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This paper is devoted to the numerical analysis of abstract parabolic problem u′(t) = Au(t);
u(0) = u0, with hyperbolic generator A. We are developing a general approach to establish a
discrete dichotomy in a very general setting in case of discrete approximation in space and time. It
is a well-known fact that the phase space in the neighborhood of the hyperbolic equilibrium can be
split in a such way that the original initial value problem is reduced to initial value problems with
exponential decaying solutions in opposite time direction. We use the theory of compact approx-
imation principle and collectively condensing approximation to show that such a decomposition
of the flow persists under rather general approximation schemes. The main assumption of our
results is naturally satisfied, in particular, for operators with compact resolvents and condensing
semigroups and can be verified for finite element as well as finite difference methods.

1. Introduction

Many problems like approximation of attractors, traveling waves, shadowing e.c. involve the
notion of dichotomy. In numerical analysis of such problems, it is very important to know if
they keep some kind of exponential estimates uniformly in discretization parameter.

Let B(E) denote the Banach algebra of all bounded linear operators on a complex
Banach space E. The set of all linear-closed densely defined operators in Ewill be denoted by
C(E). For B ∈ C(E), let σ(B) be its spectrum and ρ(B), its resolvent set. In the following let
A : D(A) ⊆ E → E be a closed linear operator, such that

∥
∥
∥(λI −A)−1

∥
∥
∥
B(E)

≤ M

1 + |λ| for any Reλ ≥ 0. (1.1)
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Under condition (1.1), the spectrum of A is on the left: sup{Reλ : λ ∈ σ(A)} < 0, so
the fractional power operators (−A)α, α ∈ R

+, (see [1, 2]) associated to A and Eα, can be
constructed and the corresponding fractional power spaces too, that is, Eα := D((−A)α)
endowed with the graph norm ‖x‖Eα = ‖(−A)αx‖E. Define the ball UEα(0; ρ) with the center
at 0 of radius ρ > 0 in Eα space.

To show how the dichotomy problems appear in numerical analysis, we are consider-
ing for example the semilinear equation in Banach space Eα

u′(t) = Au(t) + f(u(t)), t ≥ 0,

u(0) = u0 ∈ Eα,
(1.2)

where f(·) : Eα ⊆ E → E, 0 ≤ α < 1, is assumed to be continuous, bounded, and continu-
ously Fréchet differentiable function. More precisely, we assume that the following condition
holds.

(F1) For any ε > 0, there is δ > 0 such that ‖f ′(w) − f ′(z)‖B(Eα,E) ≤ ε as ‖w − z‖Eα ≤ δ for
all w, z ∈ UEα(u∗; ρ), where u∗ is a hyperbolic equilibrium point of (1.2).

By means of the change of variables v(·) = u(·) − u∗ in the problem (1.2), where u∗ is
the hyperbolic equilibrium, we obtain the problem

v′(t) =
(

A + f ′(u∗)
)

v(t) + f(v(t) + u∗) − f(u∗) − f ′(u∗)v(t),

v(0) = u0 − u∗ = v0.
(1.3)

Such problem can be written in the form

v′(t) = Au∗v(t) + Fu∗(v(t)), v(0) = v0, t ≥ 0, (1.4)

whereAu∗ = A+f ′(u∗), Fu∗(v(t)) = f(v(t)+u∗)−f(u∗)−f ′(u∗)v(t). We note that from condition
(F1) it follows that the function Fu∗(v(t)) = f(v(t) + u∗) − f(u∗) − f ′(u∗)v(t) for small ‖v0‖Eα

is of order o(‖v(t)‖Eα). Since f ′(u∗) ∈ B(Eα, E), 0 ≤ α < 1, the operator Au∗ = A + f ′(u∗) is the
generator of an analytic C0-semigroup [3]. It can happen that the spectrum of operator Au∗

can be split into two parts σ+ and σ−.
We assume that the part σ+ of the spectrum of operator A + f ′(u∗), which is located

strictly to the right of the imaginary axis, consists of a finite number of eigenvalues with
finite multiplicity. This assumption is satisfied, for instance, if the resolvent of operator A
is compact. The conditions under which the operator Au∗ has the dichotomy property were
studied say in [4–6]. In case of hyperbolic equilibrium point u∗, there is no spectrum of Au∗

on iR. Let U(σ+) ⊂ {λ ∈ C : Reλ > 0} be an open connected neighborhood of σ+ which has a
closed rectifiable curve ∂U(σ+) as a boundary. We decompose Eα using the Riesz projection

P(σ+) := P(σ+, Au∗) :=
1

2πi

∫

∂U(σ+)
(ζI −Au∗)−1dζ (1.5)
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defined by σ+. Due to this definition and analyticity of the C0-semigroup etAu∗ , t ∈ R+, we
have positive constants M1, β > 0, such that

∥
∥
∥etAu∗z

∥
∥
∥
Eα

≤ M1e
−βt‖z‖Eα , t ≥ 0,

∥
∥
∥etAu∗v

∥
∥
∥
Eα

≤ M1e
βt‖v‖Eα , t ≤ 0,

(1.6)

for all v ∈ P(σ+)Eα and z ∈ (I − P(σ+))Eα. Since Fu∗(v(t)) = o(‖v(t)‖Eα) for small v(·), the
estimates (1.6) are crucial to describe the behavior of solution of the problem (1.2) at the
vicinity of the hyperbolic equilibrium point u∗.

If v0 is close to 0, that is, say v0 ∈ UEα(0; ρ) with small ρ > 0, then the mild solution
v(t;v0) of (1.4) can stay in the ball UEα(0; ρ), for some time. We denote now the maximal
time of staying v(t;v0) in UEα(0; ρ) by T = T(v0) = sup{t ≥ 0 : ‖v(t;v0)‖Eα ≤ ρ or v(t;v0) ∈
UEα(0; ρ)}. Now coming back to solution of (1.4) for any two v0, vT ∈ UEα(0; ρ) we consider
the boundary value problem

v′(t) = Au∗v(t) + Fu∗(v(t)), 0 ≤ t ≤ T,

(I − P(σ+))v(0) = (I − P(σ+))v0, P(σ+)v(T) = P(σ+)vT .
(1.7)

A mild solution of problem (1.7) as was shown in [7] satisfies the integral equation

v(t) = e(t−T)Au∗P(σ+)vT + etAu∗ (I − P(σ+))v0 +
∫ t

0
e(t−s)Au∗ (I − P(σ+))Fu∗(v(s))ds

+
∫T

t

e(t−s)Au∗P(σ+)Fu∗(v(s))ds, 0 ≤ t ≤ T.

(1.8)

In case one would like to discretize the problem (1.4) in space and time variables it is
very important to knowwhat will happen to estimates like (1.6) for approximation solutions.
If the estimates like (1.6) hold uniformly in parameter of discretization, then one can expect
to get a similar behavior of approximated solutions of (1.8).

So, in this paper we are going to consider general approximation approach for keeping
the dichotomy estimates (1.6) for approximations of trajectory u(·).

2. Preliminaries

Let T(r) = {λ : λ ∈ C, |λ| = r},T = T(1).

Definition 2.1. A C0-semigroup etA, t ≥ 0, defined on a Banach space E is called hyperbolic if
σ(etA) ∩ T = ∅ for all t > 0. The generator A is called hyperbolic if σ(A) ∩ iR = ∅.

Let us denote byΥ(R;E) any of the spaces Lp(R;E), 1 ≤ p < ∞, C0(R;E) or Stepanov’s
space Sp(R;E), 1 ≤ p < ∞. We consider in the Banach space Υ(R;E) (we call this space as
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Palmer’s space, see [8], where Fredholm property was mentioned for the first time) the linear
differential operator

L = − d

dt
+A : D(L) ⊆ Υ(R;E) −→ Υ(R;E), (2.1)

where A generates C0-semigroup, domain of L is assumed to consist of the functions
u(·) ∈ Υ(R;E) such that for some function g(·) ∈ Υ(R;E) one has u(t) = e(t−s)Au(s) −
∫ t

s e
(t−η)Ag(η)dη, s ≤ t, t ∈ R, and Lu(·) = g(·). Let us note [9] that the operator L is

the generator of C0-semigroup etL on a Banach space Υ(R;E), which is defined for all
v(·) ∈ Υ(R;E) by formula

(

etLv
)

(s) = etAv(s − t) for any s ∈ R, t ≥ 0. (2.2)

Definition 2.2. A C0-semigroup etA, t ≥ 0, has an exponential dichotomy on R with exponen-
tial dichotomy data (M ≥ 1, β > 0) if there exists projector P : E → E such that

(i) etAP = PetA for all t ≥ 0,

(ii) the restriction etA|R(P), t ≥ 0, is invertible on P(E) and

∥
∥
∥e−tAPx

∥
∥
∥ ≤ Me−βt‖Px‖, t ≥ 0, x ∈ E,

∥
∥
∥etA(I − P)x

∥
∥
∥ ≤ Me−βt‖(I − P)x‖, t ≥ 0, x ∈ E.

(2.3)

Theorem 2.3 (see [10]). The operator L in the Banach space Υ(R;E) is invertible if and only if the
condition

σ
(

e1A
)

∩ T = ∅ (2.4)

holds. If condition (2.4) is satisfied, then

(

L−1f
)

(t) =
∫∞

−∞
G(t − s)f(s)ds, t ∈ R, f(·) ∈ Υ(R;E), (2.5)

where the Green’s function

G
(

η
)

=

⎧

⎨

⎩

−eηAP−, η ≥ 0,

eηAP+, η < 0,
(2.6)

∥
∥G

(

η
)∥
∥ ≤

⎧

⎨

⎩

M+e
−γ+η, η ≥ 0,

M−eγ−η, η < 0,
(2.7)
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where

M+ = 2Mæ(L)
(

1 +
1

2æ(L)

)2

, M− = 2Mæ(L)
(

1 − 1
2æ(L)

)2

,

γ+ = ln
(

1 +
1

2æ(L)

)

, γ− = − ln
(

1 − 1
2æ(L)

)

,

(2.8)

and æ (L) = 1 + C(Υ)(M +M2‖L−1‖).

We note that the constant C(Υ) is defined as C(Υ) = 1 if Υ(R;E) = L∞(R, E) or
Υ(R;E) = C0(R, E) and C(Υ) = 21−1/p if Υ(R;E) = Lp(R, E) or Υ(R;E) = Sp(R, E), p ∈ [1,∞).

Denote by Υ(Z;E) the Banach space of E-valued sequences with corresponding
discrete norm which is consistent with the norm of Υ(R;E). For any u(·) ∈ Υ(Z;E), that is,
{u(k)}k∈Z

, and B = e1A ∈ B(E), we define an operator B : D(B) ⊆ lp(Z;E) → lp(Z;E) by
formula

(Bu)(k) = Bu(k − 1), k ∈ Z, u(·) ∈ lp(Z;E). (2.9)

Now we define an operator D = I − B : D(D) = D(B) ⊆ lp(Z;E) → lp(Z;E) as

(Du)(k) = u(k) − Bu(k − 1), u(·) ∈ D(B), k ∈ Z. (2.10)

Proposition 2.4 (see [10]). Let an operator L = −d/dt + A : D(L) ⊆ Υ(R;E) → Υ(R;E) be
invertible. Then, an operator D : D(D) ⊆ Υ(Z;E) → Υ(Z;E) is invertible too and

∥
∥
∥D−1

∥
∥
∥ ≤ 1 + C(Υ)

(

M +M2
∥
∥
∥L−1

∥
∥
∥

)

. (2.11)

Conversely, if D is invertible, then L : D(L) ⊆ Υ(R;E) → Υ(R;E) is invertible and

∥
∥
∥L−1

∥
∥
∥ ≤ C(Υ)

(

M +M2
∥
∥
∥D−1

∥
∥
∥

)

. (2.12)

Theorem 2.5 (see [11]). The difference operator

(Du)(k) = u(k) − Bu(k − 1), k ∈ N, u(·) ∈ lp(R;E), 1 ≤ p ≤ ∞, (2.13)

is invertible if and only if

σ(B) ∩ T = ∅. (2.14)

If condition (2.14) is satisfied, then the inverse operator has the form

(

D−1v
)

(k) = Σm∈ZΓ(k −m)v(m), (2.15)
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where v(·) ∈ lp(Z;E), 1 ≤ p ≤ ∞, and the function Γ(·) : Z → B(E) is defined by

Γ(k) =

⎧

⎨

⎩

Bk(I − P), k ≥ 0,

−B−k
0 P, k ≤ −1,

(2.16)

where B0 is the restriction of B on R(P).

Definition 2.6. The operator B ∈ B(E) has an exponential discrete dichotomy with data
(M, r, P) if P ∈ B(E) is a projector in E and M, r are constants with 0 ≤ r < 1 such that
the following properties hold

(i) BkP = PBk for all k ∈ N,

(ii) ‖Bk(I − P)‖ ≤ Mrk for all k ∈ N,

(iii) B̂ := B|R(P) : R(P) �→ R(P) is a homeomorphism that satisfies ‖B̂−kP‖ ≤ Mrk, k ∈ N.

The following result relates the constants in an exponential discrete dichotomy to a
bound on the resolvent (λI − B)−1 for λ ∈ T.

Theorem 2.7. For B ∈ B(E), the following conditions are equivalent:

(i) λ ∈ ρ(B) for all λ ∈ T and ‖(λI − B)−1‖ ≤ β < ∞ ∀λ ∈ T;

(ii) B has an exponential dichotomy with data (M, r, P).

More precisely, one shows that (i) implies (ii) with M = 2β2/(β − 1) and r = 1 − 1/2β. Conversely,
(ii) implies (i) with β = M((1 + r)/(1 − r)).

Proof. First assume (i) and without loss of generality let β > 1. For z ∈ C, z/= 0, we have

∣
∣
∣
∣
z − z

|z|
∣
∣
∣
∣
= |1 − |z||. (2.17)

Hence, if |1 − |z||β < 1, the classical perturbation estimate shows that z ∈ ρ(B) and

∥
∥
∥(zI − B)−1

∥
∥
∥ ≤ β

1 − β|1 − |z|| . (2.18)

We define P as the Riesz projector defined by the formula

I − P =
1

2πi

∫

|z|=1
(zI − B)−1dz. (2.19)

Since B commutes with the resolvent, condition (i) of Definition 2.6 holds. Further, using
(2.18) and Cauchy’s theorem, we can shift the contour

I − P =
1

2πi

∫

|z|=r
(zI − B)−1dz, if |1 − r| < 1

β
. (2.20)
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Now we claim

Bk(I − P) =
1

2πi

∫

|z|=r
zk(zI − B)−1dz if |1 − r| < 1

β
. (2.21)

For k = 0 this follows from (2.20). If (2.21) holds for some k, then we obtain

Bk+1P =
1

2πi

∫

|z|=r
(B − zI + zI)zk(zI − B)−1dz

=
1

2πi

∫

|z|=r
zk+1(zI − B)−1dz − 1

2πi

∫

|z|=r
zkdz,

(2.22)

and thus the assertion holds for k + 1. Equations (2.21) and (2.18) immediately lead to the
first dichotomy estimate for 1 − 1/β < r ≤ 1

∥
∥
∥BkP

∥
∥
∥ ≤ 1

2π
2πrrk

β

1 − β(1 − r)
=

βrk+1

1 − β(1 − r)
for k ≥ 0. (2.23)

For the second dichotomy estimate, we use the resolvent equation

(zI − B)−1 =
1
z
I + z−1B(zI − B)−1. (2.24)

For |1 − r| < 1/β, (2.20) and (2.24) lead to

I − P =
1

2πi

∫

|z|=1

(
1
z
I − (zI − B)−1

)

dz

= − 1
2πi

∫

|z|=r

1
z
B(zI − B)−1dz.

(2.25)

This shows that the following equality holds for k = 1

I − P = −Bk 1
2πi

∫

|z|=r
z−k(zI − B)−1dz, for k ≥ 1. (2.26)

If (2.26) is known for some k, then use (2.24) and find

I − P = −Bk 1
2πi

∫

|z|=r

(

z−(k+1) + z−(k+1)B(zI − B)−1
)

dz

= −Bk+1 1
2πi

∫

|z|=r
z−(k+1)(zI − B)−1dz.

(2.27)
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We apply (2.26) to x ∈ E, using that I − P commutes with B as well as the estimate (2.18)

‖(I − P)x‖ =

∥
∥
∥
∥
∥

1
2πi

∫

|z|=r
z−k(zI − B)−1dzBk(I − P)x

∥
∥
∥
∥
∥

≤ r−k

2π
2πr

β

1 − β(r − 1)

∥
∥
∥Bk(I − P)x

∥
∥
∥.

(2.28)

Summarizing, we have shown for all k ≥ 1, 1 ≤ r < 1 + 1/β, u ∈ E

‖(I − P)u‖ ≤ βr−k+1

1 − β(r − 1)

∥
∥
∥Bk(I − P)u

∥
∥
∥. (2.29)

For k = 1, this estimate shows that B̂ = B|N(P) : N(P) �→ N(P) is one-to-one with a bound for
the inverse. To show that B̂ is onto, we take f ∈ N(P) and set

v = − 1
2πi

∫

|z|=1
z−1(zI − B)−1fdz. (2.30)

From this equation, we have (I − P)v = 0, and using (2.24), we find

Bv =
1

2πi

∫

|z|=1

(

z−1I − (zI − B)−1
)

fdz = (I − P)f = f. (2.31)

Therefore, B̂ is a linear homeomorphism on N(P) satisfying

∥
∥
∥B̂−k(I − P)u

∥
∥
∥ ≤ βr−k+1

1 − β(r − 1)
‖(I − P)u‖ for 1 ≤ r < 1 +

1
β
. (2.32)

This proves exponential dichotomy.
To arrive at the specific constants, we choose r = 1 − 1/2β in (2.23) and obtain the

bound (2β − 1)rk. In order to have the same rate in the opposite direction, we apply (2.32),
with r = (1−1/2β)−1 < 1+1/β. In (2.32)we then find the upper boundMr−k with the constant
M = 2β2/(β − 1). Since M > 2β − 1, our assertion follows.

Now we assume exponential dichotomy and prove condition (i). For |λ| = 1 the
equation (λI − B)u = f is equivalent to the system

(λI − BP)Pu = Pf,
(

λI − B̂
)

(I − P)u = (I − P)f,
(2.33)

which we can rewrite as

(

I − λ−1BP
)

Pu = λ−1Pf,
(

I − λB̂−1
)

(I − P)u = −B̂−1(I − P)f.
(2.34)
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Both equations have a unique solution given by a geometric series

Pu =
∞∑

k=0

λ−(k+1)BkPf,

(I − P)u = −
∞∑

k=0

B̂−(k+1)λk(I − P)f.
(2.35)

The exponential dichotomy then implies the estimates

‖Pu‖ ≤ M

1 − r

∥
∥f

∥
∥,

‖(I − P)u‖ ≤ M
r

1 − r

∥
∥f

∥
∥.

(2.36)

By the triangle inequality, we obtain condition (i)with β = M((1 + r)/(1 − r)).

3. Discretization of Operators and Semigroups

In the papers [12–15], a general framework was developed that allows to analyze conver-
gence properties of numerical discretizations in a unifying way. This approach is able to cover
such seemingly different methods as (conforming and nonconforming) finite elements, finite
differences, or collocation methods. It is the purpose of this paper to show that it is also
possible to handle dichotomy properties with discretization in space and time on general
approximation scheme. Moreover, we also consider the case when resolvent of operator A is
not necessarily compact.

3.1. General Approximation Scheme

Let En and E be Banach spaces and {pn} a sequence of linear bounded operators pn : E →
En, pn ∈ B(E, En), n ∈ N = {1, 2, . . .}, with the property:

∥
∥pnx

∥
∥
En

−→ ‖x‖E as n → ∞ for any x ∈ E. (3.1)

Definition 3.1. The sequence of elements {xn}, xn ∈ En, n ∈ N, is said to be P-convergent to

x ∈ E if and only if ‖xn − pnx‖En → 0 as n → ∞, and we write this xn
P−−−→ x.

Definition 3.2. The sequence of bounded linear operators Bn ∈ B(En), n ∈ N, is said to be PP-
convergent to the bounded linear operator B ∈ B(E) if for every x ∈ E and for every sequence

{xn}, xn ∈ En, n ∈ N, such that xn
P−−−→ x one has Bnxn

P−−−→ Bx. We write then Bn
PP−−−−→ B.

In the case of unbounded operators as it occurs for general infinitesimal generators of
PDE’s, the notion of compatibility turns out to be useful.

Definition 3.3. The sequence of closed linear operators {An}, An ∈ C(En), n ∈ N, is called
compatible with a closed linear operator A ∈ C(E) if and only if for each x ∈ D(A) there is
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a sequence {xn}, xn ∈ D(An) ⊆ En, n ∈ N, such that xn
P−−−→ x andAnxn

P−−−→ Ax. We write that
(An,A) are compatible.

For analytic C0-semigroups, the following ABC Theorem holds.

Theorem 3.4 (see [16]). Let operators A and An generate analytic C0-semigroups. The following
conditions (A) and (B1) are equivalent to condition (C1).

(A) Compatibility. There exists λ ∈ ρ(A) ∩ ∩n ρ(An) such that the resolvents converge

(λI −An)
−1 PP−−−−→ (λI −A)−1.

(B1) Stability. There are some constants M1 ≥ 1 and ω1 ∈ R such that

∥
∥
∥(λIn −An)

−1
∥
∥
∥ ≤ M1

|λ −ω1| , Reλ > ω1, n ∈ N. (3.2)

(C1) Convergence. For any finite μ > 0 and some 0 < θ < π/2, one has

max
η∈Σ(θ,μ)

∥
∥
∥eηAnu0

n − pne
ηAu0

∥
∥
∥ −→ 0 as n −→ ∞ whenever u0

n
P−−−→ u0. (3.3)

Here one used the sector of angle 2θ and radius ρ given by Σ(θ, μ) = {z ∈ Σ(θ) : |z| ≤ μ}, and
Σ(θ) = {z ∈ C : | arg z| ≤ θ}.

It is natural to assume in semidiscretization that conditions like (A) and (B1) are
satisfied.

Definition 3.5. The region of stability Δs = Δs({An}), An ∈ C(Bn), is defined as the set of all
λ ∈ C such that λ ∈ ρ(An) for almost all n and such that the sequence {‖(λIn −An)

−1‖}n∈N
is

bounded. The region of convergence Δc = Δc({An}), An ∈ C(En), is defined as the set of all
λ ∈ C such that λ ∈ Δs({An}) and such that the sequence of operators {(λIn − An)

−1}n∈N
is

PP-convergent to some operator S(λ) ∈ B(E).

Definition 3.6. A sequence of operators {Bn}, Bn ∈ B(En), n ∈ N, is said to be stably

convergent to an operator B ∈ B(E) if and only if Bn
PP−−−−→ B and ‖B−1

n ‖B(En) = O(1), n → ∞.

We will write this as: Bn
PP−−−−→ B stably.

Definition 3.7. A sequence of operators {Bn}, Bn ∈ B(En), is called regularly convergent to the

operator B ∈ B(E) if and only if Bn
PP−−−−→ B and the following implication holds

‖xn‖En
= O(1), {Bnxn} is P-compact =⇒ {xn} is P-compact. (3.4)

We write this as: Bn
PP−−−−→ B regularly.

Theorem 3.8 (see [15]). Let Cn,Qn ∈ B(En), C,Q ∈ B(E) and R(Q) = E. Assume also that

Cn
PP−−−−→ C compactly and Qn

PP−−−−→ Q stably. Then, Qn + Cn
PP−−−−→ Q + C converge regularly.
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Theorem 3.9 (see [15]). For Qn ∈ B(En) and Q ∈ B(E), the following conditions are equivalent:

(i) Qn
PP−−−−→ Q regularly, Qn are Fredholm operators of index 0 and N(Q) = {0};

(ii) Qn
PP−−−−→ Q stably and R(Q) = E;

(iii) Qn
PP−−−−→ Q stably and regularly;

(iv) if one of conditions (i)–(iii) holds, then there existQ−1
n ∈ B(En),Q−1 ∈ B(E), andQ−1

n
PP−−−−→

Q−1 regularly and stably.

Theorem 3.10. Let operators λIn−Bn ∈ B(En) be Fredholm operators with ind (λIn−Bn) = 0 for any

λ ∈ T, n ∈ N. Assume also that B ∈ B(E) has the property T ∩ σ(B) = ∅ and λIn −Bn
PP−−−−→ λI −B

regularly for any λ ∈ T. Then λIn−Bn
PP−−−−→ λI −B stably for any λ ∈ T and supλ∈T

‖(λIn−Bn)
−1‖ <

∞.

Proof. Assume that there are some sequences {λn}, λn ∈ T, and {xn}, xn ∈ En, such that ‖xn‖ =

1 and (λnIn − Bn)xn
P−−−→ 0 as n → ∞. Since T is compact, one can find N

′ ⊂ N such that

λn → λ0 ∈ T as n ∈ N
′. In the meantime, λ0In −Bn

PP−−−−→ λ0I −B regularly for such λ0 ∈ T, and

(λ0In−Bn)xn = (λ0In−λnIn)xn+(λnIn−Bn)xn
P−−−→ 0 for n ∈ N

′. Therefore, there is N
′′ ⊂ N

′ such

that xn
P−−−→ x0 /= 0 as n ∈ N

′′. But in such case (λ0In − Bn)xn
PP−−−−→ (λ0I − B)x0 = 0 as n ∈ N

′′,
which contradicts our assumption T ∩ σ(B) = ∅.

Definition 3.11. The operator Bn ∈ B(En) has a uniform exponential discrete dichotomy with
data (M, r, Pn) if Pn ∈ B(En) is a projector in En and M, r are constants with 0 ≤ r < 1 such
that the following properties hold

(i) Bk
nPn = PnB

k
n and ‖Pn‖ ≤ constant for all k, n ∈ N;

(ii) ‖Bk
n(In − Pn)‖ ≤ Mrk for all k, n ∈ N;

(iii) B̂n := Bn|R(Pn) : R(Pn) �→ R(Pn) is a homeomorphism that satisfies

∥
∥
∥
∥
B̂n

−k
Pn

∥
∥
∥
∥
≤ Mrk, k, n ∈ N. (3.5)

Theorem 3.12. The following conditions are equivalent:

(i) λIn − Bn
PP−−−−→ λI − B stably and λ ∈ ρ(B) for any λ ∈ T;

(ii) operatorD = I −B is invertible andDn
PP−−−−→ D stably, where (Bu)(k) = Bu(k−1), k ∈ N;

(iii) Bn
PP−−−−→ B and λI −B be invertible for any λ ∈ T and the operators Bn have an exponential

discrete dichotomy with data (M, r, Pn) uniformly in n ∈ N.

Proof. The equivalence (i)⇔(iii) follows from Theorem 2.7. Indeed, by formula (2.19), one

gets from (i) that Pn
PP−−−−→ P and ‖Pn‖ ≤ constant. By Theorem 3.10, one has supλ∈T

‖(λIn −
Bn)

−1‖ < ∞, and by Theorem 2.7 (ii) we have (iii). Conversely, from condition (iii), it follows

by Theorem 2.7 (i) that λIn − Bn
PP−−−−→ λI − B stably for all λ ∈ T.
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To prove (ii)⇒(i), we note that (ii) means that for any u(·) ∈ lp(Z;E) one has

Σ∞
k=−∞‖pnu(k) − Bnpnu(k − 1) − pnu(k) + pnBu(k − 1)‖pEn

→ 0 as n → ∞, that is, Bn
PP−−−−→ B.

Assume now that In − Bn is not uniformly invertible in l∞(Z;En), that is, for some sequence

‖xn‖ = 1, one has (λ0In − Bn)xn
P−−−→ 0 as n → ∞ for some λ0 = 1 ∈ T. This means that for

stationary sequence un(k) = xn, k ∈ Z, n ∈ T, one has (Dnun)(k) = un(k) − Bnun(k − 1) =

xn − Bnxn
P−−−→ 0 for any k ∈ N and n → ∞. But, Dn

PP−−−−→ D stably, that is, ‖Dnun‖l∞(Z;En) ≥
γ‖un‖l∞(Z;En) which contradicts (λ0In − Bn)xn

P−−−→ 0 as n → ∞. Now we show that
R(λ0In − Bn) = En. For any yn ∈ En, ‖yn‖ = 1, consider vn(k) = yn, k ∈ Z, n ∈ N. The solution
ofDnun = vn is a sequence un(k), which is stationary too, that is, (λ0In−Bn)xn = yn, where xn =
un(k), k ∈ Z, n ∈ N. To show (i)⇒(ii), we note that ‖Dn‖B(lp(Z;En)) ≤ constant, n ∈ N. Now for
any u(·) ∈ lp(Z;E) and for any ε > 0, one can findK ∈ N such that (Σ∞

k=K +Σ−∞
k=−K)‖u(k)‖p ≤ ε.

In the meantime, ΣK
k=−K‖pnu(k) − Bnpnu(k − 1) − pnu(k) + pnBu(k − 1)‖pEn

→ 0 as n → ∞,

since Bn
PP−−−−→ B. So we haveDn

PP−−−−→ D. The convergenceD−1
n

PP−−−−→ D−1 follows from formula
(2.15). The theorem is proved.

3.2. Dichotomy for Compact Resolvents in Semidiscretization

In the case of operators which have compact resolvent, it is natural to consider approximate
operators that “preserve” the property of compactness.

Definition 3.13. A sequence of operators {Bn}, Bn : En → En, n ∈ N, converges compactly to

an operator B : E → E if Bn
PP−−−−→ B and the following compactness condition holds

‖xn‖En
= O(1) =⇒ {Bnxn} is P-compact. (3.6)

Definition 3.14. The region of compact convergence of resolvents, Δcc = Δcc(An,A), where

An ∈ C(En) andA ∈ C(E) is defined as the set of all λ ∈ Δc ∩ ρ(A) such that (λIn −An)
−1 PP−−−−→

(λI −A)−1 compactly.

Proposition 3.15. Assume that operators B, Bn are compact, T ⊂ ρ(B) and Δcc(Bn, B)/= ∅. Then,
λIn − Bn

PP−−−−→ λI − B stably for any λ ∈ T and supλ∈T
‖(λIn − Bn)

−1‖ < ∞.

Proof. The proof follows from Theorems 3.8, 3.9, and 3.10.
Here we continue considering an example of discretization of problem (1.2). To this

end we will also use the operators pαn = (−An)
−αpn(−A)α ∈ B(Eα, Eα

n) which satisfy property
(3.1), but for the spaces Eα, Eα

n. The operators An and A are supposed to be related by
condition (1.1), and conditions (A) and (B1) of Theorem 3.4 are assumed to hold. So we

say that xn
Pα

−−−→ x if and only if ‖xn − pαnx‖Eα
n

→ 0 as n → ∞. One can see that
‖xn − pαnx‖Eα

n
= ‖(−An)

αxn − pn(−A)αx‖ and ‖pαnx‖Eα
n
= ‖pn(−A)αx‖En → ‖(−A)αx‖E = ‖x‖Eα

for any x ∈ D((−A)α) and n → ∞.
Consider in Banach spaces Eα

n the family of parabolic problems

u′
n(t) = Anun(t) + fn(un(t)), t ≥ 0,

un(0) = u0
n ∈ Eα

n,
(3.7)



Advances in Numerical Analysis 13

where u0
n

Pα

−−−→ u0, operators (An,A) are compatible, fn(·) : Eα
n → En are globally bounded

and globally Lipschitz continuous both uniformly in n ∈ N, and continuously Fréchet
differentiable.

Under the above assumptions, the mild solution un(·) of (3.7) is defined for all t ≥ 0
(see [1, 17]), and we define it by un(·) = Tn(·)u0

n : R
+ → En. The nonlinear semigroup Tn(·)

satisfies the variation of constants formula

Tn(t)u0
n = etAnu0

n +
∫ t

0
e(t−s)Anfn

(

Tn(s)u0
n

)

ds, t ≥ 0. (3.8)

Recall that a hyperbolic equilibrium point u∗ is a solution of equation Au + f(u) = 0,
or equivalently u∗ = −A−1f(u∗). Since the operator A has a compact resolvent, the operator

A−1f(·) is compact. In case of Δcc /= ∅, the operators A−1
n fn(·) PP−−−−→ A−1f(·) compactly. From

[15], it follows that equations un = −A−1
n fn(un) have solutions {u∗

n}, Anu
∗
n + fn(u∗

n) = 0, such

that u∗
n

P−−−→ u∗.
Now, consider the problems (3.7) near hyperbolic equilibrium points u∗

n. In this case
one gets

v′
n(t) = Au∗

n,nvn(t) + Fu∗
n,n(vn(t)), vn(0) = v0

n, t ≥ 0, (3.9)

where Au∗
n,n = An + f ′

n(u
∗
n), Fu∗

n,n(vn(t)) = fn(vn(t) + u∗
n) − fn(u∗

n) − f ′
n(u

∗
n)vn(t). From now on,

we consider hyperbolic point u∗ and hyperbolic points u∗
n

Pα

−−−→ u∗.
We decompose Eα

n using the projection

Pn(σ+
n ) := Pn

(

σ+
n ,Au∗

n,n

)

:=
1

2πi

∫

∂U(σ+
n )

(

ζIn −Au∗
n,n

)−1
dζ (3.10)

defined by the set σ+
n , which is enclosed in a contour consisting of a part of iR and the contour

from condition (B1) for operators Au∗
n,n.

There are some positive M2, γ > 0, because of analyticity of C0-semigroup etAu∗n,n and
condition Δcc /= ∅, which is applied to operator Au∗

n,n, such that [7, 18]

∥
∥
∥etAu∗n,nzn

∥
∥
∥
Eα
n

≤ M2e
−γt‖zn‖Eα

n
, t ≥ 0,

∥
∥
∥etAu∗n,nvn

∥
∥
∥
Eα
n

≤ M2e
γt‖vn‖Eα

n
, t ≤ 0,

(3.11)

for all vn ∈ Pn(σ+
n )E

α
n and zn ∈ (In − Pn(σ+

n ))E
α
n. One has to note that the neighborhood

of any part of iR does not intersect σ(Au∗
n,n). Moreover, the condition Δcc /= ∅ implies that

Pn(σ+
n )

PP−−−−→ P(σ+) compactly, and therefore, as was shown in [14], dimPn(σ+
n ) = dimP(σ+)

for n ≥ n0. One can consider for the T = T(v0
n) = sup{t ≥ 0 : vn(t, v0

n) ∈ UEα
n
(0; ρ)} with

v0
n ∈ UEα

n
(0; ρ) the problem

v′
n(t) = Au∗

n,nvn(t) + Fu∗
n,n(vn(t)), 0 ≤ t ≤ T,

(In − Pn(σ+
n ))vn(0) = (In − Pn(σ+

n ))v
0
n, Pn(σ+

n )vn(T) = Pn(σ+
n )v

T
n .

(3.12)
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The mild solution of problem (3.12) is given by the formula (for 0 ≤ t ≤ T)

vn(t) = e(t−T)Au∗n,nPn(σ+
n )v

T
n + etAu∗n,n(In − Pn(σ+

n ))v
0
n

+
∫ t

0
e(t−s)Au∗n,n(In − Pn(σ+

n ))Fu∗
n,n(vn(s))ds +

∫T

t

e(t−s)Au∗n,nPn(σ+
n )Fu∗

n,n(vn(s))ds.

(3.13)

Now we are in a position to state our main result on uniform in index n estimates for the
terms of discrete solutions (3.13).

Theorem 3.16. Let operators An,A be generators of analytic C0-semigroups and let condition (B1)
be satisfied. Assume also that the semigroup etAu∗ is hyperbolic, σ(Au∗) ∩ {λ : Reλ ≥ 0} =
Pσ(Au∗), dimP(σ+) < ∞, and for ρ > 0 such that {λ : −ρ ≤ Reλ ≤ ρ} ⊂ ρ(Au∗), operators
λIn−Au∗

n,n are Fredholm operators of ind 0, and operators λIn−Au∗
n,n, λI−Au∗ are regularly consistent

for any Reλ ≥ −ρ. Then, Pn(σ+
n )

PP−−−−→ P(σ+) compactly and

∥
∥
∥etAu∗n,n(In − Pn(σ+

n ))
∥
∥
∥
En

≤ M2e
−γt, t ≥ 0,

∥
∥
∥etAu∗n,nPn(σ+

n )
∥
∥
∥
En

≤ M2e
γt, t ≤ 0,

(3.14)

where γ > 0.

Proof. The condition (B1) implies that (λIn − Au∗
n,n)

−1 PP−−−−→ (λI − Au∗)−1 as −ρ ≤ Reλ ≤ ρ for

|λ| big enough. For the other −ρ ≤ Reλ ≤ ρ, the convergence (λIn −Au∗
n,n)

−1 PP−−−−→ (λI −Au∗)−1

follows from analogy of Theorem 3.9 for closed operators. Now the compact convergence

Pn(σ+
n )

PP−−−−→ P(σ+) can be obtained in the same way as in [3] and the estimates (3.14) follow
say as in [7, 18]. The theorem is proved.

Remark 3.17. Of course, Theorem 3.16 holds for the case of any operator A which generates
analytic hyperbolicC0-semigroupwith condition σ(A)∩{λ : Reλ ≥ 0} = Pσ(A), dimP(σ+) <
∞ and corresponding conditions on approximation of operators. The structure of operator
like A + f ′(u∗) is not necessary.

Theorem 3.18. Let the operatorsAn,A be generators of analytic C0-semigroups and let the condition
(B1) be satisfied. Assume also that the C0-semigroup etAu∗ is hyperbolic, σ(Au∗) ∩ {λ : Reλ ≥ 0} =
Pσ(Au∗), dimP(σ+) < ∞. Assume also that Δcc(An,A)/= ∅ and resolvents of An,A are compact
operators. Then, (3.14) holds.

Proof. We set Bn = e1Au∗n,n and B = e1Au∗ and apply Proposition 3.15. It is known [3] thatΔcc /= ∅
is equivalent to compact convergence Bn

PP−−−−→ B. Then, the condition (i) of Theorem 3.12 is
satisfied and one gets discrete dichotomy for Bn. From the other side, since we have exactly
the form Bn = e1Au∗n,n , this means by Theorem 2.7 and Proposition 2.4 that operators Ln =
−d/dt + Au∗

n,n are invertible, and thus by Theorem 2.3 the estimates (3.14) are followed. The
theorem is proved.
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3.3. Dichotomy for Condensing Operators in Semidiscretization

Let Λ ⊆ C be some open connected set, and let B ∈ B(E). For an isolated point λ ∈ σ(B),
the corresponding maximal invariant space (or generalized eigenspace) will be denoted by
W(λ;B) = Q(λ)E, where Q(λ) = (1/2πi)

∫

|ζ−λ|=δ(ζI − B)−1dζ and δ is small enough so that
there are no points of σ(B) in the disc {ζ : |ζ − λ| ≤ δ} different from λ. The isolated point
λ ∈ σ(B) is a Riesz point of B if λI −B is a Fredholm operator of index zero andQ(λ) is of finite
rank. Denote

W(λ, δ;Bn) =
⋃

λn∈σ(Bn),
|λn−λ|<δ

W(λn, Bn). (3.15)

It is clear that W(λ, δ;Bn) = Qn(λ)En, where

Qn(λ) =
1

2πi

∫

|ζ−λ|=δ
(ζIn − Bn)

−1dζ. (3.16)

Definition 3.19. The function μ(·) is said to be the measure of noncompactness if for any
bounded sequence {xn}, xn ∈ En, one has

μ({xn}) = inf
{

ε > 0 : ∀N
′ ⊆ N, ∃N

′′ ⊆ N
′, x′ ∈ E such that

∥
∥xn − pnx

′∥∥ ≤ ε, n ∈ N
′′}.

(3.17)

Definition 3.20. We say that the operators Bn ∈ B(En) are jointly condensing with constant
q > 0 with respect to measure μ(·) if for any bounded sequence {xn}, xn ∈ En, one has

μ({Bnxn}) ≤ qμ({xn}). (3.18)

It is known [19, page 82], that outside a closed disc of radius q centered at zero each
operator Bn has only isolated points of spectrum, each of which can only be an eigenvalue of
finite multiplicity.

Proposition 3.21. Let Bn
PP−−−−→ B for Bn ∈ B(En), B ∈ B(E) and μ({Bnxn}) ≤ qμ({xn}), for any

bounded sequence {xn}, xn ∈ En. Assume that σ(B) ∩Ψ = ∅, where bounded closed set Ψ ⊂ C \ {λ :
|λ| ≤ q} and σ(B) \ {λ : |λ| ≤ q} consists only of discrete spectrum. Then, there is a constant C > 0
such that ‖(λIn − Bn)

−1‖ ≤ C, λ ∈ Ψ, n ∈ N.

Proof. Any point λ ∈ Ψ belongs to Pσ(Bn) ∪ ρ(Bn). This means that one gets for a sequence
‖xn‖ = 1, xn ∈ En, two cases: (λIn − Bn)xn = 0 or ‖(λIn − Bn)xn‖ ≥ γλ,n‖xn‖ with some
γλ,n > 0, λ ∈ Ψ. We are going to show that in reality we have ‖(λIn − Bn)xn‖ ≥ γΨ‖xn‖, λ ∈ Ψ.

Assume in contradiction that there are sequences {λn}, λn ∈ Ψ, {xn}, ‖xn‖ = 1, such
that

(λnIn − Bn)xn
P−−−→ 0 as n ∈ N. (3.19)
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Then, λn → λ0 ∈ Ψ, n ∈ N
′ ⊆ N. One has for r̃ = inf{|ξ| : ξ ∈ Ψ}

μ({xn}) ≤ |λn|
r̃

μ({xn}) ≤
μ({Bnxn})

r̃
≤ q

r̃
μ({xn}), (3.20)

which means because of q/r̃ < 1, that μ({xn}) = 0, that is, {xn} is P-compact. Now xn
P−−−→

x0, n ∈ N
′′ ⊆ N

′ and Bnxn
P−−−→ Bx0, λnxn

P−−−→ λ0x0, n ∈ N
′′, that is, λ0x0 = Bx0 with ‖x0‖ = 1,

which contradicts our assumption σ(B) ∩Ψ = ∅. The proposition is proved.

Proposition 3.22. Let Bn
PP−−−−→ B and μ({Bnxn}) ≤ qμ({xn}) for any bounded sequence {xn}, xn ∈

En. Assume that any λ0 ∈ σ(B), |λ0| > q, is an isolated eigenvalue with the finite dimensional
projector Q(λ0). Then, there are sequence {λn}, λn ∈ σ(Bn), and sequence of projectors Qn(λ0) ∈
B(En) such that λn → λ0 and Qn(λ0)

PP−−−−→ Q(λ0) converge compactly.

Proof. Note first that for Γr = {λ : |λ − λ0| = r} ⊂ C \ {λ : |λ| ≤ q}, where r can be taken small
enough, we have by Proposition 3.21

(λIn − Bn)
−1 PP−−−−→ (λI − B)−1 as λ ∈ Γr , n ∈ N. (3.21)

Therefore,Qn(λ0)
PP−−−−→ Q(λ0). To show compact convergence of these projectors one can note

that

μ({(λ0In − Bn)xn}) ≥ |λ0|μ({xn}) − μ({Bnxn}) ≥ |λ0|μ({xn}) − qμ({xn}) ≥ γμ({xn}),
(3.22)

where γ = |λ0| − q > 0. This means that

μ
({

(λ0In − Bn)
kxn

})

≥ γkμ({xn}) for any k ∈ N. (3.23)

By functional calculus

(λ0In − Bn)
kQn(λ0)xn =

1
2πi

∫

Γr
(λ0 − λ)k(λIn − Bn)

−1xndλ. (3.24)

From this representation using (3.23), one has

γkμ({Qn(λ0)xn}) ≤
∥
∥
∥(λ0In − Bn)

kQn(λ0)xn

∥
∥
∥ ≤ C

2π
rk ‖xn‖. (3.25)

It is clear that from r/γ < 1 it follows that (r/γ)k → 0 as k → ∞. Thismeans thatQn(λ0)
PP−−−−→

Q(λ0) compactly. The proposition is proved.

Theorem 3.23. Let the conditions (A) and (B1) be satisfied, and let the analyticC0-semigroup etA, t ∈
R+, be hyperbolic such that the set σ(A) ∩ {λ : Reλ ≥ 0} consists of a finite number of points
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Pσ(A) and dimP(σ+) < ∞. Assume also that μ({Bnxn}) ≤ qμ({xn}), for any bounded sequence
{xn}, xn ∈ En, with q < 1, where Bn = e1An . Then, conclusions of Theorem 3.16, that is, (3.14), are

hold and Pn(σn+)
PP−−−−→ P(σ+) converge compactly.

Proof. Because of the spectral mapping theorem, the spectrum of operator B = e1A which is
located outside of unit disc T consists of finite number of points of the set Pσ(e1A) = {ζ :
ζ = eλ, λ ∈ Pσ(A) ∩ {ξ : Re ξ ≥ 0}}. Moreover, since q < 1, for any Ψ which contains T and
Ψ ⊂ ρ(B), B = e1A, one has ‖(λIn − Bn)

−1‖ ≤ constant as λ ∈ Ψ by Proposition 3.22. Now from
Theorem 3.12 it follows that Bn have discrete dichotomy. By Theorem 2.5, the operator Dn is
invertible, and by Proposition 2.4 and by Theorem 2.3 we get that the semigroups etAn , t ∈ R+,
have an exponential dichotomy uniformly in index n ∈ N and (2.7), that is, (3.14) holds. By

Theorem 3.9 Qn(λ0)
PP−−−−→ Q(λ0) compactly, which implies that conditions of Theorem 3.16

are satisfied. The theorem is proved.

3.4. Discretisation in Time Variable and Δcc /= ∅
Consider now the discretization of the problem (3.9) in time by the following scheme:

Vn(t + τn) − Vn(t)
τn

= Au∗
n,nVn(t + τn) + Fu∗

n,n(Vn(t)), t = kτn, (3.26)

with initial data Vn(0) = v0
n. The solution of such problem is given by formula

Vn(t + τn) =
(

In − τnAu∗
n,n

)−1
Vn(t) + τn

(

In − τnAu∗
n,n

)−1
Fu∗

n,n(Vn(t))

=
(

In − τnAu∗
n,n

)−k
Vn(0) + τn

k∑

j=0

(

In − τnAu∗
n,n

)−(k−j+1)
Fu∗

n,n

(

Vn

(

jτn
))

, t = kτn,

(3.27)

where Vn(0) = v0
n.

The problem (3.12) also can be discretized following (3.26) approach, so we have

Vn(t + τn) − Vn(t)
τn

= Au∗
n,nVn(t + τn) + Fu∗

n,n(Vn(t)), t = kτn, (3.28)

(In − Pn)Vn(0) = (In − Pn)v0
n, PnVn(T) = Pnv

T
n . (3.29)

The solution of problem (3.28) could be obtained by using the formulas

(In − Pn)Vn(t + τn)=
(

In − τnAu∗
n,n

)−1(In − Pn)Vn(t)+τn
(

In − τnAu∗
n,n

)−1(In − Pn)Fu∗
n,n

(

Vn

(

jτn
))

,
(

In − τnAu∗
n,n

)

PnVn(t + τn) = PnVn(t) + τnPnFu∗
n,n(Vn(kτn)), t = kτn.

(3.30)
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So one has a representation of solution of problem (3.28) as

Vn

(

t;v0
n, v

T
n

)

= (In − Pn)Vn(t) + PnVn(t)

=
(

In − τnAu∗
n,n

)−k+1(In − Pn)v0
n

+ τn
k−1∑

j=0

(

In − τnAu∗
n,n

)−(k−j)(In − Pn)Fu∗
n,n

(

Vn

(

jτn
))

+
(

In − τnAu∗
n,n

)K−k
Pnv

T
n − τn

K−1∑

j=k

(

In−τnAu∗
n,n

)K−1−j
PnFu∗

n,n

(

Vn

(

jτn
))

, t=kτn.

(3.31)

From (3.31), it is clear that corresponding estimates on powers of operators (In −
τnAu∗

n,n)
−k+1(In − Pn), (In − τnAu∗

n,n)
K−kPn play the main role in approximation of solutions

of (1.4) in the vicinity of u∗.

Theorem 3.24. Let operators An,A be generators of analytic C0-semigroups and let condition (B1)
be satisfied. Assume also that the analytic C0-semigroup etAu∗ , t ∈ R+, is hyperbolic and for ρ > 0
such that {λ : −ρ ≤ Reλ ≤ ρ} ⊂ ρ(A), operators λIn − Au∗

n,n are Fredholm operators of ind 0, and

operators λIn−Au∗
n,n, λI−Au∗ are regularly consistent for any Reλ ≥ −ρ. Then, Pn(σ+)

PP−−−−→ P(σ+)
compactly and

∥
∥
∥

(

In − τnAu∗
n,n

)−knPn

∥
∥
∥
En

≤ M2e
−γt, t ≥ 0,

∥
∥
∥

(

In − τnAu∗
n,n

)kn(In − Pn)
∥
∥
∥
En

≤ M2e
γt, t ≤ 0,

(3.32)

for some γ > 0.

Proof. From Theorem 3.16 it follows that the analytic C0-semigroups etAu∗n,n have dichotomy
uniformly in n ∈ N. Now one can see as in [20] that ‖(In − τnAu∗

n,n)
−kn − etAu∗n,n‖ ≤ Mτne

ωt/t,
where t = knτn = 1. Using perturbation dichotomy theorem from [1, p. 254], one gets that
(3.32) holds. The Theorem is proved.

Theorem 3.25. Let Δcc(An,A)/= ∅ and resolvents of An,A be compact operators. Assume also that
the analytic C0-semigroup etAu∗ , t ∈ R+, is hyperbolic and condition (B1) is satisfied. Then,

∥
∥
∥

(

In − τnAu∗
n,n

)−knPn

∥
∥
∥
En

≤ M2r
[t], t = knτn ≥ 0,

∥
∥
∥

(

In − τnAu∗
n,n

)kn(In − Pn)
∥
∥
∥
En

≤ M2r
−[t], −t = −knτn ≤ 0,

(3.33)

where r < 1.

Proof. Compact convergence of resolvents (λIn −An)
−1 PP−−−−→ (λI −A)−1 implies [18] that

(

λIn −Au∗
n,n

)−1 PP−−−−→ (λI −Au∗)−1 compactly. (3.34)
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We set Bn = (In − τnAu∗
n,n)

−kn , τnkn = 1, and B = e1Au∗ . Then, Bn
PP−−−−→ B, since the oper-

ators Au∗
n,n, Au∗ are consistent. Note that by condition (B1) one has [21, 22] ‖τnknAu∗

n,n(In −
τnAu∗

n,n)
−kn‖B(En) ≤ constant, which implies Bn = A−1

u∗
n,n
τnknAu∗

n,n(In − τnAu∗
n,n)

−kn PP−−−−→ B

compactly, since A−1
u∗
n,n

PP−−−−→ A−1
u∗ compactly. Now by applying Proposition 3.15 one gets

discrete dichotomy for Bn by Theorem 3.12. The theorem is proved.

3.5. Discretisation in Time Variable and Condensing Property

Theorem 3.26. Let condition (A) and condition (B1) be satisfied. Assume that μ({Bnxn}) ≤
q μ({xn}), for any bounded sequence {xn}, xn ∈ En, with q < 1 and Bn = eAu∗n,n . Assume also
that the analytic C0-semigroup etAu∗ , t ∈ R+, is hyperbolic.Then,

∥
∥
∥

(

In − τnAu∗
n,n

)−knPn

∥
∥
∥
En

≤ M2r
[t], t = knτn ≥ 0,

∥
∥
∥

(

In − τnAu∗
n,n

)kn(In − Pn)
∥
∥
∥
En

≤ M2r
−[t], −t = −knτn ≤ 0,

(3.35)

where r < 1.

Proof. By Theorem 3.23 it follows that (3.11) holds. By perturbation theorem from [1], one
gets (3.35) which follows in the same way as in the proof of Theorem 3.24. The theorem is
proved.

4. Example

The condition μ(Bnxn) ≤ qμ(xn) with q < 1 in Theorems 3.23 and 3.26 can be checked for

instance in case of compact convergence of operators A−1
n f ′

n(u
∗
n)

PP−−−−→ A−1f ′(u∗). We present
here an example where the analogy of such condition is naturally satisfied.

Example 4.1. Consider in L2(R) an operator

(Av)(x) = v′′(x) + av′(x) + bv(x), x ∈ (−∞,∞). (4.1)

Since we took E = L2(R), we can take (pnv)(x) = (1/h)
∫h/2
−h/2 v(x + y)dy, and the main

condition ‖pnv‖L2
h
(Z) → ‖v‖L2(R) is satisfied [15].

As in Section 5.4 of [1], one can see that σess(−A) ⊂ {λ : Reλ − ((Imλ)2/a2 ≥ −b}.
For the case of a = 0, we have σ(A) ∈ (−∞, b). So for b < 0 the operator A is a negative
self-adjoint operator. Then, we have the same for some difference scheme, say for central
difference scheme,

Anvn(x) =
vn(x + h) − 2vn(x) + vn(x − h)

h2
+ bvn(x), (4.2)
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that is, ωess(An) ≤ ω1 < 0 uniformly in h > 0. Moreover, it is easy to see that

∥
∥
∥etAn

∥
∥
∥ ≤ Meω2t, t ≥ 0, with ω2 < 0, (4.3)

that is,

μ
({

etAnxn

})

≤ γμ({xn}) with γ < 1 for some t = t0 > 0. (4.4)

Now to get to the range of Theorem 3.23, let us denote B = et0A, Bn = et0An . For analytic C0-
semigroups, the spectrums of operators A and B are strictly related, which is also concerned
to point spectrum Pσ(B) = et0Pσ(A). This means that operators An have for almost all n the
spectrums σ(An) ∩ {λ : Reλ > 0} which approximate the spectrum σ(A) ∩ {λ : Reλ > 0}.

Let us now consider in L2(R) the case of perturbed operator with smooth function b(x)

Ãv(x) = v′′(x) + b(x)v(x) (4.5)

and its approximation, say like

(

Ãnvn

)

(x) =
vn(x + h) − 2vn(x) + vn(x − h)

h2
+ b(x)vn(x), (4.6)

with condition b(x) → b as x → ±∞ for simplicity. The operator ((Ã − A)v)(x) = (b(x) −
b)v(x) is an additive perturbation. We assume that C0-semigroup etÃ, t ∈ R+, is hyperbolic.
The perturbation Ã − A is a relatively compact perturbation like in [23]. The same must
happen to An because of Ãn = An + (Ãn −An) and

et0Ãn = et0An +
∫ t0

0
Aα

ne
(t0−s)AnA−α

n

(

Ãn −An

)

esÃnds. (4.7)

The crucial point is that such perturbation gives us from (4.4) the estimate

μ
({

etÃnxn

})

≤ γμ({xn}) with γ < 1 for some t = t0 > 0, (4.8)

since the integral part in (4.7) could be estimated by any small ε > 0 as μ(
∫ t0−ε
0 +

∫ t0
t0−ε) ≤ cε1−α.

Then any point of spectrum of Ãwhich is located to the right of b belongs to Pσ(Ã) and
it is of finite dimensional generalized eigenspace. The same is true for Ãn with Bn = etÃn , since
we have (4.8). Using property (4.8), we get from Theorems 3.8 and 3.9 the regular consistence
of operators λIn − Ãn, λI − Ã for any λ ∈ iR and any Reλ > b.

If as before P is a dichotomy projector, then one has dimP < ∞ and PÃ = ÃP . We can
also state that Pn → P compactly by Proposition 3.22. This means that say from dichotomy
of Ã we get dichotomy for Ãn uniformly in n by Theorem 3.16.

The similar situation for concrete differential operator was considered in [24].
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