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The aim of this paper is to study a nonlinear stationary Stokes problem with mixed boundary
conditions that describes the ice velocity and pressure fields of grounded glaciers under Glen’s
flow law. Using convex analysis arguments, we prove the existence and the uniqueness of a weak
solution. A finite element method is applied with approximation spaces that satisfy the inf-sup
condition, and a priori error estimates are established by using a quasinorm technique. Several
algorithms (including Newton’s method) are proposed to solve the nonlinearity of the Stokes
problem and are proved to be convergent. Our results are supported by numerical convergence
studies.

1. Introduction

In this paper we consider amodel problem that is commonly used by glaciologists to compute
the motion of glaciers. Ice is assumed to be an incompressible non-Newtonian fluid governed
byGlen’s law [1]. Glen’s law and themassmomentum equation lead to a nonlinear stationary
Stokes problem with a strain-dependent viscosity.

Glacier models based on Glen’s law have already been studied by several authors.
However, all of them have considered a simplified model, called first-order approximation
[2]. This model is obtained by rewriting the Stokes equations into a dimensionless form
and by dropping all terms of order O(ε2), where ε is the typical aspect ratio of glaciers.
This simplification results into a nonlinear elliptic problem for the horizontal velocity field,
the vertical component, and the pressure field being determined a posteriori. Colinge and
Rappaz first demonstrated the well-posedness of this problem and proved the convergence of
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the finite element approximation with piecewise linear continuous functions in [3]. Inspired
by the work of Baranger/Najib [4] and Barrett/Liu [5] on non-Newtonian problems, a priori
and a posteriori error estimates were obtained later in [6–8].

Unlike the first-order approximation, the original Stokes model which is considered
in this paper is a saddle point problem for the velocity and the pressure fields. We prove
the existence and the uniqueness of a weak solution using an equivalent minimisation
problem and an inf-sup stability condition. Next, we establish a priori estimates for a finite
element approximation using a quasinorm technique [5]. Eventually, we investigate several
successive approximation algorithms to solve the system nonlinearity. In particular, we
upgrade by using Newton’s method the fixed point algorithm, given in [3] and proved to
be convergent in [6, 9].

Boundary conditions describe the basal sliding phenomena that can significantly
influence the glacier ice flows. In [3, 6–8], the first order approximation model was coupled to
a Dirichlet condition. However, this approach requires the basal velocity distribution which
is unknown. To overcome this difficulty, several sliding laws—including a Coulomb-type
law—were considered in [10]. In our model, we use a sliding law that results in a nonlinear
Dirichlet-Robin boundary condition.

This paper is organised as follows: the physical model is presented in Section 2. We
prove the well-posedness of the weak problem in Section 3. In Section 4, we apply a finite
element method and establish a priori error estimates. Successive approximation algorithms
to solve the system nonlinearity are proposed and proved to be convergent in Section 5. In
Section 6, convergence studies are performed to support the results of Sections 4 and 5.

2. The Model

Let us suppose that ice occupies the domain Ω ⊂ R
d, with d = 2 or 3. Ice can be considered

as an incompressible non-Newtonian fluid with negligible inertial effects [11]. It follows that
the velocity u and the pressure p of ice solve the stationary nonlinear Stokes problem in Ω:

−2div
(
με(u)

)
+∇p = f,

div(u) = 0,
(2.1)

where ε(u) = (1/2)(∇u+∇uT ) denotes the rate of strain tensor, μ the viscosity of ice, and f the
gravity force. Here above, the viscosity μ depends on |ε(u)| :=

√
ε(u) : ε(u) and is defined by

the regularised Glen’s flow law [11]. More precisely, for a given velocity field u, the viscosity
μ satisfies the following nonlinear equation:

1
2μ

= A

(
τn−10 +

(√
2μs
)n−1)

, (2.2)

where s = |ε(u)|, A is a positive parameter, n ≥ 1 is Glen’s exponent, and τ0 > 0 is a
small regularization parameter which prevents infinite viscosity for zero strain (τ0 = 0 in
the original Glen’s law [1]). When n = 1, then the viscosity μ is constant and (2.1) correspond
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to the classical linear Stokes problem related to a Newtonian fluid. In the framework of
glaciology, n is often taken equal to 3; see [12].

Let us set the boundary conditions for the system of (2.1). Three mechanical
circumstances may occur at the boundary of a glacier: (i) no force applies on the ice-air
interface; (ii) ice slides on the bedrock-ice interface; (iii) ice is stuck to the bedrock-ice
interface. The boundary of Ω is thus split into three parts: ΓN , ΓR, and ΓD, referring to
circumstances (i), (ii), and (iii), respectively. We assume throughout that Ω is bounded, its
boundaries ΓN and ΓR, are C1 and ΓD /= ∅. We consider the free surface condition:

2με(u) · n − pn = 0, on ΓN, (2.3)

where n is the unit outward normal vector along the boundary of the domain Ω. We apply
the nonlinear sliding condition [10, 13, 14]:

u · n = 0,
(
2με(u) · n

)
· ti = −αu · ti, i = 1, d − 1 on ΓR, (2.4)

where {ti}i=1,d−1 are the orthogonal vectors tangent to the boundary ΓR, that is, t1 when d = 2
and t1, t2 when d = 3. Here above, α = α(|u|) is the sliding coefficient that is given by

α(t) = c(t + t0)1/n−1, (2.5)

where t = |u| is the Euclidean norm of u, n is Glen’s exponent, c is a positive parameter,
and t0 > 0 is a small parameter which prevents infinite α for zero velocity. The no-sliding
condition writes

u = 0, on ΓD. (2.6)

Note that the conditions applied on boundaries ΓN , ΓR, and ΓD are Neumann, Robin-
Dirichlet, and Dirichlet conditions, respectively. When n = 1 (Newtonian flow) and ΓR = ∅,
the problem (2.1)with boundary conditions (2.3), (2.6) has already been widely studied; see,
for instance, [15–17].

3. Existence and Uniqueness

In this section, we prove that there exists a unique weak solution to problem (2.1)with mixed
boundary conditions (2.3), (2.4), and (2.6). Pressure is first eliminated from the system by
restricting the velocity space to divergence-free fields. Afterwards, the reduced problem is
transformed into a minimisation problem. Following [3, 8], its well-posedness is proved by
using convex analysis arguments. The existence and the uniqueness of the pressure field are
ensured by an inf-sup condition. We now state in the next lemma several properties of the
function μ that will often be used in Sections 3, 4 and 5.
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Lemma 3.1. For all s ∈ R+, there exists a unique μ = μ(s) ∈ R+ satisfying (2.2). The function
s → μ(s) is C∞(0,+∞) and decreasing. There exist D1, D2, D3, D4 > 0 such that:

D1

(1 + s + t)1−1/n
(s − t) ≤ sμ(s) − tμ(t) ≤ D2

(1 + s + t)1−(1/n)
(s − t), ∀s ≥ t ≥ 0, (3.1)

D1

(1 + s)1−1/n
≤ μ(s) ≤ D2

(1 + s)1−1/n
, ∀s ≥ 0, (3.2)

1
n
μ(s) ≤ μ(s) + sμ′(s), ∀s > 0, (3.3)

(
μ(|ξ|)ξ − μ

(∣∣η
∣
∣)η
)
:
(
ξ − η

)
≥ D3

(
1 + |ξ| +

∣
∣ξ − η

∣
∣)(1/n−1)∣∣ξ − η

∣
∣2, ∀ξ, η ∈ R

d×d, (3.4)

∣
∣μ(|ξ|)ξ − μ

(∣∣η
∣
∣)η
∣
∣ ≤ D4

(
1 + |ξ| +

∣
∣ξ − η

∣
∣)(1/n−1)∣∣ξ − η

∣
∣, ∀ξ, η ∈ R

d×d. (3.5)

Proof. The properties of μ and inequalities (3.1) and (3.2) can be easily deduced from
Lemmas 1 and 2 of [7]. Inequality (3.3) is obtained by differentiating (2.2) with respect to
s. Inequalities (3.4) and (3.5) result from inequality (3.1), Lemma 2.1 in [5] and inequality
(1/2)(|ξ| + |η|) ≤ |ξ| + |ξ − η| ≤ 2(|ξ| + |η|). Details are given in [12].

Let us notice that property (3.1) was introduced by Barrett and Liu (see [5]) in order
to obtain a priori error estimates of a similar problem to the one treated in this paper. Define
the Banach spaces:

V :=
{
v ∈
[
W1,r(Ω)

]d
, v = 0 on ΓD, v · n = 0 on ΓR

}
, Q := Lr ′(Ω), (3.6)

where

r := 1 +
1
n
, r ′ := n + 1 (3.7)

are conjugate exponents and n is Glen’s exponent. By using (3.2), we have μ(s)s ≤ Csr−1 for
all s > 0. Then, if u ∈ V , we have μ(|ε(u)|)ε(u) ∈ [Lr ′(Ω)]d×d. By using the trace inequality
‖v‖Lr(ΓR) ≤ ‖v‖W1−1/r,r(ΓR) ≤ C‖v‖W1,r(Ω) for all v ∈ [W1,r(Ω)]d, see [19, page 197], we obtain
(u · ti) ∈ Lr(ΓR), i = 1, d − 1. Similarly, we can show α(|u|)(u · ti) ∈ Lr ′(ΓR), i = 1, d − 1. Owing
to Hölder’s inequality, the mixed formulation of problem (2.1) with boundary conditions
(2.3), (2.4), and (2.6) that consists of finding (u, p) ∈ V ×Q such that

2
∫

Ω
μ(|ε(u)|)ε(u) : ε(v)dV +

∑

i=1,d−1

∫

ΓR
α(|u|)(u · ti)(v · ti)dS,

−
∫

Ω
p div(v)dV +

∫

Ω
q div(u)dV =

∫

Ω
g · vdV, ∀

(
v, q
)
∈ V ×Q

(3.8)

is meaningful.
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Remark 3.2. If ΓN = ∅, pressure p in (3.8) is defined up to a constant. In that case, Q = Lr ′ is
replaced by Q = Lr ′

0 = {q ∈ Lr ′ ,
∫
Ω qdV = 0}. Moreover, if n = 1, then r = 2 and μ is constant

and if ΓR = ∅, then the (linear) problem (3.8) is well posed; see, for instance, [15–17].

The next lemma states the equivalence of norms ‖|ε(·)|‖Lr and ‖ · ‖W1,r on space V .

Lemma 3.3 (Korn’s inequality). If ΓD /= ∅ and if 1 < γ < ∞, then there exists a constant C > 0 such
that

‖v‖W1,γ ≤ C‖|ε(v)|‖Lγ , (3.9)

for all v ∈ W1,γ(Ω) such that v = 0 on ΓD.

Proof. We apply Corollary 4.1 in [18] (F being the identity matrix) and Lemma 3.1 page 40 in
[16].

We consider the divergence-free velocity space:

Vdiv :=
{
v ∈
[
W1,r(Ω)

]d
, div(v) = 0, v = 0 on ΓD, v · n = 0 on ΓR

}
. (3.10)

In Vdiv, the pressure field p vanishes of the variational formulation (3.8). The reduced
formulation consists then of finding u ∈ Vdiv such that

2
∫

Ω
μ(|ε(u)|)ε(u) : ε(v)dV +

∑

i=1,d−1

∫

ΓR
α(|u|)(u · ti)(v · ti)dS =

∫

Ω
g · vdV, ∀v ∈ Vdiv.

(3.11)

To transform problem (3.11) into a minimisation problem, we introduce the functional

J(u) :=
∫

Ω
M(|ε(u)|)dV +

1
2

∫

ΓR
N(|u|)dS −

∫

Ω
u · fdV, (3.12)

where

M(x) :=
∫x

0
sμ(s)ds, N(x) :=

∫x

0
tα(t)dt. (3.13)

The functional J is Gâteaux differentiable, and its first derivative DJ , at point u ∈ Vdiv, in
direction v ∈ Vdiv, is given by

〈DJ(u),v〉 = 2
∫

Ω
μ(|ε(u)|)ε(u) : ε(v)dV +

∑

i=1,d−1

∫

ΓR
α(|u|)(u · ti)(v · ti)dS −

∫

Ω
g · vdV.

(3.14)

Clearly, anyminimiser of J in Vdiv satisfies (3.11). We now establish several lemmas that allow
us to prove the existence and the uniqueness of this minimiser in Theorem 3.8. We show
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the continuity of J in Lemma 3.5, the strict convexity of J in Lemma 3.6, and the coercivity
(in the sense of (3.18)) of J in Lemma 3.7. The continuity of J requires the following result
(Lemma 4 in [3])

Lemma 3.4. LetO be a measurable set of R
d and f, g ∈ Lr(O), then one has the following inequality:

∫

O

∣
∣
∣
∣f
∣
∣r −
∣
∣g
∣
∣r∣∣dV ≤ r

∥
∥
∣
∣f
∣
∣ +
∣
∣g
∣
∣
∥
∥r−1
Lr(O)

∥
∥f − g

∥
∥
Lr(O). (3.15)

Lemma 3.5. The functional J is ‖ · ‖W1,r -continuous.

Proof. By using (3.2), (2.5), and 1 − 1/n = 2 − r, we have, for all u,v ∈ Vdiv

|M(|ε(u)|) −M(|ε(v)|)| =
∣
∣
∣
∣
∣

∫ |ε(u)|

|ε(v)|
sμ(s)ds

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
D1

∫ |ε(u)|

|ε(v)|
sr−1ds

∣
∣
∣
∣
∣
= D1

∣
∣
∣
∣
|ε(u)|r − |ε(v)|r

r

∣
∣
∣
∣,

|N(|u|) −N(|v|)| =
∣∣∣∣∣

∫ |u|

|v|
tα(t)dt

∣∣∣∣∣
≤
∣∣∣∣∣
c

∫ |u|

|v|
tr−1dt

∣∣∣∣∣
= c

∣∣∣∣
|u|r − |v|r

r

∣∣∣∣.

(3.16)

These two inequalities together with Lemma 3.4 imply the ‖ · ‖W1,r -continuity of J .

Lemma 3.6. The functional J is strictly convex on V .

Proof. Clearly,M′(s) = sμ(s) andM′′(s) = sμ′(s)+μ(s). From (3.3), we haveM′′(s) = sμ′(s)+
μ(s) ≥ (1/n)μ(s) > 0 if s > 0, and thenM is strictly convex. SinceM is an increasing function,
M(| · |) is strictly convex. In the same way, we can show thatN(| · |) is strictly convex by using
(2.5). Let u,v ∈ Vdiv satisfying u/= v and θ ∈ (0, 1). From Korn’s inequality (Lemma 3.3), we
have ε(u)/= ε(v) in Lr . As a consequence,

∫

Ω
M(|θε(u) + (1 − θ)ε(v)|)dV < θ

∫

Ω
M(|ε(u)|)dV + (1 − θ)

∫

Ω
M(|ε(v)|)dV. (3.17)

The strict convexity of J follows from the previous inequality and the convexity ofN(| · |).

Since J is convex, u ∈ Vdiv satisfies (3.11) if and only if J(u) ≤ J(v), ∀v ∈ Vdiv.

Lemma 3.7. There exist two constants D1, D2 > 0 such that, for all u ∈ V ,

J(u) ≥ D1‖u‖rW1,r −D2. (3.18)

Proof. Let u ∈ V . From (3.2) and 1 − 1/n = 2 − r, there exists C0 > 0 such that

M(|ε(u)|) ≥
∫ |ε(u)|

0

C0s

(1 + s)2−r
ds

=
∫ |ε(u)|2/2

0

C0
(
1 +

√
2t
)2−r dt ≥

|ε(u)|2

2
C0(1 + |ε(u)|)r−2.

(3.19)
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As a consequence, there exist two constants C1, C2 > 0 such thatM(|ε(u)|) ≥ C1(1 + |ε(u)|)r −
C2. By using Korn’s inequality (Lemma 3.3), there exists C3 > 0 such that

∫

Ω
M(|ε(u)|)dV ≥ C3‖u‖rW1,r − C2

∫

Ω
dV. (3.20)

From Young’s inequality, we have, for all δ > 0,

∫

Ω
|u · f|dV ≤

∫

Ω

(
1

r ′δr ′
|f|r

′
+
δr

r
|u|r
)
dV =

C4

δr ′

∫

Ω
dV + C5δ

r‖u‖rLr , (3.21)

where C4, C5 > 0. We set δ small enough such that C3 − δrC5 > 0. From inequalities (3.20),
(3.21), and N ≥ 0, we obtain

J(u) =
∫

Ω
(M(|ε(u)|) − u · f)dV +

∫

ΓR

1
2
N(|u|)dS

≥ C3‖u‖rW1,r − C2

∫

Ω
dV − C4

δr ′

∫

Ω
dV − C5δ

r‖u‖rW1,r ,

(3.22)

which is exactly (3.18)with D1 := C3 − C5δ
r and D2 := (C2 + C4/δ

r ′)
∫
Ω dV .

Theorem 3.8. There exists a unique u ∈ Vdiv such that J(u) = inf{J(v);v ∈ Vdiv}. Moreover, u is
the unique solution of (3.11).

Proof. Clearly, there exists u ∈ Vdiv such that J(u) < +∞. Lemma 3.7 ensures the existence
of m = inf{J(v);v ∈ Vdiv}. Let {uν} be a sequence of Vdiv such that limν→∞J(uν) = m.
There exists an integer K such that, for all ν > K, we have m + 1 > J(uν). Owing to
Lemma 3.7, the sequence {uν} is bounded in Vdiv. Since Vdiv is a closed subspace of V , Vdiv is
reflexive. Consequently, there exist u ∈ Vdiv and a subsequence of {uν} (still denoted {uν})
that converges weakly to u in Vdiv. By Lemmas 3.5 and 3.6, J is weakly lower semicontinuous;
see, for instance, Corollary III.8 in [19] page 38. Then, we have

m = lim inf
ν→+∞

J(uν) ≥ J(u) ≥ m, (3.23)

and J possesses at least one minimum u ∈ Vdiv. Since J is strictly convex (Lemma 3.6), this
minimum is unique. Moreover, u is the unique solution of (3.11).

Spaces V and Q are required to satisfy the inf-sup condition, see [5, 20], to ensure the
existence and the uniqueness of p ∈ Q such that (u, p) satisfies the mixed formulation (3.8).
The inf-sup condition is proved in [15, 21] when ΓD = ∂Ω (or, equivalently, ΓN = ΓR = ∅).
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By following the proof of Proposition 5.3.2 in [22], we can easily generalise this result when
ΓR ∪ ΓN /= ∅; see details in [12].

Lemma 3.9. Spaces V and Q satisfy the inf-sup condition; that is, there exists C > 0 such that

C < inf
q∈Q

sup
v∈V

∫
Ω qdiv(v)dV
∥
∥q
∥
∥
Lr′ ‖v‖W1,r

. (3.24)

Theorem 3.10. There exists a unique couple (u, p) ∈ (V,Q) satisfying (3.8).

Proof. Although the result is a straightforward application of Theorem 2.1 in [20] together
with Theorem 3.8 and Lemma 3.9, we give all the arguments of the proof. Let A : V → V ′

and B : V → Q′ be the operators defined by

〈Au,v〉 = 2
∫

Ω
μ(|ε(u)|)ε(u) : ε(v)dV +

∑

i=1,d−1

∫

ΓR
α(|u|)(u · ti)(v · ti)dS, ∀v ∈ V,

〈
Bu, q

〉
=
∫

Ω
qdivudV, ∀q ∈ Q,

(3.25)

where V ′ and Q′ are dual to V and Q, respectively. From Theorem 3.8, there exists a unique
u ∈ kerB such that 〈Au−f,v〉 = 0 for all v ∈ kerB, which means thatAu−f ∈ (kerB)⊥. Owing
to the inf-sup condition (4.1), the operator B : V → Q′ is surjective, kerBT = ∅, and R(BT )
is closed; see Lemma A.40 in [15]. As a consequence, Au − f ∈ (kerB)⊥ = R(BT ) = R(BT )
and there exists p ∈ Q such that Au − f = BTp. Since kerBT = ∅, the pressure p is necessarily
unique. Eventually, there exists a unique couple (u, p) ∈ V ×Q satisfying

Au − BTp = f,

Bu = 0,
(3.26)

or equivalently (3.8).

4. Finite Element Approximation and A Priori Estimates

We assume that Ω is a convex polygonal or polyhedral domain and Th is a regular mesh of
Ω parametrized by h, the highest diameter of the elements of Th. We say that Vh ⊂ V and
Qh ⊂ Q, some finite-dimensional approximation spaces on Th of V and Q, satisfy the inf-sup
condition if, for all κ ∈ (1,∞), there exists a constant Ch > 0 such that

Ch < inf
qh∈Qh

sup
vh∈Vh

∫
Ω qh div(vh)dV
∥∥qh
∥∥
Lκ′ ‖vh‖W1,κ

. (4.1)
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The discrete problem is obtained by replacing the spaces V andQ by Vh andQh, respectively.
It consists of finding (uh, ph) ∈ (Vh,Qh) such that

2
∫

Ω
μ(|ε(uh)|)ε(uh) : ε(vh)dV +

∑

i=1,d−1

∫

ΓR
α(|uh|)(uh · ti)(vh · ti)dS,

−
∫

Ω
ph divvhdV +

∫

Ω
qh divuhdV =

∫

Ω
f · vhdV, ∀

(
vh, qh

)
∈ (Vh,Qh).

(4.2)

The discrete similar space to Vdiv is

Vdiv,h =
{
vh ∈ Vh;

∫

Ω
qh div(vh)dV = 0; ∀qh ∈ Qh

}
. (4.3)

Note that Vdiv,h is not necessarily included in Vdiv. The discrete reduced problem consists of
finding uh ∈ Vdiv,h such that

2
∫

Ω
μ(|ε(uh)|)ε(uh) : ε(vh)dV +

∑

i=1,d−1

∫

ΓR
α(|uh|)(uh · ti)(vh · ti)dS

=
∫

Ω
g · vhdV, ∀vh ∈ Vdiv,h.

(4.4)

Since Vdiv,h is a closed subspace of V , Theorem 3.8 and the proof can be rewritten by replacing
Vdiv by Vdiv,h.

Theorem 4.1. There exists a unique uh ∈ Vdiv,h such that J(uh) = inf{J(vh); vh ∈ Vdiv,h}.
Moreover, uh is the unique solution of (4.4).

Remark 4.2. By setting vh = uh in (4.4) and by using inequality (3.2), (2.5), and Korn’s
inequality (Lemma 3.3), we can show that the solution uh of problem (4.4) satisfies

‖uh‖W1,r ≤ C‖f‖Lr′ , (4.5)

where C > 0 does not depend on uh.

From Theorem 4.1 and the inf-sup condition (4.1), we can rewrite Theorem 3.10 and
its proof for the discrete mixed problem.

Theorem 4.3. If Vh and Qh satisfy the inf-sup condition (4.1), then there exists a unique couple
(uh, ph) ∈ (Vh,Qh) satisfying (4.2).

Remark 4.4. The spaces [P1/Bulle]
d−P1 and [P2]

d−P1 are two examples that satisfy the inf-sup
condition (4.1) while P1 − P1 does not satisfy (4.1); see [15].

The error analysis that follows is partly inspired from [5, 7]. We give a priori
estimates for the numerical approximation of the stationary Stokes problem in Theorem 4.9.
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For the sake of simplicity, we suppose ΓR = ∅; that is, the boundary Robin-Dirichlet condition
is not considered; see also Remark 4.11. The nonlinearity of problem (3.8) is treated by
introducing (in Lemma 4.5) a quasi-norm that depends on the solution; see [5]. The orthog-
onality of the error (Lemma 4.6) together with properties (3.4) and (3.5) of the function
μ allow quasi-norm estimates to be established in Theorem 4.7. The properties of the
quasi-norm given in Lemma 4.5 allow estimates with standard norms to be proved in
Theorem 4.8. Eventually, these estimates together with interpolation inequalities yield to the
main Theorem 4.9.

Lemma 4.5. Let (u, p) be the solution of (3.8); the application

v −→ ‖|v|‖ :=

√√
√
√
∫

Ω

|ε(v)|2

(1 + |ε(u)| + |ε(v)|)2−r
dV (4.6)

is a quasi-norm of V ; that is, it satisfies all properties of norms, except homogeneity. Moreover, there
exists D1 > 0 such that, for all v ∈ W1,r(Ω), one has

‖v‖2W1,r ≤ D1[1 + ‖u‖W1,r + ‖v‖W1,r ]2−r‖|v|‖2, (4.7)

and there exists D2 > 0 such that, for all κ ∈ [r, 2] and for all v ∈ W1,κ(Ω), one has

‖|v|‖2 ≤ D2‖v‖κW1,κ . (4.8)

Proof. The quasi-norm properties are shown in Lemma 3.1 in [5]. Inequalities (4.7) and (4.8)
result from Korn and Hölder’s inequalities; see details in [12].

By setting v = vh ∈ Vdiv,h in (3.8) it is easy to prove the next lemma.

Lemma 4.6. Let (u, p) ∈ (V,Q) be the solution of problem (3.8) and uh ∈ Vdiv,h the solution of
problem (4.4), then

∫

Ω
2
(
μ(|ε(u)|)ε(u) − μ(|ε(uh)|)ε(uh)

)
: ε(vh)dV −

∫

Ω
div(vh)

(
p − qh

)
dV = 0 (4.9)

holds for all (vh, qh) ∈ (Vdiv,h, Qh). Moreover, if the spaces Vh and Qh satisfy the inf-sup condition
(4.1), then the solution (uh, ph) of (4.2) satisfies

∫

Ω
2
(
μ(|ε(u)|)ε(u) − μ(|ε(uh)|)ε(uh)

)
: ε(vh)dV −

∫

Ω
div(vh)

(
p − ph

)
dV = 0, (4.10)

for all vh ∈ Vh.

Theorem 4.7. Let (u, p) ∈ (V,Q) be the solution of (3.8) and uh ∈ Vdiv,h the solution of (4.4). For
all (vh, qh) ∈ Vdiv,h ×Qh, one has

‖|u − uh|‖ ≤ D1[1 + ‖uh‖W1,r + ‖vh‖W1,r ](2−r)/2
(
‖|u − vh|‖ +

∥∥p − qh
∥∥
Lr′
)
, (4.11)
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whereD1 > 0. Moreover, if the spaces Vh andQh satisfy the inf-sup condition (4.1), then the solution
(uh, ph) of (4.2) satisfies, for all κ ∈ [r, 2] and for all qh ∈ Qh,

∥
∥p − ph

∥
∥
Lκ′ ≤ D2

(
‖|u − uh|‖2/κ

′
+
∥
∥p − qh

∥
∥
Lκ′

)
, (4.12)

where D2 > 0. The constants D1, D2 do not depend on uh and vh; however, D2 increasingly depends
on (Ch)

−1.

Proof. By using, respectively, the definition (4.6) of the quasi-norm ||| · |||, inequality (3.4)with
1 − 1/n = 2 − r, and (4.9), there exists C1 > 0 such that

‖|u − uh|‖2 ≤ C1

{∫

Ω
2
(
μ(|ε(u)|)ε(u) − μ(|ε(uh)|)ε(uh)

)
: ε(u − uh)dV

}

= C1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

Ω
2
(
μ(|ε(u)|)ε(u) − μ(|ε(uh)|)ε(uh)

)
: ε(u − vh)dV

︸ ︷︷ ︸
:=A1

+
∫

Ω
div(vh − uh)

(
p − qh

)
dV

︸ ︷︷ ︸
:=A2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(4.13)

where (vh, qh) ∈ Vdiv,h ×Qh. For the sake of simplicity, A1 and A2 are handled separately. By
using inequality (3.5) with 1 − 1/n = 2 − r, there exists C2 > 0 such that

|A1| ≤
∫

Ω
2
∣∣μ(|ε(u)|)ε(u) − μ(|ε(uh)|)ε(uh)

∣∣|ε(u − vh)|dV

≤ C2

∫

Ω

|ε(u − uh)||ε(u − vh)|
(1 + |ε(u)| + |ε(u − uh)|)2−r

dV.

(4.14)

By using the inequality (see Lemma 2.2 in [5] or (3.10) in [8]),

(1 + a + t)−ets ≤ α(1 + a + t)−et2 + α−1(1 + a + s)−es2,

∀a, t, s ≥ 0, ∀α ∈ (0, 1], e ∈ (0, 1),
(4.15)
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with a = |ε(u)|, t = |ε(u − uh)|, s = |ε(u − vh)|, and e = 2 − r, we obtain, for all α ∈ [0, 1],

|A1| ≤ C2

{
α‖|u − uh|‖2 + α−1‖|u − vh|‖2

}
. (4.16)

We now use respectively Hölder’s inequality, Young’s inequality, and (4.7); there exist
C3, C4, C5 > 0 such that

|A2| ≤ ‖div(vh − uh)‖Lr

∥
∥p − qh

∥
∥
Lr′

≤ 1
2
C3β‖vh − uh‖2W1,r +

1
2
β−1
∥
∥p − qh

∥
∥2
Lr′

≤ C4β[1 + ‖u‖W1,r + ‖vh − uh‖W1,r ]2−r‖|vh − uh|‖2 +
1
2
β−1
∥∥p − qh

∥∥2
Lr′

≤ C5β[1 + ‖uh‖W1,r + ‖vh‖W1,r ]2−r
(
‖|u − uh|‖2 + ‖|u − vh|‖2

)
+
1
2
β−1
∥∥p − qh

∥∥2
Lr′ .

(4.17)

By setting α = 1/(4C2C1) and β = 1/(4C5C1[1 + ‖uh‖W1,r + ‖vh‖W1,r ]2−r), we obtain

‖|u − uh|‖2 ≤ C1{|A1| + |A2|}

≤ 1
2
‖|u − uh|‖2 + 4C2

2C
2
1‖|u − vh|‖2

+
1
4
‖|u − vh|‖2 + 2C2

1C5[1 + ‖uh‖W1,r + ‖vh‖W1,r ]2−r
∥∥p − qh

∥∥2
Lr′ (Ω).

(4.18)

By moving (1/2)|||u−uh|||2 to the left-hand side, we obtain (4.11). From the inf-sup condition
(4.1), we have, for all qh ∈ Qh,

Ch

∥∥qh − ph
∥∥
Lκ′ < sup

vh∈Vh

∫
Ω

(
qh − ph

)
div(vh)dV

‖vh‖W1,κ
. (4.19)

From (4.10), we have, for all vh ∈ Vh,

∫

Ω
div(vh)

(
qh − ph

)
dV

=
∫

Ω
2
(
μ(|ε(u)|)ε(u) − μ(|ε(uh)|)ε(uh)

)
: ε(vh)dV +

∫

Ω
div(vh)

(
qh − p

)
dV.

(4.20)
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From (4.19), (4.20), and (3.5)with 1 − 1/n = 2 − r, there exist C6, C7 > 0 such that

Ch

∥
∥qh − ph

∥
∥
Lκ′

< sup
vh∈Vh

∣
∣
∫
Ω 2
(
μ(|ε(u)|)ε(u) − μ(|ε(uh)|)ε(uh)

)
: ε(vh)dV

∣
∣

‖vh‖W1,κ
+ sup

vh∈Vh

∣
∣
∫
Ω div(vh)

(
qh − p

)
dV
∣
∣

‖vh‖W1,κ

≤ C6
{∥∥2
(
μ(|ε(u)|)ε(u) − μ(|ε(uh)|)ε(uh)

)∥∥
Lκ′ +

∥
∥qh − p

∥
∥
Lκ′
}

≤ C7

{∫

Ω
(1 + |ε(u)| + |ε(u − uh)|)(r−2)κ

′
|ε(u − uh)|κ

′
dV

}1/κ′

+ C6
∥
∥qh − p

∥
∥
Lκ′

≤ C7C8

{∫

Ω
(1 + |ε(u)| + |ε(u − uh)|)(r−2)|ε(u − uh)|2dV

}1/κ′

+ C6
∥
∥qh − p

∥
∥
Lκ′

≤ C7‖|u − uh|‖2/κ
′
+ C6
∥
∥qh − p

∥
∥
Lκ′ ,

(4.21)

where C8 := ‖(1 + |ε(u)| + |ε(u − uh)|)(r−2)|ε(u − uh)|2−κ‖1/κL∞ < 1. Eventually, the previous
inequality together with ‖p − ph‖Lκ′ ≤ ‖qh − ph‖Lκ′ + ‖p − qh‖Lκ′ leads to (4.12).

Theorem 4.8. Let (u, p) ∈ (V,Q) be the solution of (3.8), and uh ∈ Vdiv,h the solution of (4.4). For
all (vh, qh) ∈ Vdiv,h ×Qh and for all κ ∈ [r, 2], assuming u ∈ W1,κ(Ω), one has

‖u − uh‖W1,r ≤ D1[1 + ‖uh‖W1,r + ‖vh‖W1,r ]2−r
(
‖u − vh‖κ/2W1,κ +

∥∥p − qh
∥∥
Lr′

)
, (4.22)

where D1 > 0. Moreover, if the spaces Vh and Qh satisfy the inf-sup condition (4.1), then the solution
(uh, ph) of (4.2) satisfies for all (vh, qh) ∈ Vh ×Qh and for all κ ∈ [r, 2], assuming u ∈ W1,κ(Ω),

‖u − uh‖W1,r ≤ D2[1 + ‖uh‖W1,r + ‖vh‖W1,r ]2−r
(
‖u − vh‖κ/2W1,κ +

∥∥p − qh
∥∥
Lr′

)
, (4.23)

∥∥p − ph
∥∥
Lκ′ ≤ D3[1 + ‖uh‖W1,r + ‖vh‖W1,r ](2−r)/κ

′

×
{(

‖u − vh‖κ/2W1,κ +
∥∥p − qh

∥∥
Lr′

)2/κ′

+
∥∥p − qh

∥∥
Lκ′

}
,

(4.24)

where D2, D3 > 0. The constants D1, D2, D3 do not depend on uh and vh; however, D2 and D3

increasingly depends on (Ch)
−1.

Proof. On one hand, inequality (4.22) follows from inequalities (4.7), (4.11), and (4.8). On the
other hand, (4.23) follows from (4.22) and from the following property (see (1.16), page 115
in [16]): for all v ∈ Vdiv and for all wh ∈ Vh, there exists vh ∈ Vdiv,h such that

‖v − vh‖W1,κ ≤ C‖v −wh‖W1,κ , (4.25)

where C depends on the inf-sup constant Ch. Eventually, (4.24) follows from (4.12), (4.11),
and (4.8).
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Theorem 4.9. Assume that, for all κ ∈ [r, 2], there exists a continuous operator πh : [W2,κ]d → Vh

that satisfies

‖u − πh(u)‖W1,κ ≤ Ch‖u‖W2,κ , ∀u ∈
[
W2,κ

]d
, (4.26)

and a continuous operator ρh : W1,κ′ → Qh that satisfies

∥
∥p − ρh

(
p
)∥∥

Lκ′ ≤ Ch
∥
∥p
∥
∥
W1,κ′ , ∀p ∈ W1,κ′

, (4.27)

where h is the size of the higher diameter of the elements of Th. Assume that Vh and Qh satisfy the
inf-sup condition (4.1). Let (u, p) be the solution of problem (3.8) and let (uh, ph) be the solution of
problem (4.2). Assume that (u, p) ∈ ([W2,κ]d,W1,κ′

), where κ ∈ [r, 2], then one has

‖u − uh‖W1,r +
(∥∥p − ph

∥∥
Lκ′
)κ′/2 ≤ Dhκ/2, (4.28)

where D = D(‖u‖W2,κ , ‖p‖W1,r′ , (Ch)
−1) > 0.

Proof. Apply (4.23) and (4.24) with vh = πh(u) and qh = ρh(p). By using the continuity of πh,
(4.5), (4.26), and (4.27), there exist C1, C2, C3, C4 > 0 such that

‖u − uh‖W1,r ≤ C1[1 + ‖f‖Lr′ + ‖u‖W1,r ]2−r
(
h(κ/2) + h

)
≤ C2h

(κ/2),

∥∥p − ph
∥∥
Lκ′ ≤ C3[1 + ‖f‖Lr′ + ‖u‖W1,r ](2−r)/κ

′
{(

h(κ/2) + h
)(2/κ′)

+ h

}
≤ C4h

(κ/κ′).

(4.29)

The estimate (4.28) directly follows from (4.29).

Remark 4.10. The combination [P1/Bulle]
d − P1 for spaces Vh and Qh, introduced in [23],

satisfies the assumptions of Theorem 4.9; see Lemma 4.20 page 190 of [15] for the inf-sup
condition (4.1) and [15, 16] for the interpolation inequalities (4.26) and (4.27).

Remark 4.11. If ΓR /= ∅, a similar analysis can be led by replacing the norm defined by (4.6) by

v −→ ‖|v|‖ :=

√√√
√
∫

Ω

|ε(v)|2

(1 + |ε(u)| + |ε(v)|)2−r
dV +

√√√
√
∫

ΓR

|v|2

(1 + |u| + |v|)2−r
dS. (4.30)

5. Successive Approximations

In this section, several successive approximation algorithms are proposed for solving the
nonlinearity of the discrete problem (4.4) when n > 1. For the sake of simplicity, we suppose
ΓR = ∅ in this section; see Remark 5.8. We present a unified scheme that contains the classical
fixed point method together with Newton’s method. The mesh Th is fixed, and we assume
that the approximation spaces satisfy Vh ⊂ V ∩ [W1,∞(Ω)]d and Qh ⊂ Q ∩ L∞(Ω). In what
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follows, ‖ · ‖ denotes an arbitrary norm of Vdiv,h. Since Vdiv,h is a finite-dimensional space, all
norms are equivalent. Let γ ∈ [0, 1]. We define

E :

⎧
⎨

⎩

Vdiv,h −→ Vdiv,h,

ũh −→ w̃h,
(5.1)

where w̃h ∈ Vdiv,h solves

2
∫

Ω
μ(|ε(ũh)|)ε(w̃h) : ε(vh)dV + 2γ

∫

Ω

μ′(|ε(ũh)|)
|ε(ũh)|

(ε(ũh) : ε(w̃h − ũh))(ε(ũh) : ε(vh))dV

=
∫

Ω
g · vhdV, ∀vh ∈ Vdiv,h.

(5.2)

The application E is well defined. Indeed, by using, respectively, μ′ < 0, inequalities
(3.3) and (3.2), there exist C1, C2 > 0 such that

2
∫

Ω
μ(|ε(ũh)|)|ε(w̃h)|2dV + 2γ

∫

Ω

μ′(|ε(ũh)|)
|ε(ũh)|

(ε(ũh) : ε(w̃h))
2dV

≥ 2
∫

Ω
μ(|ε(ũh)|)|ε(w̃h)|2dV − 2γ(1 − 1/n)

∫

Ω
μ(|ε(ũh)|)|ε(w̃h)|2dV

≥
2C1
(
1 − γ(1 − 1/n)

)

(1 + ‖ε(ũh)‖L∞)1−1/n

∫

Ω
|ε(w̃h)|2dV ≥ C2‖w̃h‖2.

(5.3)

As a consequence, the problem (5.2) is coercive. From the Lax-Milgram Theorem, see [15]
page 83, there exists a unique solution w̃h ∈ Vdiv,h of (5.2).

In what follows, uh denotes the solution (4.4), which is also the unique fixed point of
E. Assume that uh,0 is given; we define iteratively a sequence uh,k, for all k ≥ 1, by

uh,k+1 = E(uh,k). (5.4)

Our goal is to prove that uh,k converges to uh when k goes to the infinity. When γ = 0,
we obtain the classical fixed point method, widely used to solve the nonlinearity of Glen’s
law; see [6, 9, 14]. When γ = 1, we have an additional term in (5.2) which corresponds to
Newton’s method; see Remark 5.5. The case γ ∈ (0, 1) corresponds to a hybrid fixed point—
Newton’s method. The convergence of sequence uh,k requires several preliminary results. We
compute the first derivative of E in Lemma 5.1. Lemma 5.2 provides an upper bound of the
first derivative. Eventually, Theorem 5.3 states the linear convergence of uh,k by using the
Banach fixed point theorem. Theorem 5.7 states the second-order convergence when γ = 1.
By differentiating formally (5.2) at point ũh in direction uh, with w̃h = E(ũh), we obtain the
following lemma.
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Lemma 5.1. Let (ũh, w̃h) satisfy E(ũh) = w̃h. The application E is Gâteaux differentiable at point
ũh and its derivative is given by

DE(ũh) :

⎧
⎨

⎩

Vdiv,h −→ Vdiv,h,

uh −→ wh,
(5.5)

wherewh solves

2
∫

Ω
μ(|ε(ũh)|)ε(wh) : ε(vh)dV + 2

∫

Ω

μ′(|ε(ũh)|)
|ε(ũh)|

(ε(ũh) : ε(uh))(ε(w̃h) : ε(vh))dV

+ γ

[

2
∫

Ω

μ′′(|ε(ũh)|)|ε(ũh)| − μ′(|ε(ũh)|)
|ε(ũh)|3

(ε(ũh) : ε(uh))

×(ε(ũh) : ε(w̃h − ũh))(ε(ũh) : ε(vh))dV
]

+ γ

[
2
∫

Ω

μ′(|ε(ũh)|)
|ε(ũh)|

(ε(uh) : ε(w̃h − ũh))(ε(ũh) : ε(vh))dV
]

+ γ

[
2
∫

Ω

μ′(|ε(ũh)|)
|ε(ũh)|

(ε(ũh) : ε(wh − uh))(ε(ũh) : ε(vh))dV
]

+ γ

[
2
∫

Ω

μ′(|ε(ũh)|)
|ε(ũh)|

(ε(ũh) : ε(w̃h − ũh))(ε(uh) : ε(vh))dV
]
= 0, ∀vh ∈ Vdiv,h.

(5.6)

The problems (5.2) and (5.6) have the same coercivity properties to computewh (resp.,
w̃h) from uh (resp., ũh). As a consequence, the problem (5.6) is well-posed by the Lax-
Milgram theorem. To prove the convergence of the sequence uh,k, we look for a norm that
makes E a contraction at point uh.

Lemma 5.2. Let γ ∈ [0, 1], and let uh be the fixed point of E. The application DE(uh) satisfies

‖|DE(uh)|‖μ ≤
(
1 − γ

)
(1 − 1/n)

1 − (1 − 1/n)γ
< 1, (5.7)

where ||| · |||μ is the subordinated norm to ‖ · ‖μ :=
√∫

Ω μ(|ε(uh)|)|ε(·)|2dV .

Proof. Since E(uh) = uh, then (5.6), with ũh = uh and w̃h = uh, is rewriten as

∫

Ω
μ(|ε(uh)|)ε(wh) : ε(vh)dV

+
(
1 − γ

)
[∫

Ω

μ′(|ε(uh)|)
|ε(uh)|

(ε(uh) : ε(uh))(ε(uh) : ε(vh))dV
]

+ γ

[∫

Ω

μ′(|ε(uh)|)
|ε(uh)|

(ε(uh) : ε(wh))(ε(uh) : ε(vh))dV
]
= 0,

(5.8)
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for all vh ∈ Vdiv,h. From (5.8), μ′ < 0, and (3.3), we have

∫

Ω
μ(|ε(uh)|)ε(wh) : ε(vh)dV ≤ −

(
1 − γ

)
[∫

Ω
μ′(|ε(uh)|)|ε(uh)||ε(uh)||ε(vh)|dV

]

− γ

[∫

Ω
μ′(|ε(uh)|)|ε(uh)||ε(wh)||ε(vh)|dV

]

≤
(
1 − γ

)
(
1 − 1

n

)[∫

Ω
μ(|ε(uh)|)|ε(uh)||ε(vh)|dV

]

+ γ

(
1 − 1

n

)[∫

Ω
μ(|ε(uh)|)|ε(wh)||ε(vh)|dV

]
.

(5.9)

By setting vh = wh in (5.9), we obtain

‖wh‖2μ ≤
(
1 − γ

)
(
1 − 1

n

)∫

Ω
μ(|ε(uh)|)|ε(uh)||ε(wh)|dV + γ

(
1 − 1

n

)
‖wh‖2μ. (5.10)

From (5.10) and Cauchy-Schwarz’s inequality, we obtain

‖wh‖2μ ≤
[(

1 − γ
)
(1 − 1/n)

1 − (1 − 1/n)γ

]

‖uh‖μ‖wh‖μ. (5.11)

Eventually, (5.7) follows from the definition of norm ||| · |||μ.

Theorem 5.3. Let γ ∈ [0, 1], let Th be a given mesh ofΩ, and let ‖ · ‖ be a norm of Vdiv,h. There exist
δ > 0 and C > 0 such that if ‖uh,0 − uh‖ < δ, then one has

‖uh,k − uh‖ ≤ C

[(
1 − γ

)
(1 − 1/n)

1 − (1 − 1/n)γ

]k
‖uh,0 − uh‖, (5.12)

for all k ≥ 0, and uh,k is linearly convergent to uh.

Proof. From Lemma 5.2, the spectral radius of DE(uh) is lower than constant:

[(
1 − γ

)
(1 − 1/n)

1 − (1 − 1/n)γ

]

, (5.13)

which is lower than 1. The theorem is then a direct application of the Banach fixed point
theorem in Vdiv,h.

Remark 5.4. In Theorem 5.3, it should be stressed that δ depends on h. When h → 0 (i.e., if
we replace uh by u), we cannot ensure Theorem 5.3 to remain true. Nevertheless, in practise,
δ seems to be independent of h, see Section 6.
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When γ = 1, we have DE(uh) = 0 from Lemma 5.2. It suggests that the convergence
of sequence uh,k is quadratic. To establish the second-order convergence, we define, for all
vh ∈ Vdiv,h, the application F(·,vh) : Vdiv,h → R by

F(ũh;vh) := 2
∫

Ω
μ(|ε(ũh)|)ε(ũh) : ε(vh)dV −

∫

Ω
f · vhdV. (5.14)

Let ũh,uh,uh ∈ Vdiv,h. We compute formally the first-order derivative of F at point ũh

in direction uh:

〈DF(ũh;vh),uh〉 = 2
∫

Ω
μ(|ε(ũh)|)ε(uh) : ε(vh)dV

+ 2
∫

Ω

μ′(|ε(ũh)|)
|ε(ũh)|

(ε(ũh) : ε(uh))(ε(ũh) : ε(vh))dV,

(5.15)

and the second-order derivative of F at point ũh in direction (uh,uh):

〈D2F(ũh;vh),uh,uh〉 = 2
∫

Ω

μ′(|ε(ũh)|)
|ε(ũh)|

(
ε(ũh) : ε

(
uh

))
(ε(uh) : ε(vh))dV

+ 2
∫

Ω

μ′′(|ε(ũh)|)|ε(ũh)| − μ′(|ε(ũh)|)
|ε(ũh)|3

×
(
ε(ũh) : ε

(
uh

))
(ε(ũh) : ε(uh))(ε(ũh) : ε(vh))dV

+ 2
∫

Ω

μ′(|ε(ũh)|)
|ε(ũh)|

(
ε
(
uh

)
: ε(uh)

)
(ε(ũh) : ε(vh))dV

+ 2
∫

Ω

μ′(|ε(ũh)|)
|ε(ũh)|

(ε(ũh) : ε(uh))
(
ε
(
uh

)
: ε(vh)

)
dV.

(5.16)

Remark 5.5. If γ = 1,we have, from the definition of E (5.2), of F (5.14), and of DF (5.15),

uh,k+1 = E(uh,k) ⇐⇒ F(uh,k;vh) + 〈DF(uh,k;vh),uh,k+1 − uh,k〉 = 0, ∀vh ∈ Vdiv,h, (5.17)

which highlights Newton’s method.

Lemma 5.6. The following inequalities hold, for all ũh,uh,uh ∈ Vdiv,h:

2
n

∫

Ω
μ(|ε(ũh)|)|ε(uh)|2dV ≤ 〈DF(ũh;uh),uh〉, (5.18)

−
〈
D2F(ũh;uh),uh,uh

〉
≤
∫

Ω

(
8
∣∣μ′(|ε(ũh)|)

∣∣ + 2
∣∣μ′′(|ε(ũh)|)

∣∣|ε(ũh)|
)∣∣∣ε
(
uh

)∣∣∣
2
|ε(uh)|dV.

(5.19)
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Proof. Inequality (5.18) follows from (5.15) and (3.3), while inequality (5.19) directly follows
from (5.16). Computational details are given in [12].

Theorem 5.7. Suppose γ = 1, letTh be a given mesh ofΩ, and let ‖ · ‖ be a norm of Vdiv,h. There exist
δ > 0 and C > 0 such that if ‖uh,0 − uh‖ < δ, then one has

‖uh − uh,k+1‖ ≤ C‖uh − uh,k‖2, (5.20)

for all k ≥ 0, and uh,k is quadratically convergent to uh.

Proof. Owing to Theorem 5.3, there exists δ > 0 such that if ‖uh,0 − uh‖ < δ, then ‖|ε(uh,k −
uh)|‖L∞ → 0 when k → ∞. As a consequence, there existsK1 such that ‖|ε(uh,k − uh)|‖L∞ < δ
for all k > K1. By writing the Taylor expansion of F at point uh,k, there exists ûh,k ∈ Vdiv,h such
that

‖|ε(ûh,k − uh,k)|‖L∞ < ‖|ε(uh − uh,k)|‖L∞ < δ, (5.21)

F(uh;vh) = F(uh,k;vh) + 〈DF(uh,k;vh),uh − uh,k〉

+
1
2

〈
D2F(ûh,k;vh),uh − uh,k,uh − uh,k

〉
.

(5.22)

Since uh solves (4.4), then F(uh;vh) = 0 in (5.22). By setting vh = uh − uh,k+1, we obtain, from
(5.22) and (5.17),

〈DF(uh,k;uh − uh,k+1),uh − uh,k+1〉 = −1
2

〈
D2F(ûh,k;uh − uh,k+1),uh − uh,k,uh − uh,k

〉
.

(5.23)

Thanks to (3.2), there exists C0 = D1(1 + ‖ε(uh)‖L∞)1/n−1 such that 0 < C0 ≤ μ(|ε(uh)|). As
a consequence, since ‖|ε(uh,k − uh)|‖L∞ → 0 and ‖|ε(ûh,k − uh)|‖L∞ → 0 when k → ∞ and
μ ∈ C∞(R∗

+), there exist C1, C2 > 0 and K2 ≥ K1 such that, for all k > K2,

C1 < μ(|ε(uh,k)|), (5.24)

(
8
∣∣μ′(|ε(ûh,k)|)

∣∣ + 2
∣∣μ′′(|ε(ûh,k)|)

∣∣|ε(ûh,k)|
)
< C2. (5.25)

By applying (5.18) with ũh = uh,k and uh = uh − uh,k+1 and (5.24), we obtain

C1

∫

Ω
|ε(uh − uh,k+1)|2dV ≤ 〈DF(uh,k;uh − uh,k+1),uh − uh,k+1〉. (5.26)
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By applying (5.19) with ũh = ûh,k, uh = uh − uh,k+1, and uh = uh − uh,k and (5.25), we obtain:

−
〈
D2F(ûh,k;uh − uh,k+1),uh − uh,k,uh − uh,k

〉
≤ C2

∫

Ω
|ε(uh − uh,k)|2|ε(uh − uh,k+1)|dV.

(5.27)

By combining (5.23), (5.26), and (5.27), we obtain

C1

∫

Ω
|ε(uh − uh,k+1)|2dV ≤ C2

∫

Ω
|ε(uh − uh,k)|2|ε(uh − uh,k+1)|dV. (5.28)

By using Cauchy-Schwarz’s inequality and the equivalence of norms, there exists C3 > 0 such
that

‖|ε(uh − uh,k+1)|‖2L2 ≤ C3‖|ε(uh − uh,k)|‖2L2‖|ε(uh − uh,k+1)|‖L2 . (5.29)

Clearly, (5.20) follows from (5.29).

Remark 5.8. If ΓR /= ∅, the nonlinear Robin-Dirichlet condition can be handled in the same way
as for the viscosity function. In that case, we modify the application E by adding

∑

i=1,d−1

(∫

ΓR
α(|ũh|)(w̃h · ti)(vh · ti)dS + γ

∫

ΓR

α′(|ũh|)
|ũh|

(ũh · (w̃h − ũh))(ũh · ti)(vh · ti)dS
)

(5.30)

to the left-hand side of (5.2). Theorems 5.3 and 5.7 can be easily extended to this case.

6. Numerical Results

In this section, numerical experiences are performed in two dimensions (d = 2) to validate
the results of Theorems 4.9, 5.3, and 5.7. An exact solution of the Stokes problem (2.1) in the
square Ω = [0, 1]2 is considered in the pure Dirichlet case, that is, ∂Ω = ΓD. Let

u
(
x, y
)
=

⎛

⎝
(x(1 − x))θ+1

(
y
(
1 − y

))θ(1 − 2y
)

−(x(1 − x))θ
(
y
(
1 − y

))θ+1(1 − 2x)

⎞

⎠, θ ∈ [1, 2], (6.1)

be a divergence-free velocity field that vanishes on the boundaries of Ω. Let p(x, y) = xy −
1/4 be the pressure field such that

∫
Ω pdV = 0. The right-hand side term f is deduced by

computing (2.1). The parameters involving in Glen’s law are n = 2, τ0 = 0.1 bar and A =
0.1 bar−2 a−1. Since n = 2, the function μ defined by (2.2) is given explicitly, when s > 0, by

μ(s) =

(√
(2Aτ0)2 + 8

√
2As − 2Aτ0

)

(
4
√
2As
) . (6.2)
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Numerical solutions are obtained after several successive approximations uh,k, as described in
Section 5. Each uh,k corresponds to a unique ph,k. The algorithm is initialised by (uh,0, ph,0) :=
(0, 0). Each linearised problem is solved by using the finite element open source code
Freefem++; see [24]. As spaces Vh and Qh, we opt for the combination [P1/Bulle]

d − P1

that satisfy the inf-sup condition (4.1) and the interpolation properties (4.26) and (4.27); see
Remark 4.10. Six Delaunay unstructured regular meshes Th of the square Ω = [0, 1]2 are
generated with various resolutions h. Since the Dirichlet condition u = 0 is applied on the
whole boundary ∂Ω = ΓD, a penalisation term is added in the variational formulation to
constrain the pressure average to be close to zero. For all norms ‖ · ‖, the error between u and
uh,k has two components:

‖u − uh,k‖ ≤ ‖u − uh‖ + ‖uh − uh,k‖, (6.3)

where uh is the exact solution of the nonlinear discrete problem. The convergence of the first
component ‖u − uh‖ with respect to h is the concern of Theorem 4.9, while the convergence
of the second component ‖uh − uh,k‖ with respect to k is the concern of Theorems 5.3 and
5.7. Let k be an integer large enough such that uh and uh,k can be confused, that is, such that
‖uh − uh,k‖ � ‖u − uh‖. To check the convergence of the second component, we compute the
following error:

Eu
k =

∥∥∥∇uh,k − ∇uh,k

∥∥∥
Lr

‖∇u‖Lr

, (6.4)

where the norm ‖ · ‖Lr is evaluated by using the trapezoidal rule. For a fixed h, Theorem 5.3
states the linear convergence of Eu

k
that depends on constant (5.13) when γ ∈ [0, 1) and the

quadratic convergence when γ = 1. Three values of γ are considered: γ = 0 to test the fixed
point algorithm, γ = 0.5 to test the hybrid method, and γ = 1 to test Newton’s method.
Figure 1 displays Eu

k according to k for each method: γ ∈ {0, 0.5, 1}, and for two different
meshes. The recorded orders of convergence are consistent with Theorem 5.3: Newton’s
method (γ = 1) converges quadratically, the fixed point method and the hybrid method
(γ < 1) converge linearly, and convergence is faster for bigger γ and then smaller constant
(5.13). Newton’s method is especially very efficient: in our example, only 3 iterations are
needed against 8 for the fixed point algorithm to obtain the same accuracy of the numerical
solution. Figure 1 also shows that the convergence of Eu

k with respect to k is not affected by
any mesh refinement, as noticed in [3]. Moreover, the addition of supplementary terms in the
Stokes system does not increase significantly the computational time for solving the linear
system with a direct method.

The estimate of Theorem 4.9 is now tested by computing the following errors:

Eu
h =

∥∥∥∇u − ∇uh,k

∥∥∥
Lr

‖∇u‖Lr

, E
p

h
=

∥∥∥p − ph,k

∥∥∥
Lκ′

∥∥p
∥∥
Lκ′

. (6.5)

We can change the regularity of u by changing the parameter θ in (6.1) from 2 to 1.34. Indeed,
if θ = 2, then u ∈ C∞(Ω), while if θ = 1.34, then u /∈ [W2,2(Ω)]2, but u ∈ [W2,r(Ω)]2, where
r = 3/2. In any case p ∈ C∞(Ω). Figure 2 displays Eu

h
and E

p

h
with respect to h in both cases
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Figure 1: The error Eu
k
with respect to k for each method (fixed point: γ = 0, hybrid: γ = 0.5, Newton: γ = 1).

The error Eu
k
obtained with the coarsest mesh is displayed on (a) and the error Eu

k
obtained with the finest

mesh is displayed on (b).
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Figure 2: The errors Eu
h
and E

p

h
with respect to h with θ = 2 (a) and with θ = 1.34 (b). Regression straight

lines have been drawn from the last three points of each set of six recorded errors.

θ = 2 and θ = 1.34. The estimate (4.28) anticipates Eu
h
= O(h), Ep

h
= O(h) if θ = 2, and

Eu
h
= O(h3/4), Ep

h
= O(h1/2) if θ = 1.34. In both cases, the observed order of convergence for Eu

h

and E
p

h
is close to one, which is greater or equal to the estimate. It suggests the nonoptimality

of estimate (4.28) in the nonregular case, as noticed in [7] for a comparable problem.

7. Conclusions and Perspectives

We have proved the existence and the uniqueness of a weak solution of a nonlinear
Stokes problem that describes the motion of glaciers. We have also proved the convergence
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of the finite element approximation and given a priori error estimates. New successive
approximation algorithms have been proposed to solve the system nonlinearity and have
been proved to be convergent. When implementing Newton’s method, both theoretical and
numerical studies have shown the efficiency of this method in comparison with the classical
fixed point method.

Two extensions of our work should be investigated in future research. First, a posteriori
estimates could be an aspect to be developed in order to implement an adaptive mesh
procedure. Second, the presented Stokes model could benefit from recent improvements of
the basal sliding description with Coulomb-type laws [10].
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24 Advances in Numerical Analysis

[20] J. Howell and N. Walkington, “Inf-sup conditions for twofold saddle point problems,” Numerische
Mathematik, vol. 118, pp. 663–693, 2011.

[21] C. Amrouche and V. Girault, “Decomposition of vector spaces and application to the Stokes problem
in arbitrary dimension,” Czechoslovak Mathematical Journal, vol. 44, no. 1, pp. 109–140, 1994.

[22] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford
University Press, Oxford, UK, 1999.

[23] D. N. Arnold, F. Brezzi, and M. Fortin, “A stable finite element for the stokes equations,” Calcolo, vol.
21, no. 4, pp. 337–344, 1984.

[24] F. Hecht, Freefem++, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


