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J. C. Maxwell derived formulae for the calculation of current density and current in a cylindrical
conductor supplied with variable current. In the 1950s K. Simonyi published a method for
calculating current density in a cylindrical conductor made up of two conductors, cylindrical and
tubular, of different resistivities. The present paper proves that Simonyi’s result is incorrect. The
main attention is devoted to the method of calculating current density in a tubular conductor made
up of tubular conductors of different resistivities.

1. Introduction

Maxwell [1] derived relations for current density and current in a solitary long cylindrical
conductor supplied with variable current. In the years 1954–1958, several volumes of
an extensive work dealing with the mathematical and physical foundations of electrical
engineering were published in Hungary. The author, Simonyi, selected some parts of this
work to make a book [2–4], which was published in Germany (ten times, most recently
in 1993), USA, and USSR. In [2–4], a method is proposed for the calculation of current
density in a cylindrical conductor that is made up of two coaxial solid conductors of different
resistivities—a cylindrical and a tubular conductor. In the following, a method is proposed
for calculating current density in a tubular conductor made up of two tubular conductors of
different resistivities and an analysis is made of the solution of this problem as given in [2–4].

Maxwell’s result was the starting point for introducing the concept of skin effect.
Current density in the cross-section of a conductor supplied with time-varying current
is in fact not constant and increases in the direction towards the conductor surface. The
distribution of current density across the conductor cross-section determines the conductor
inductance and the forces acting between the solid conductors supplied with varying
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Figure 1: A quarter of the cross-section of tubular conductor.

currents. Current density in an infinitely long straight solid conductor is an approximation of
current density in the individual conductors of a system of long straight solid conductors.

2. Current Density in Long Solitary Tubular Conductor

Consider a solitary solid tubular conductor of infinite length. The longitudinal axis of
the conductor is axis z of a system of Cartesian coordinates xyz. In addition to the xyz
coordinates the system of cylindrical coordinates rφz is also considered. The conductor cross-
section in the xy plane is determined by the inequalities ri ≤ r ≤ ro, ri ≥ 0 (see Figure 1).

The conductor is connected to an ideal current source [5, 6] whose current only
depends on t ∈ [0,∞) and is sinusoidal, with frequency f ,

I(t) = ̂I sin ωt, ω = 2πf. (2.1)

The ideal current source supplies current but the current does not flow through the source so
that no back conductor to the tube under examination need be considered [7].

The current density vector J is in the direction of axis z and only depends on r and
time t, J = (0, 0, J), with J = J(r, t) having a nonzero value only on the interval [r i, ro]. The
current flowing through the conductor excites a magnetic field that is determined by the
vector B, whose magnitude B also depends on only r and t. The fact that J,B do not depend
on z actually means that an infinitely high propagation velocity of electromagnetic field is
assumed. In such a case, the current is considered to be slowly varying [5]. We assume that
the permeability of the conductor and its neighbourhood is μ0. Conductor resistivity ρ = 1/γ ,
where γ is the conductivity, is so low that displacement current ∂D/∂t can be neglected. In
the whole of this paper, only the part of the conductor between the planes z = z1 and z = z2,
where z1 < z2 and z2 − z1 = z21, will be considered.
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It has been published many times (most recently in [8]) that the phasor of current
density in conductor

J(r) = ̂J(r) exp
(

jα(r)
)

(2.2)

is the solution of the second-order differential equation

d2J

dr2
+
1
r

dJ

dr
− jκ2J = 0, κ2 = ωμ0γ. (2.3)

The general solution of (2.3) in the interval [ri, ro], ri > 0, depends on two constants [9, 10]
and is expressed using the Bessel or the Kelvin functions. Of course, the constants cannot
be determined from some arbitrary conditions imposed on the solution; in accordance with
the theorem of the existence and uniqueness of the solution of (2.3) [9, 10], they must be
determined from the conditions

J(r) = p,
d
dr

J(r) = d (2.4)

with r, p, and d being the given numbers, r ∈ [ri, ro].
For a cylindrical conductor (ri = 0), (2.3) has a weak singularity [11] at the point ri = 0.

In this case, one of the constants determining the solution is equal to zero, and to determine
the other constant the first of conditions (2.4) is sufficient, as was exactly proved in [8]. This
fact, together with ignoring the theorem of the existence and uniqueness of the solution of
(2.3), has probably led to the belief that the second of conditions (2.4) is superfluous and that
the phasor J can be determined by solving (2.3) also for a tubular conductor if ri > 0. This
problem will again be dealt with in Section 3.

3. Current Density in Composite Conductor

In the following, the term composite conductor is taken to mean a tubular conductor made
up of two coaxial tubular conductors—inner and outer. The inner tubular conductor of a
composite conductor is determined by resistivity ρi = 1/γi and by radii ri0, rim, with ri0 ≥
0, ri0 ≤ rim. The outer conductor is determined by resistivity ρo = 1/γo and radii ro0, ron, with
rim ≤ ro0, ro0 ≤ ron (see Figure 2). Generally, it could be assumed that the conductor under
consideration is made up of an arbitrary number of tubular conductors but solving for two
conductors is simpler and also easy to be generalized to an arbitrary number of conductors.

3.1. Simonyi’s Solution

In [2–4], Simonyi outlined a method for calculating the phasor of electric field intensity E in
a composite conductor on the assumption that ri0 = 0, rim = ro0, that is, he solved (2.3) for

J = γE (3.1)
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Figure 2: A quarter of the cross-section of composite conductor.

in the inner and the outer conductor on the assumption that the conditions

lim
r→ rim−

E = lim
r→ rim+

E, (3.2)

lim
r→ ron−

E = lim
r→ ron+

E, (3.3)

lim
r→ ron−

H = lim
r→ ron+

H, (3.4)

are fulfilled. Simonyi’s formulation is not absolutely general because in his conception the
inner conductor must be cylindrical and there can be no insulation between the conductors
(see Figure 2). In [2–4], it is correctly assumed that the sought field E depends in the inner
conductor on a complex constant A2 and in the outer conductor on complex constants A1

and B1. However, the assertion that these three constants can be established using conditions
(3.2), (3.3), and (3.4) is not correct. The calculation of A1, A2, and B1 was not performed in
[2–4].

Simonyi conceives his construction as a determination of electromagnetic field, that
is, a determination of fields E and H or phasors E and H, with field J or phasor J being
determined by relation (3.1). This complicates the construction unnecessarily and gives the
impression that fields E and H are to some extent independent. However, the field E in the
conductor and the field H in the whole space are uniquely determined by the field J so that
the electromagnetic field is determined by the solution of (2.3).

The two conductors forming the composite conductor are solid and homogeneous
so that in each conductor the current density will be continuous but there is no reason to
assume that it is also continuous for r = rim. There is no reason to assume that vector E is
continuous for r = rim because relation (3.1) holds. It follows from this that condition (3.2)
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is not generally fulfilled except for the trivial case of ρi = ρo, which need not be solved as a
composite conductor because in [2–4] it is assumed rim = ro0 (see Example 3.2).

According to [2–4], the value of the limit on the right-hand side of condition (3.3)
equals the prescribed electric field outside the conductor. The ideal current source that
the conductor is connected to generate an infinitely large voltage on the finite conductor
segment considered [6] and thus the electric field outside the conductor cannot be reasonably
prescribed.

Condition (3.4) only expresses the fact that the magnetic field is continuous. On the
assumption made in the present paper and in [2–4], condition (3.4) is always fulfilled. It is
a property of the magnetic field [12], and condition (3.4) is therefore redundant. Conditions
(3.2)–(3.4) lack the set value of the derivative ∂E/∂r at some point of the interval [ro0, ron],
which is a necessary condition for finding a solution to (2.3) for the electric field. It follows
from Simonyi’s formulation of the problem and from conditions (3.2) and (3.3) that in the
outer conductor, that is, on the interval [ro0, ron], the electric field can be determined such
that it acquires the prescribed values at the end points of this interval. This is not possible
since there are infinitely many fields that have the same prescribed value at the initial point
ro0 while differing in the values at the end point ron (see Examples 3.1 and 3.2).

3.2. Calculation of Current Density in Tubular Conductor

A method for calculating current density in a solitary solid tubular conductor is described
in detail in [8] as model 2. It is proved in [8] that the solution of model 2 leads to the same
result as the solution of (2.3). The basic advantage of the method described in [8] is that, to
calculate the solution, it is not necessary to know ∂J/∂r. In this subsection, the method for
calculating J is described for the inner conductor of a composite conductor.

We choose division Dm of the interval [ri0, rim] with the aid of points ri0 < ri1 < ri2 <
· · · < rim. By means of the divisionDm, we can divide the conductor intom partial conductors,
with the cross-section of the kth conductor being an annulus determined by the circles r =
ri,k−1 and r = ri,k. The points rik, k = 1, 2, . . . , m−1, are chosen such that the partial conductors
are of the same cross-section. This means that it holds

a = π
(

r2i,k − r2i,k−1
)

, where a =
π

(

r2im − r2i0
)

m
. (3.5)

The conductor resistivity is constant and therefore the current density in the conductor will
be continuous with respect to r, and thus it can at any instant of time be approximated
with arbitrary precision by a function that is constant by parts such that in the kth partial
conductor its magnitude is Jk(t), independent of r. A current aJk(t) flows through the kth
partial conductor. The kth and (k + 1)th partial conductors between the planes z = z1 and
z = z2 can be replaced by a lumped-elements circuit. For the kth circuit, it holds by Kirchhoff’s
law

Uk+1(t) −Uk(t) −UL,k(t) = 0, k = 1, 2, . . . , n − 1, (3.6)
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where UL,k is the voltage induced in the kth circuit and Uk and Uk+1 are voltages across the
resistances that substitute the respective partial conductors. The following holds.

Uk+1 −Uk = ρiz21 (Jk+1 − Jk). (3.7)

Let us choose the points c1 < c2 < · · · < cm such that ri,k−1 ≤ ck ≤ ri,k. For a sufficiently
largem, the electromotive force induced around the boundary of the rectangle Sk = [ck, ck+1]×
[z1, z2] differs, a little from the voltage UL,k induced in the kth circuit so that using (3.7) and
(3.1) (with γi = 1/ρi), (3.6) is in the form

Jk+1(t) − Jk(t) − γi
m
∑

�=1
Φk�

d
dt

J�(t) = 0, k = 1, 2, . . . , m − 1 (3.8)

and at the same time

Φk� =
∫ ck+1

ck

B�(r)dr, (3.9)

where B�(r) is magnetic field per unit current density, excited by the �th partial conductor.
For a conductor supplied with sinusoidal current, the current density or the complex

current density in the kth partial conductor will be

Jk(t) = ̂Jk sin(ωt + αk) (3.10)

or

Jk exp
(

jωt
)

, where Jk = ̂Jk exp
(

jαk

)

. (3.11)

For the complex current density, (3.8) can be rewritten as a system of equations

Jk+1 − Jk − jωγi
m
∑

�=1
Φk�J� = 0, k = 1, 2, . . . , m − 1. (3.12)

Relation (3.12) is a system of m − 1 equations for unknown functions Jk(t), k = 1, 2, . . . , m.
These functions cannot be determined bymeans of (3.12) because the number of unknowns is
by one greater than the number of equations. System (3.12) can be complemented by adding
the equation

a
m
∑

�=1
J� = Ii, (3.13)

which expresses that the phasor Ii of the total current through the conductor is prescribed or
by prescribing the value of the current density phasor in a partial conductor, for example, Js,
1 ≤ s ≤ m.



Advances in Mathematical Physics 7

1000

100

10

1

0.1
1098765

f = 10 kHz

2 kHz

50Hz

r (mm)

ꉱ J
(A

·m
−2
)

Figure 3: Dependence of current density module on r in Example 3.1; number of partial conductors m =
200.

Example 3.1. A copper tubular conductor has a cross-section given by radii ri = 5 mm, ro = 10
mm (see Figure 1); the value of resistivity at a temperature of 20◦C ρ = 1.678 × 10−8 Ω ·m has
be taken from [13], f = 50, 103, and 106 Hz, and the value J(ri) = 1A ·m−2∠0◦ is given.

The dependence ̂J(r) of the module of current density on r is illustrated in
Figure 3. The solution for f = 50Hz can be seen in Figure 3 as a constant but J(ro) =

1.0169A ·m−2 ∠13.48◦. The phasor J and the graph of dependence ̂J(r) are determined by the
pairs (ck, Jk) for k = 1, 2, . . . , m. According to [2–4], to solve (2.3) for J = γ E and a given f ,
it is sufficient to know E(ri), E(ro) and H(ro) (see (3.2)–(3.4)). This means that the solution
of (2.3) is given uniquely by the values J(ri), J(ro), and H(ro). With the aid of Figure 3, we
can see that for a given J(ri) there are infinitely many solutions of (2.3) that depend on f
(generally on κ), that is, on the value of the derivative dJ/dr at the point ri; this is to say that
without knowing the value of this derivative we cannot uniquely determine the solution of
(2.3) for a given f . It follows from this that until we solve (2.3) for a given f and J(ri) we
cannot know the value of J(ro). Setting the value H(ro), condition (3.4) not only does not
solve this problem, but also in fact counterproductive. The value H(ro) uniquely determines
the total current through the conductor and this current can be equal to the calculated current
through the conductor only by chance because the current also depends on the set value
J(ri). Conditions (3.2) and (3.4) or (3.3) and (3.4) cannot be set correctly without knowing
the solution in the case of tubular conductor.

3.3. Calculation of Current Density in Composite Conductor

Let us first consider the case of insulated inner and outer conductors. This means that in the
composite conductor there is no circuit formed by the kth partial conductor, which is part
of the inner conductor, and by the (k + 1)th partial conductor, which is part of the outer
conductor. Insulation between the inner and the outer conductor can be of nonzero thickness,
that is, ro0 − rim > 0, but the case that rim = ro0, which is solved in [2–4], cannot be excluded.
For r ≤ ro0, the magnetic field excited by the outer conductor is zero. The outer conductor
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Table 1

Variant ρi (10−8 Ω ·m) ro0 (mm) ron (mm) ρo (10−8 Ω·m)
1 2.65 10 15 2.65
2 2.65 10 15 1.678
3 2.65 15 20 2.65
4 2.65 15 20 1.678
5 108 10 15 1.678
6 108 10 15 1.678

thus cannot affect the inner conductor and therefore current density in the inner conductor is
the solution of system (3.12) complemented with the value of phasor J at some point of the
inner conductor or with the value of phasor Ii in the inner conductor. Naturally, phasor J can
be determined by the solution of (2.3), provided we know the numbers p and d in conditions
(2.4). The current Ii is either set or it can be calculated by means of the current density in the
inner conductor, which can be determined prior to calculating the current density in the outer
conductor.

We divide the outer conductor into n partial conductors by means of division Dn,
which is determined by the points ro0 < ro1 < · · · < ron. Similar to the inner conductor,
we choose the points cm+1 < cm+2 < · · · < cN, N = m + n, ro,�−1 ≤ cm+� ≤ ro� . Current
density in the outer conductor is the solution of a system of n equations for the phasors
Jk, k = m + 1, m + 2, . . . ,N. The first n − 1 equations are (see (3.12)) Kirchhoff’s law for the
partial circuits:

Jk+1 − Jk − jωγo
N
∑

�=m+1
Φk�J� = γoEk, k = m + 1, m + 2, . . . ,N − 1, (3.14)

where Ek is the electromotive force induced in the rectangle [ck, ck+1] × [z1, z2] by time
variation of themagnetic flux excited by the inner conductor. The remaining equation is either
the prescription of the value of some current density Js, m < s ≤ N, or the prescription of
the phasor of current Io in the outer conductor.

Example 3.2. The cross-section of an inner conductor is given by radii ri0 = 5mm, rim = 10mm;
f = 1 kHz. The example has 6 variants (see Table 1). J(ro0) = 1A ·m−2∠0◦ is always given
in the outer conductor. In the inner conductor, in variants 1–5 it holds J(rim) = J(ro0), in
variant 6 J(rim) = 0. Copper resistivity is the same as in Example 3.1; aluminium resistivity
2.65 × 10−8 Ω ·m has been taken from [13].

The dependence ̂J(r) of current density module on r in Example 3.2 is illustrated in
Figure 4. Variant 1 is chosen such that it in fact does not concern a composite conductor.
The calculation result for the composite conductor in variant 1 is, of course, the same as the
calculation result for a tubular conductor. The values ̂J(r) in the inner conductor (r < rim) are
the same in variants 1–4 (dotted curve in Figure 4). Using (3.1) to calculate the value E(rim)
and the values E(ro0) in variants 1–4, we easily establish that condition (3.2) can but need not
be fulfilled.

In [2–4], it is claimed but not proved that by choosing γi = 0, current density can
be determined in the tubular conductor, which in this case is the outer conductor. In other
words, the author of [2–4] wanted to say that current density in the outer conductor is the
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Figure 4: Solution of Example 3.2; variants 1–6 are specified in Table 1; the number of partial conductors in
inner and in outer conductor equals 200.

solution of (2.3) and that the conditions necessary for the determination of this solution can
be obtained if we assume zero conductivity in the inner cylindrical conductor. In the first
place, it is necessary to point out that the condition γi = 0 does not entail that at any instant
of time there must be zero current in the inner conductor. This is easy to verify by solving
both (2.3) and (3.12). If current in the inner conductor is nonzero, then the outer conductor
is affected by the inner conductor and thus it is not the outer tubular conductor alone that
is concerned. If current in the inner conductor is zero, then this information cannot provide
conditions (2.4) necessary for the solution of (2.3) in the outer conductor. Variants 5 and 6 of
Example 3.2 can complement the above considerations. In both these variants, ρi = 1 Ω · m
was chosen, which is practically the same as γi = 0. In variants 5 and 6, current density in the
inner conductor is constant. In variant 5, unlike variant 6, current density is nonzero.

There are infinitely many possibilities of choosing two equations that complete system
(3.12) in the inner conductor and system (3.14) in the outer conductor. As regards the
choice of currents Ii and Io, it is necessary to realize that the two currents are completely
independent; each conductor is connected to “its” current source. It cannot be assumed
that the two conductors (inner and outer) are connected to one current source because the
complex impedances Zi and Zo of the two conductors cannot be determined and thus it is
impossible to determine the currents Ii and Io such that it holds

Ii : Io = Zo : Zi. (3.15)

The phasors J and E are connected by relation (3.1). In the present paper, J is preferred. In
[2–4], preference is given to the phasor E, which satisfies condition (3.2) and therefore the
following example was chosen.

Example 3.3. Conductor dimensions, frequency f and resistivity values were chosen the same
as in variants 1, 2, and 6 of Example 3.2. What is different are the prescribed values of phasor
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Figure 5: Solution of Example 3.3 in outer conductor. Variants 1, 2 and 6 are specified in the text. The
number of partial conductors in inner and in outer conductor equals 200.

J , which is chosen such that condition (3.2) is satisfied. Phasor E is thus assumed to be
continuous at the point r = rim = ro0, where the prescribed value of E is 2.65×10−8 V ·m−1 ∠0◦.

Figure 5 gives the values ̂J of the solution of Example 3.3 in the outer conductor alone.
In the inner conductor, these values are the same for variants 1 and 2 and they are the same
as for variant 1 in Example 3.2; see Figure 4. By (3.1), in variants 1 and 2 of Example 3.3,
J(rim) = 1A ·m2 ∠0◦ holds, and this is also fulfilled in variant 1 of Example 3.2. The values ̂J
in the inner conductor of variant 6 are practically zero since they range from J(ri0) = 9.900 ×
10−9 A ·m2 ∠ − 105.57◦ to J(rim) = 2.650 × 10−8 A ·m2 ∠0◦. The results of the calculations of
phasor J lead to the following statement. Let phasor E satisfy the condition

E(rim) = E(ro0) = Eb, (3.16)

where Eb is the given nonzero complex number. If ρo is constant, then for ρi → ∞ the phasor
J converges

(1) in the inner conductor to zero,

(2) in the outer conductor to the current density phasor calculated only in the outer
tubular conductor (without the inner conductor) for the given E(ro0) = Eb.

This statement is an exact expression of what is given in [2–4] as the essence of the
method for calculating the phasor E or J in tubular conductor. However, the calculation
procedure proposed in [2–4] is not correct, as shown in the discussion of the solution of
Example 3.2. Moreover, current density in tubular conductor can be determined using a
simpler procedure described in Section 3.2. or in [8].

The second case solved in this section is the composite conductor in which the inner
and the outer conductor are not mutually insulated. Thus, rim = ro0 holds and a circuit exists
that is formed by the mth partial conductor, which is part of the inner conductor, and by the
(m + 1)th partial conductor, which is part of the outer conductor. Similar to Example 3.3, we
divide the inner conductor into m partial conductors and the outer conductor into n partial
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conductors. In the partial conductors, we choose the points ck, k = 1, 2, . . . ,N. Current
density in the composite conductor is determined by the solution of a system ofN equations
for the phasors Jk, k = 1, 2, . . . ,N. The firstm−1 equations are Kirchhoff’s law for the circuits
of the inner conductor; these are (3.12). The mth equation is Kirchhoff’s law for the common
circuit:

ρoJm+1 − ρiJm − jω
m+1
∑

�=1

Φm�J� = 0. (3.17)

Another n − 1 equations are Kirchhoff’s law for the circuits of the outer conductor; these are
the equations

Jk+1 − Jk − jωγo
N
∑

�=1

Φk�J� = 0, k = m + 1, m + 2, . . . ,N − 1. (3.18)

The remaining equation, the Nth equation, is either the prescription of the value of some
current density Js, 1 ≤ s ≤ N or the prescription of the phasor of total current I in the
composite conductor.

Example 3.4. Conductor cross-sections are given by the radii ri0 = 8 mm, ron = 11 mm, and
rim = ro0 holds; the inner conductor is of aluminium (ρi = 2.65 × 10−8 Ω · m). For the case a,
when rim = 9 mm, the outer conductor is of copper (ρo = 1.678 × 10−8 Ω · m), f = 0.1MHz;
the prescribed value is J(rim) = 0.1A ·m−2 ∠0◦. For the case b, when rim = 10 mm, the outer
conductor is of lead (ρo = 2.08 × 10−7 Ω ·m), f = 1MHz; the prescribed value is I = 1 A ∠0◦.

The solution of Example 3.4 is given in Figures 6 and 7. Figure 6 gives the dependence
of the amplitude ̂J of phasor J on r while Figure 7 gives the dependence of α = arg(J)
on r. The lead conductor in the case b is unusual, and it was chosen only to underline the
discontinuity of ̂J on the common border of the inner and the outer conductors. Resistivity
of lead at a temperature of 20◦C has been taken from [13]. The discontinuities in the curves
in Figure 7 are only seeming because arg(J) has been adapted such that its value lies in the
interval (−180, 180].

Let in the composite conductor in which the inner and the outer conductor are not
mutually insulated the current phasor I be prescribed. Results of the calculations of phasor J
lead to the following two statements.

(1) If ρi is constant, then holds.

lim
ρo →∞

Ii = I, lim
ρo →∞

Io = 0 (3.19)

and current density in the inner conductor converges to the current density
calculated only in the inner conductor (without the outer conductor) for the given
value Ii = I.

(2) If ρo is constant, then hold

lim
ρi →∞

Io = I, lim
ρi →∞

Ii = 0 (3.20)
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and current density in the outer conductor converges to the current density calculated only
in the outer conductor (without the inner conductor) for the given value Io = I.

4. Conclusion

The calculation of current density in a cylindrical conductor [1] supplied with sinusoidal
current is a textbook example that has led to the introduction of the term skin effect and to the
calculation of the inductance of cylindrical conductor. In [2–4], Simonyi outlined a method
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for calculating the phasor of electric field intensity in composite conductor. The composite
conductor is made up of one cylindrical conductor and one tubular conductor; there is no
insulation between the conductors. However, Simonyi did not follow through his proposed
method with any resultant formulae and he did not give any solutions of concrete examples
either. In the present paper, Simonyi’s approach is analyzed and attention is drawn to the
fundamental shortcomings of his method.

The main attention is devoted to the method of calculating current density in a tubular
conductor made up of tubular conductors of different resistivities. The calculation method is
described for the case of a composite conductor made up of two tubular conductors, but
the method can easily be generalized for more conductors. In the calculation, it is assumed
that the current density phasor in the cross-section of the composite conductor is constant by
parts and is the solution of a system of linear equations. The general calculation method is
applied in the solution of four examples, each of which has several variants. These examples
include several cases. In the first case, the conductor is not a composite conductor but a
single tubular conductor. In the remaining cases, the conductor is made up of two tubular
conductors, between which there are

(i) insulation of zero thickness,

(ii) insulation of nonzero thickness,

(iii) no insulation.

In the case of nonzero thickness insulation between the conductors, it is worth noting
that the skin effect, that is, the increase in current density in the direction towards the
conductor surface, manifests itself separately in each conductor of the composite conductor.
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