470612182
g2 = 46.37506233167478

2 μ1 = −11.307737259773461
E2
2,−1 = −10.557737259773461

g1 = 190.4036082349363
μ2 = −7.180564905703867

E2
2,−1 = −6.430564905703867

g2 = 93.46333689354533
μ3 = 0.9472009101393033

E2
2,−1 = 1.6972009101393033

g3 = 2.1611850134722084

be employed to compute the eigenvalues of Schrödinger equation (2.1) for arbitrary values
w, a2, and g. The functions λ0 and s0, using (3.2) and (3.3), are given by

λ0(t) = −
(

2l + 3
2t(1 − t) +

2
((
Ea2/2wa2

) − ((2l + 3)/4) − 1
)

(1 − t) − wa2

(1 − t)2
)
,

s0(t) = −
(((

Ea2/2wa2
) − ((2l + 3)/4)

)(
2l + 3 + 2wa2

)
2t(1 − t)2

− g

2
(2t − 1)

t(1 − t)2

+

((
Ea2/2wa2

) − ((2l + 3)/4)
)((

Ea2/
(
2wa2

)) − ((2l + 3)/4) − 1
)

(1 − t)2
)
,

(4.1)
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Table 4: Energies of the four lowest states of the generalized isotonic oscillator of parameters w and a
given for l = −1 as wa2 = 2 and for different values of the parameter g. The subscript numbers represents
the number of iterations used by AIM.

wa2 g E0a2 E1a2 E2a2 E3a2

2 0.000 01 0.999 993 709 536(39) 2.999 997 742 768(25) 4.999 998 464 613(32) 6.999 998 987 906(23)
0.1 0.936 865 790 085(43) 2.977 274 273 728(33) 4.984 713 354 070(45) 6.989 892 949 082(32)
1 0.349 595 330 721(51) 2.758 891 177 876(36) 4.851 946 642 761(42) 6.900 301 395 128(35)
2 −0.337 237 264 447(51) 2.487 025 791 777(38) 4.709 976 255 628(42) 6.803 992 334 705(34)
5 −2.549 035 191 007(53) 1.494 183 218 341(39) 4.268 043 172 724(45) 6.534 685 249 316(35)
10 −6.529 142 779 202(60) −0.660 939 314 881(40) 3.318 493 978 272(46) 6.100 400 048 017(38)
12 −8.182 546 155 166(65) −1.659 292 230 771(44) 2.838 014 627 229(48) 5.905 881 549 211(39)
50 −41.876 959 736 225(37) −26.863 072 307 493(33) −14.310 287 343 156(28) −4.206 192 073 796(31)

where t ∈ (0, 1). The AIM sequence λn(x) and sn(x) can be calculated iteratively using
the iterative sequences (2.22). The energy eigenvalues of the quantum nonlinear isotonic
potential (2.1) are obtained from the roots of the termination condition (2.21). According
to the asymptotic iteration method, in particular, the study of Champion et al. [5], unless the
differential equation is exactly solvable, the termination condition (2.21) produces for each
iteration an expression that depends on both t and E (for given values of the parameterswa2,
g, and l). In such a case, one faces the problem of finding the best possible starting value t = t0
that stabilizes the AIM process [5]. Fortunately, since t ∈ (0, 1), the starting value t0 does
not represent a serious issue in our eigenvalue calculation using (4.1) and the termination
condition (2.21) in contrast to the case of computing the eigenvalues using λ0(x) and s0(x) as
given by, for example, (2.3), where x ∈ (0,∞). In Table 4, we report our numerical results for
energies of the four lowest states of the generalized isotonic oscillator of parameters w and
a such that wa2 = 2 and for different values of g. In this table, we set l = −1 for computing
the energies E0a2 and E2a2, while we put l = 0 for computing the energies E1a2 and E3a2,
respectively. For most of these values, the starting value of t is t0 = 0.5 and is shifted towards
zero as g gets larger in value. For the values of g that admit a quasipolynomial solution, the
number of iteration does not exceed three. For most of the other values of g, the total number
of iteration did not exceed 65. We found that for wa2 = 2 and the values of g reported in
Table 4, the number of iteration is relatively small compared to the case of wa2 = 1/2 and
a large value of the parameter g. The numerical computations in the present work were
done using Maple version 13 running on an IBM architecture personal computer in a high-
precision environment. In order to accelerate our computation, we havewritten our own code
for a root-finding algorithm instead of using the default procedure Solve of Maple 13. These
numerical results are accurate to the number of decimals reported.

5. Conclusion

We have provided a detailed solution of the eigenproblem posed by Schrödiger’s equation
with a generalized nonlinear isotonic oscillator potential. We have presented a method for
computing the quasipolynomial solutions in cases, where the potential parameters satisfy cer-
tain conditions. In other more general cases we have used the asymptotic iteration method to
find accurate numerical solutions for arbitrary values of the potential parameters g,w, and a.
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