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This paper contributes a very general class of two-point iterative methods without memory for
solving nonlinear equations. The class of methods is developed using weight function approach.
Per iteration, each method of the class includes two evaluations of the function and one of its first-
order derivative. The analytical study of the main theorem is presented in detail to show the fourth
order of convergence. Furthermore, it is discussed that many of the existing fourth-order methods
without memory are members from this developed class. Finally, numerical examples are taken
into account to manifest the accuracy of the derived methods.

1. Prerequisites

One of the important and challenging problems in numerical analysis is to find the solution of
nonlinear equations. In recent years, several numerical methods for finding roots of nonlinear
equations have been developed by using several different techniques; see, for example, [1, 2].
We herein consider the nonlinear equations of the general form

f(x) = 0, (1.1)

where f : D ⊆ R → R is a real valued function on an open neighborhood D and
α ∈ D a simple root of (1.1). Many relationships in nature are inherently nonlinear, in
which their effects are not in direct proportion to their cause. Accordingly, solving nonlinear
scalar equations occurs frequently in scientific works. Many robust and efficient methods for
solving such equations are brought forward by many authors; see [3–5] and the references
therein. Note that Newton’smethod for nonlinear equations is an important and fundamental
one.
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In providing better iterations with better efficiency and order of convergence, a
technique as follows is mostly used. The composition of two iterative methods of orders
p and q, respectively, results in a method of order pq, [6]. Usually, new evaluations of the
derivative or the nonlinear function are needed in order to increase the order of convergence.
On the other hand, one well-known technique to bring generality is to use weight function
correctly in which the order does not die down, but the error equation becomes general. In
fact, this approach will be used in this paper.

Definition 1.1. The efficiency of a method is measured by the concept of efficiency index,which
is given by

EI = p1/β, (1.2)

where p is the convergence order of the method and β is the whole number of evaluations
per one computing process. Meanwhile, we should remember that by Kung-Traub conjecture
[7] as comes next, an iterative multipoint scheme without memory for solving nonlinear
equations has the optimal efficiency index 2(β−1)/β and optimal rate of convergence 2β−1.

Higher-order methods are widely referenced in literature; see for example, [8, 9] and
the references therein. It can be concluded that they are useful in applications, for example,
numerical solution of quadratic equations and nonlinear integral equations are needed in the
study of dynamical models of chemical reactors or in radiative transfer. Moreover, many of
these numerical applications use high precision in their computations; the results of these
numerical experiments show that the high-order methods associated with a multiprecision
arithmetic floating point are very useful, because they yield a clear reduction in the number
of iterations. This simply shows the importance of multipoint methods in solving nonlinear
scalar equations.

The two-step family of Geum and Kim, which was given in [10] recently, is one of
the most significant two-point optimal fourth-order methods, which includes many of the
existing fourth-order methods as its special elements:
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It satisfies the error equation en+1 = (−c2c3+c32(1+2β−γ +δ))e4n+O(e5n), with β, γ, δ ∈ R,
and ck = (1/k!)f (k)(α)/f ′(α), k ≥ 2. Note that (1.3) is in fact the first two steps of the three-
step scheme given in [10]. Clearly, choosing γ = δ = 0 will end in the well-known King’s
optimal fourth-order family [11]:
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which reads the error equation en+1 = (−c2c3 + c32(1 + 2β))e4n + O(e5n) and also contains the
Ostrowski’s fourth-order method as its special element for β = 0.

Motivated and inspired by the recent activities in this direction, in this paper, we will
construct a very general class of new iterative methods free from second- or higher-orders
derivatives in computing process based on (1.3) and grounded on the use of weight function
in the second step of our proposed class.

2. Main Contribution

This section contains our novel contributed general class. According to the conjecture of
Kung-Traub for constructing optimal without memory iterations, we must use only three
evaluations per full cycle to reach the convergence order four. Therefore, we consider the
following very general two-step two-point without memory iteration:
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where G(t), H(τ), and K(ϕ) are three real-valued weight functions with t = f(y)/f(x), τ =
f(y)/f ′(x), and ϕ = f(x)/f ′(x), without the index n, that should be chosen such that the
order of convergence reaches the optimal level four. This is done in Theorem 2.1.

Theorem 2.1. Let α ∈ D be a simple zero of a sufficiently differentiable function f : D ⊂ R → R

for an open interval D, which contains x0 as an initial approximation of α. If G(t), H(τ), and K(ϕ)
satisfy the conditions:

G(0) = 1, G′(0) = 0,
∣∣G′′(0)

∣∣ < ∞,

H(0) = 1,
∣∣H ′(0)

∣∣ < ∞,

K(0) = 1, K′(0) = 0,
∣∣K′′(0)

∣∣ < ∞,

(2.2)

then the class of iterative without memory methods defined by (2.1) is of optimal order four.

Proof. By defining en = xn − α as the error of the iterative scheme in the nth iterate, applying
Taylor’s expansion and taking into account f(α) = 0, we have

f(xn) = f ′(α)
[
en + c2e

2
n + c3e

3
n + c4e

4
n +O

(
e5n

)]
, (2.3)

where ck = (1/k!)(f (k)(α)/f ′(α)), k ≥ 2. Furthermore, we have

f ′(xn) = f ′(α)
[
1 + 2c2en + 3c3e2n + 4c4e3n +O

(
e4n

)]
. (2.4)
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Dividing (2.3) by (2.4) gives us
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By substituting (2.5) in the first step of (2.1) for yn, we obtain
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and similarly f(yn) = c1f
′(α)e2n +2(−c22 +c3)f ′(α)e3n +(5c

3
2 −7c2c3 +3c4)f ′(α)e4n +O(e5n). Again,

by Taylor’s series expanding around the simple root and using the attained formulas, we
have
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Also, by Taylor expanding, we attain yn−f(yn)/f ′(xn) = α+2c22e
3
n+(−9c32+7c2c3)e4n+O(e5n). At

this time, by taking into consideration (2.6), (2.7), and the conditions (2.2) for the weight
functions into the last step of (2.1), we attain the follow-up error equation for the whole
iteration (2.1) per computing process:

en+1 =
1
2
c2
(
−2c3 − 2c2H ′(0) + c22

(
2 + 4β − 2γ + 2δ −G′′(0)

) −K′′(0)
)
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)
. (2.8)

This shows that the iterative class (2.1)-(2.2) will arrive at the optimal local order of
convergence four. This concludes the proof.

In standpoint of computational efficiency, each derived member from our class
includes three evaluations per full cycle, that is, one evaluation of the first-order derivative
and two evaluations of the function. Therefore, the resulted methods are optimal and
consistent with the optimality conjecture of Kung-Traub for multipoint without memory
iterations. The class possesses the optimal efficiency index 1.587, which is much better than
that of Newton’s scheme efficiency. Furthermore, the error equation (2.8) completely reveals
the generality of our class. Choosing any desired values for the three parameters and also
the three real-valued weight functions, based on (2.2), will result in new methods. In what
follows, we briefly provide some of the well-known methods in the literature as special
members from our class of iterations.

Case 1. Choosing G(t) = 1 + t3, H(τ) = 1 + τ2, and K(ϕ) = 1 + ϕ3 will result in the family of
Geum-Kim (1.3).
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Table 1: Typical forms of G(t), H(τ), and K(ϕ) based on (2.2) where t = f(y)/f(x), τ = f(y)/f ′(x),
ϕ = f(x)/f ′(x), and θ ∈ R − {0}.

Forms Weight function for G(t) Weight function forH(τ) Weight function for K(ϕ)

1 1 + t2 1 + τ + θτ2 1 + ϕ2

2 1 + θt3 (1 + τ)/(1 − τ) 1 + θϕ3

Case 2. Choosing G(t) = 1 + t3, H(τ) = 1 + τ2, K(ϕ) = 1 + ϕ3, and γ = δ = 0 will result in the
family of King (1.4)

Case 3. Choosing G(t) = 1 + t3, H(τ) = 1 + τ2, K(ϕ) = 1 + ϕ3, γ = δ = 0, and β = −1/2 will
result in the method of Khattri et al. in [12] as comes next with the same error equation:
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Some typical forms of the weight function, which make the order of our general class
optimal according to (2.2), are listed in Table 1.

According to Table 1, we can produce any desire method of optimal order four by
using only three functional evaluations per full cycle. Hence, we can have as contributed
examples from our class:

yn = xn −
f(xn)
f ′(xn)

,

xn+1 = yn −
f(xn)

2

f(xn)
2 − 2f(xn)f

(
yn

)
f
(
yn

)

f ′(xn)

⎛

⎝1 +

(
f
(
yn

)

f(xn)

)2
⎞

⎠

×
⎛

⎝1 +

(
f
(
yn

)

f ′(xn)

)2
⎞

⎠
(

1 +
(
f(xn)
f ′(xn)

)2
)

,

(2.10)

with en+1 = −c2(1 + c3)e4n +O(e5n), and
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Table 2: Interesting choices of β, γ, δ,H ′(0), G′′(0), K′′(0) in (2.8), which provide efficient optimal root
solvers.

Method β γ δ G′′(0) H ′(0) K′′(0) Error equation

1 1 1 1 6 0 4 en+1 = −c2(2 + c3)e4n +O(e5n)
2 1 0 0 0 1 4 en+1 = c2(−2 + c2(−1 + 3c2) − c3)e4n +O(e5n)
3 0 0 0 0 1 0 en+1 = c2((−1 + c2)c2 − c3)e4n +O(e5n)
4 0 0 0 0 0 −1/10 en+1 = c2(1/20 + c22 − c3)e4n +O(e5n)
5 1/10 1 1 1 1 −1/10 en+1 = (1/20)c2(1 + 2c2(−10 + 7c2) − 20c3)e4n +O(e5n)
6 −1/2 0 0 0 −1/2 0 en+1 = (1/2)c2(c2 − 2c3)e4n +O(e5n)
7 0 0 0 0 −1/2 2 en+1 = (1/2)c2(c2 + 2c22 − 2(1 + c3))e4n +O(e5n)
8 1 1 1 1 1 2 en+1 = (1/2)c2(c2(−2 + 5c2) − 2(1 + c3))e4n +O(e5n)
9 1 1 1 1 1 1 en+1 = (1/2)c2(−1 + c2(−2 + 5c2) − 2c3)e4n +O(e5n)
10 0 0 0 1 1 1 en+1 = (1/2)c2(−1 + (−2 + c2)c2 − 2c3)e4n +O(e5n)

where en+1 = −c2(c2 + c3)e4n +O(e5n) is its error relation; or the following efficient method:
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with the follow-up error equation en+1 = −c2(c2 + c3 − 1)e4n +O(e5n).
As positively pointed out by the reviewer, the novel fourth-order methods can be

applied in providing higher-order convergent methods. That is to say, in order to fulfill the
optimality conjecture of Kung-Traub (1974), optimal eighth- and sixteenth-order derivative-
involved methods can only be built grounded on the optimal quartically methods. Now and
according to the contributed class in this paper, very general eighth- and sixteenth-order
optimal iterations without memory can be constructed by using (2.1)-(2.2) in the first two
steps of a three- or four-step cycle.

The error relation (2.8) relies fully on the first, second, third derivatives of a given
nonlinear function, as well as β, γ, δ,H ′(0), G′′(0), K′′(0). Thus, in order to save the space and
also giving some of the other optimal fourth-order methods according to (2.1) and (2.2), we
list the interesting ones in Table 2.

3. Computational Aspects

Here, to demonstrate the performance of the new fourth-order methods, we take a lot of
nonlinear equations as follows:

(i) f1 = (sinx)2 + x, α = 0,

(ii) f2 = (1 + x3) cos(πx/2) +
√
1 − x2 − (2(9

√
2 + 7

√
3)/27), α = 1/3,
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(iii) f3 = (sinx)2 − x2 + 1, α ≈ 1.404491648215341226035086817786,

(iv) f4 = e−x + sin(x) − 1, α ≈ 2.076831274533112613070044244750,

(v) f5 = xe−x − 0.1, α ≈ 0.111832559158962964833569456820,

(vi) f6 = x2 + sin(x) + x, α = 0,

(vii) f7 = sin(2 cos(x)) − 1 − x2 + esin(x
3), α ≈ 1.306175201846827825014842909066,

(viii) f8 = sin(2 cos(x)) − 1 − x2 + esin(x
3), α ≈ −0.784895987661212535224856018448,

(ix) f9 = cos(x) + sin(2x)
√
1 − x2 + sin(x2) + x14 + x3 + 1/2x, α ≈

−0.925772249827561423326931990067,
(x) f10 = tan(lnx) + cos(x3) ×

√
1/(2x), α ≈ 0.443260783556767073513472596321,

(xi) f11 = tan−1x, α = 0,

(xii) f12 = x6 − 10x3 + x2 − x + 3, α ≈ 0.658604847118140436763860014710,

(xiii) f13 = x4 − x3 + 11x − 7, α ≈ 0.803511199110777688978137660293,

(xiv) f14 = x3 − cosx + 2, α ≈ −1.172577964753970012673332714868,
(xv) f15 =

√
x − cosx, α ≈ 0.641714370872882658398565300316,

(xvi) f16 = ln(x) − x3 + 2 sinx, α ≈ 1.297997743280371847164479238286.

We shall determine the consistency and the stability of results by examining the
convergence of the new second-derivative-free iterative methods. The findings are shown
by illustrating the effectiveness of the fourth-order methods for determining the simple root
of a nonlinear equation. Consequently, we can give estimates of the approximate solution
produced by the fourth-order methods. The numerical computations listed in Table 3 were
performed with MATLAB 7.6. For comparisons, we have used the fourth-order derivative-
free method of Kung-Traub (KTM) as comes next:

yn = xn + f(xn),

zn = yn −
f(xn)f

(
yn

)

f
(
yn

) − f(xn)
,

xn+1 = zn −
f(xn)f

(
yn

)

f(zn) − f(xn)

[
1

f
[
yn, xn

] − 1
f
[
zn, yn

]

]

,

(3.1)

where f[yn, xn] and f[zn, yn] are divided differences, and the Ostrowski’s method (OM) as
follows:

kn = xn −
f(xn)
f ′(xn)

,

xn+1 = kn − (xn − kn)
f(xn) − 2f(kn)

f(kn).

(3.2)

We also have used King’s family with β = −1/2, as K(−1/2) in comparisons with our
novel methods (2.10), (2.11), (2.12) from the suggested class. For convergence, it is required
that the distance of two consecutive approximations (|xn+1−xn|with n ≥ 0) be less than ε. And
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Table 3: Comparison of different methods with the same total number of evaluations (TNE = 12).

Functions Guesses KTM OM K(−1/2) (2.10) (2.11) (2.12)

f1 0.6 0.7e−88 0.2e−108 0.7e−174 0.4e−138 0.3e−172 0.7e−157
f1 0.7 0.1e−84 0.7e−100 0.4e−159 0.5e−125 0.6e−148 0.4e−135
f1 −0.1 0.1e−162 0.2e−246 0.3e−385 0.1e−229 0.6e−228 0.8e−460
f2 0.8 0.1e−79 0.2e−140 0.1e−93 0.7e−92 0.6e−85 0.1e−119
f2 0.6 0.1e−232 0.5e−181 0.2e−169 0.1e−145 0.2e−140 0.8e−182
f2 0.4 0.1e−468 0.5e−294 0.5e−324 0.2e−295 0.1e−289 0.9e−349
f3 1.7 0.1e−72 0.3e−185 0.3e−198 0.3e−172 0.3e−184 0.1e−189
f3 1.2 0.8e−168 0.3e−196 0.4e−148 0.2e−148 0.3e−155 0.3e−195
f3 1.8 0.1e−11 0.1e−158 0.3e−173 0.1e−147 0.1e−159 0.7e−158
f4 1.9 0.1e−263 0.6e−224 0.7e−208 0.4e−189 0.2e−205 0.4e−318
f4 2.3 0.1e−286 0.2e−228 0.6e−244 0.1e−208 0.4e−232 0.2e−211
f4 1.8 0.1e−200 0.1e−165 0.5e−118 0.2e−117 0.2e−133 0.6e−163
f5 0.2 0.3e−197 0.1e−282 0.1e−239 0.2e−237 0.1e−307 0.7e−248
f5 0 0.2e−187 0.1e−266 0.3e−269 0.1e−240 0.6e−262 0.9e−232
f5 −0.1 0.1e−124 0.1e−200 0.1e−189 0.5e−182 0.2e−192 0.1e−166
f6 0.3 0.9e−138 0.2e−219 0.1e−232 0.8e−181 0.5e−205 0.1e−184
f6 −0.1 0.7e−203 0.3e−314 0.1e−342 0.6e−275 0.1e−303 0.9e−302
f6 0.7 0.4e−81 0.1e−147 0.2e−152 0.5e−101 0.4e−114 0.4e−101
f7 1.29 0.2e−213 0.6e−348 0.3e−378 0.2e−376 0.4e−386 0.2e−376
f7 1.31 0.4e−323 0.1e−515 0.4e−528 0.7e−535 0.9e−540 0.6e−533
f7 1.3 0.3e−144 0.1e−458 0.7e−447 0.1e−481 0.2e−488 0.2e−480
f8 −0.7 0.3e−144 0.4e−276 0.2e−295 0.1e−282 0.8e−275 0.8e−248
f8 −0.9 0.1e−176 0.2e−264 0.5e−275 0.3e−302 0.5e−254 0.2e−234
f8 −0.82 0.3e−280 0.3e−387 0.7e−406 0.3e−415 0.3e−379 0.9e−358
f9 −0.92 0.4e−241 0.2e−418 0.4e−358 0.2e−368 0.3e−377 0.1e−378
f9 −0.93 0.5e−267 0.1e−453 0.6e−424 0.1e−410 0.3e−420 0.9e−422
f9 −0.9 0.2e−93 0.6e−252 0.1e−151 0.3e−186 0.3e−194 0.2e−195
f10 0.41 0.2e−98 0.5e−372 0.8e−266 0.1e−221 0.3e−233 0.8e−236
f10 0.42 0.1e−140 0.3e−413 0.7e−322 0.1e−259 0.4e−241 0.1e−273
f10 0.43 0.1e−205 0.9e−478 0.1e−342 0.7e−320 0.1e−331 0.3e−334
f11 0.5 0.8e−175 0.4e−301 0.1e−471 0.3e−215 0.3e−349 0.5e−185
f11 0.3 0.4e−308 0.5e−433 0.1e−445 0.9e−371 0.2e−476 0.3e−327
f11 −0.2 0.2e−414 0.1e−540 0.1e−544 0.1e−486 0.3e−531 0.5e−450
f12 0.81 0.1e−81 0.5e−199 0.7e−208 0.1e−241 0.2e−232 0.2e−229
f12 0.8 0.5e−179 0.1e−205 0.5e−215 0.1e−244 0.1e−235 0.8e−239
f12 0.5 0.5e−63 0.5e−165 0.1e−83 0.5e−125 0.7e−119 0.5e−133
f13 0.9 0.3e−108 0.1e−314 0.6e−342 0.1e−275 0.5e−287 0.2e−324
f13 0.8 0.1e−426 0.5e−677 0.2e−713 0.2e−635 0.7e−647 0.6e−705
f13 0.85 0.1e−168 0.6e−393 0.4e−455 0.1e−352 0.3e−364 0.1e−409
f14 −1.1 0.3e−147 0.7e−297 0.7e−274 0.8e−265 0.1e−310 0.2e−266
f14 −1.3 0.1e−38 0.1e−247 0.6e−254 0.2e−235 0.2e−241 0.1e−215
f14 −1.5 0.5e−124 0.2e−155 0.1e−152 0.3e−155 0.7e−144 0.1e−123
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Table 3: Continued.

Functions Guesses KTM OM K(−1/2) (2.10) (2.11) (2.12)

f15 0.4 0.5e−225 0.3e−330 0.2e−327 0.2e−253 0.1e−420 0.6e−269
f15 0.9 0.1e−282 0.2e−371 0.2e−412 0.1e−226 0.1e−268 0.3e−233
f15 1.3 0.1e−247 0.3e−239 0.3e−238 0.7e−139 0.3e−164 0.1e−139
f16 1.4 0.7e−80 0.1e−235 0.1e−252 0.3e−267 0.7e−257 0.6e−289
f16 1.15 0.2e−103 0.4e−160 0.4e−83 0.3e−128 0.9e−121 0.1e−134
f16 1.3 0.1e−556 0.4e−660 0.2e−739 0.1e−670 0.6e−661 0.6e−697

the absolute value of the function |f(xn)|, also referred to as residual, be less than ε = 800.
Note that the residuals are listed in Table 3 for each starting point and by considering the total
number of evaluations as 12. We accept an approximate solution rather than the exact root,
depending on the precision ε of the computer. The test results in Table 3 show that the order
of convergence and accuracy of the proposed methods are in accordance with the theory
developed in the previous section. For most of the functions we have tested, the methods
introduced in the present work behave well in comparison to the other methods of order four.
The important characteristic of the novel methods is that they do not require the computation
of second-order or higher-order derivatives of the function to carry out iterations. However,
it should be emphasized that the order of convergence is a property of iteration formula near
root: the order of convergence is one thing; the total number of iterations is another one. In
general, for a given iteration formula, the total number of iterations depends not only on the
order of convergence but also on the initial approximation x0.

In Table 3, as an instance, 0.3e−172 shows that the absolute value of the corresponding
(test) function after 4 full iterations is zero up to 172 decimal digits.

4. Concluding Remarks
In numerical analysis, many methods produce sequences of real numbers, for instance the
iterative methods for solving nonlinear equations. Sometimes, the convergence of these
sequences is slow and their utility in solving practical problems quite limited. Convergence
acceleration methods try to transform a slowly converging sequence into a fast convergent
one. Due to this, this paper has aimed to give a rapidly convergent two-point class for
approximating simple roots. As high as possible of convergence order was attained by using
as small as possible number of evaluations per full cycle. The local order of our class of
iterations was established theoretically, and it has been seen that our class supports the
optimality conjecture of Kung-Traub (1974). It was shown that choosing appropriate form
of weight functions would end up in both existing and new iterative optimal root solvers
without memory. Clearly, our contribution in this paper has unified the existing quartically
methods, which are available in literature. In the sequel, numerical examples have used in
order to show the efficiency and accuracy of the novel methods from our suggested second-
derivative-free class. Finally, it should be noted that, like all other iterative methods, the
new methods from the class (2.1)-(2.2) have their own domains of validity and in certain
circumstances should not be used.
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