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Mohammedia, Morocco

2 Department of Mathematics and Computing Sciences, Faculty of Sciences and Technology,
University Hassan 1st, B.P. 577, Settat, Morocco

Correspondence should be addressed to Anas Rachid, rachid.anas@gmail.com

Received 17 December 2011; Accepted 17 February 2012

Academic Editor: Weimin Han

Copyright q 2012 Anas Rachid et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We propose two algorithms of two-level methods for resolving the nonlinearity in the stabilized
finite volume approximation of the Navier-Stokes equations describing the equilibrium flow of a
viscous, incompressible fluid. A macroelement condition is introduced for constructing the local
stabilized finite volume element formulation. Moreover the two-level methods consist of solving
a small nonlinear system on the coarse mesh and then solving a linear system on the fine mesh.
The error analysis shows that the two-level stabilized finite volume element method provides an
approximate solution with the convergence rate of the same order as the usual stabilized finite
volume element solution solving the Navier-Stokes equations on a fine mesh for a related choice
of mesh widths.

1. Introduction

We consider a two-level method for the resolution of the nonlinear system arising from finite
volume discretizations of the equilibrium, incompressible Navier-Stokes equations:

−νΔu + (u · ∇)u +∇p = f in Ω, (1.1)

∇ · u = 0 in Ω, (1.2)

u = 0 in ∂Ω, (1.3)

where u = (u1(x), u2(x)) is the velocity vector, p = p(x) is the pressure, f = f(x) is the
body force, ν > 0 is the viscosity of the fluid, and Ω ⊂ R

2, the flow domain, is assumed to
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be bounded, to have a Lipschitz-continuous boundary ∂Ω, and to satisfy a further condition
stated in (H1).

Finite volume method is an important numerical tool for solving partial differential
equations. It has been widely used in several engineering fields, such as fluid mechanics,
heat and mass transfer, and petroleum engineering. The method can be formulated in the
finite difference framework or in the Petrov-Galerkin framework. Usually, the former one
is called finite volume method [1, 2], MAC (marker and cell) method [3], or cell-centered
method [4], and the latter one is called finite volume element method (FVE) [5–7], covolume
method [8], or vertex-centeredmethod [9, 10]. We refer to themonographs [11, 12] for general
presentations of thesemethods. Themost important property of FVE is that it can preserve the
conservation laws (mass, momentum, and heat flux) on each control volume. This important
property, combined with adequate accuracy and ease of implementation, has attracted more
people to do research in this field.

On the other hand, the two-level finite element strategy based on two finite element
spaces on one coarse and one fine mesh has been widely studied for steady semilinear elliptic
equations [13, 14] and the Navier-Stokes equations [15–22]. For the finite volume element
method, Bi and Ginting [23] have studied two-grid finite volume element method for linear
and nonlinear elliptic problems; Chen et al. [24] have applied two-grid methods for solving
a two-dimensional nonlinear parabolic equation using finite volume element method. Chen
and Liu [25] have also studied this method for semilinear parabolic problems. However, to
the best of our knowledge, there is no two-level finite volume convergence analysis for the
Navier-Stokes equations in the literature.

In this paper we aim to combine FVE method based on P1 − P0 macroelement with
two-level strategy to solve the two-dimensional Navier-Stokes (1.1)–(1.3). The heart of
the analysis is the use of a transfer operator to connect finite volume and finite element
estimations which will lead to more difficult term to estimate. We choose the two-grid spaces
as two conforming finite element spaces XH and Xh on one coarse grid with mesh size H
and one fine grid with mesh size h � H. We propose two algorithms of two-level method for
resolving the nonlinearity in the stabilized finite volume approximation of the problem (1.1)–
(1.3): the simple and Newton algorithms. First we prove that the simple two-level stabilized
finite volume solution (uh, ph) is the following error estimate:

∥
∥
∥u − uh

∥
∥
∥
1
+
∥
∥
∥p − ph

∥
∥
∥
0
≤ C

(

h +H2
)

. (1.4)

Second we prove that the Newton two-level stabilized finite volume solution (uh, ph) is the
following error estimate:

∥
∥
∥u − uh

∥
∥
∥
1
+
∥
∥
∥p − ph

∥
∥
∥
0
≤ C

(

h +H3∣∣logh
∣
∣
1/2

)

, (1.5)

where C denotes some generic constant which may stand for different values at its different
occurrences.

Hence, the two-level algorithms achieve asymptotically optimal approximation as
long as the mesh sizes satisfy h = O(H2) for the simple two-level stabilized finite volume
solution and h = O(H3| logh|1/2) for the Newton two-level stabilized finite volume solution.
As a result, solving the nonlinear Navier-Stokes equations will not be much more difficult
than solving one single linearized equation.
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The rest of this paper is organized as follows. In the next section, we introduce some
notations and construct a FVE scheme. In Section 3 we recall same preliminary estimates of
the stabilized finite volume approximations. Finally the two-level FVE algorithms and the
improved error estimates are presented and established in Section 4.

2. Finite Volume Scheme

2.1. Notations

Wewill use ‖ · ‖m and | · |m to denote the norm and seminorm of the Sobolev space (Hm(Ω))d,
d = 1, 2. LetH1

0(Ω) be the standard Sobolev subspace ofH1(Ω) of functions vanishing on ∂Ω.
We introduce the following notations:

X =
(

H1
0(Ω)

)2
, Y = L2

0(Ω) =
{

q : q ∈ L2(Ω),
∫

Ω
q = 0

}

. (2.1)

The scalar product and norm in Y are denoted by the usual L2(Ω) inner product (·, ·) and
‖ · ‖0, respectively. As mentioned above, we need a further assumption on Ω.

H1

Assume that Ω is regular so that the unique solution (v, q) ∈ X × Y of the steady Stokes
problem

−Δv +∇q = g, ∇ · v = 0; v|∂Ω = 0 (2.2)

for a prescribed g ∈ (L2(Ω))2 exists and satisfies

‖v‖2 +
∥
∥q

∥
∥
1 ≤ C

∥
∥g

∥
∥
0, (2.3)

where C > 0 is a constant depending on Ω.
The weak formulation of the problem (1.1)–(1.3) is to find (u, p) ∈ X × Y such that

a(u, v) − d
(

v, p
)

+ b(u, u, v) =
(

f, v
)

, ∀v ∈ X,

d
(

u, q
)

= 0, ∀q ∈ Y,
(2.4)
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where the bilinear forms a(·, ·), d(·, ·) and the trilinear form b(·, ·, ·) are given by

a(u, v) = ν(∇u,∇v) = ν

∫

Ω
∇u : ∇v dx, ∀u, v ∈ X,

d
(

v, q
)

=
(

∇ · v, q
)

=
∫

Ω
q∇ · v dx, ∀u, q ∈ X × Y,

b(u,w, v) = ((u · ∇w), v) +
1
2
((∇ · u)w,v)

=
1
2
((u · ∇w), v) − 1

2
((u · ∇v), w) ∀u, v,w ∈ X.

(2.5)

Introducing the generalized bilinear form on (X × Y )2 by

B
((

u, p
)

;
(

v, q
))

= a(u, v) − d
(

v, p
)

+ d
(

u, q
)

, (2.6)

we can rewrite (2.4) in a compact form: find (u, p) ∈ X × Y such that

B
((

u, p
)

;
(

v, q
))

+ b(u, u, v) =
(

f, v
)

, ∀
(

v, q
)

∈ X × Y. (2.7)

Let Th be a quasi-uniform triangulation of Ω with h = maxhK, where hK is the
diameter of the triangle K ∈ Th. We assume that the partition Th has been obtained from
a macrotriangular partition Λh by joining the sides of each element of Λh. Every element
K ∈ Th must lie in exactly one macroelement K, which implies that macroelements do not
overlap. For each K, the set of interelement edges which are strictly in the interior of K will
be denoted by ΓK, and the length of an edge e ∈ ΓK is denoted by he.

Based on this triangulation, letXh be the standard conforming finite element subspace
of piecewise linear velocity,

Xh = {v ∈ C(Ω) ∩X : v|K is linear, ∀K ∈ Th;v|∂Ω = 0}, (2.8)

and let Yh be the piecewise constant pressure subspace

Yh =
{

q ∈ Y : q|K is constant, ∀K ∈ Th

}

. (2.9)

It is well known that the standard P1 − P0 element does not satisfy the inf-sup condition and
cannot be applied to problem (1.1)–(1.3) directly. But a locally stabilized method based on
the macroelement can be used to yield adequate approximations [6].

In order to describe the FVEmethod for solving problem (1.1)–(1.3), we will introduce
a dual partition T∗

h based upon the original partition Th whose elements are called control
volumes. We construct the control volumes in the same way as in [5, 26]. Let zK be the
barycenter of K ∈ Th. We connect zK with line segments to the midpoints of the edges
of K, thus partitioning K into three quadrilaterals Kz, z ∈ Zh(K), where Zh(K) are the
vertices ofK. Then with each vertex z ∈ Zh = ∪K∈ThZh(K), we associate a control volume Vz,
which consists of the union of the subregionsKz, sharing the vertex z. Thus we finally obtain
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Figure 1: Left-hand side: a sample region with blue lines indicating the corresponding control volume Vz.
Right-hand side: a triangle K partitioned into three subregionsKz.

a group of control volumes covering the domain Ω, which is called the dual partition T∗
h
of

the triangulation Th. We denote by Z0
h the set of interior vertices.

We call the partition T∗
h
regular or quasi-uniform if there exists a positive constant

C > 0 such that

C−1h2 ≤ meas(Vz) ≤ Ch2, Vz ∈ T∗
h. (2.10)

If the finite element triangulationTh is quasi-uniform, then the dual partitionT∗
h
is also quasi-

uniform [23].

2.2. Construction of the FVE Scheme

We formulate the FVE method for the problem (1.1)–(1.3) as follows: given a z ∈ Z0
h and

K ∈ Th, integrating (1.1) over the associated control volume Vz and (1.1) over the elementK
and applying Green’s formula, we obtain an integral conservation form

−ν
∫

∂Vz

∇unds +
∫

∂Vz

pn ds +
∫

Vz

u · ∇udx =
∫

Vz

f dx, ∀z ∈ Z0
h, (2.11)

∫

K

∇ · udx = 0, ∀K ∈ Th, (2.12)

where n denotes the unit outer normal vector to ∂Vz (Figure 1).
Let I∗h : Xh → X∗

h be the transfer operator defined by

I∗hv =
∑

z∈Z0
h

v(z)χz, ∀v ∈ Xh, (2.13)
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where

X∗
h =

{

v = (v1, v2) ∈
(

L2(Ω)
)2

: vi|Vz
is constant, i = 1, 2 ∀z ∈ Z0

h

}

, (2.14)

and χz is the characteristic function of the control volume Vz. The operator I∗h satisfies [26]

∥
∥I∗hv

∥
∥
0 ≤ C‖v‖0, ∀v ∈ Xh. (2.15)

Now for an arbitrary I∗
h
v, we multiply (2.11) by v(z) and sum over all z ∈ Z0

h
to get

ah

(

u, I∗hv
)

− dh

(

I∗hv, p
)

+ bh
(

u, u, I∗hv
)

=
(

f, I∗hv
)

, ∀v ∈ Xh. (2.16)

Here ah : X ×Xh → R, dh : Xh × Y → R and bh : X ×X ×Xh → R are defined by

ah

(

u, I∗hv
)

= −ν
∑

z∈Z0
h

v(z)
∫

∂Vz

∇unds,

dh

(

I∗hv, p
)

=
∑

z∈Z0
h

v(z)
∫

∂Vz

pn ds,

bh
(

u, u, I∗hv
)

=
∑

z∈Z0
h

v(z)
∫

Vz

(u · ∇)udx.

(2.17)

We also define the trilinear forms b̃(·, ·, ·) and b(·, ·, ·) on X ×X ×Xh by

b̃
(

u, v, I∗hw
)

=
(

(u · ∇)v, I∗hw
)

+
1
2
(

(∇ · u)v, I∗hw
)

,

b
(

u, v,w − I∗hw
)

=
(

(u · ∇)v,w − I∗hw
)

+
1
2
(

(∇ · u)v,w − I∗hw
)

.

(2.18)

To formulate the discrete problem so as to eliminate any such potential difficulties, we rewrite
(2.16) as follows:

ah

(

u, I∗hv
)

− dh

(

I∗hv, p
)

+ b̃
(

u, u, I∗hv
)

=
(

f, I∗hv
)

, ∀v ∈ Xh. (2.19)

We multiply (2.12) by q ∈ Yh and sum over all K ∈ Th: then, we obtain

b
(

u, q
)

= 0, ∀q ∈ Yh. (2.20)
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Now we rewrite (2.19) and (2.20) to a variational form similar to finite element problems.
The locally stabilized FVE scheme is to find (uh, ph) ∈ Xh × Yh such that

ah

(

uh, I
∗
hvh

)

− dh

(

I∗hvh, ph
)

+ b̃
(

uh, uh, I
∗
hvh

)

=
(

f, I∗hvh

)

, ∀vh ∈ Xh,

d
(

uh, qh
)

− βch
(

ph, qh
)

= 0, ∀qh ∈ Yh,
(2.21)

where

ch
(

p, q
)

=
∑

K∈Λh

∑

e∈ΓK
he

∫

e

[

p
]

e

[

q
]

eds (2.22)

is a stabilized form defined on (H1(Ω) + Yh)
2, [·]e is the jump operator across the edge e, and

β > 0 is the local stabilization parameter. It is trivial that ch(p, qh) = ch(ph, q) = ch(p, q) = 0,
for all p, q ∈ H1(Ω), for all ph, qh ∈ Yh.

A general framework for analyzing the locally stabilized formulation (2.21) can be
developed using the notion of equivalence class of macroelements. As in Stenberg [27] each
equivalence class, denoted by EK̂, containsmacroelements which are topologically equivalent
to a reference macroelement K̂.

Let

Bh

((

uh, ph
)

;
(

I∗
h
vh, qh

))

= ah

(

uh, I
∗
h
vh

)

− dh

(

I∗
h
vh, ph

)

+ d
(

uh, qh
)

, (2.23)

Bh

((

uh, ph
)

;
(

I∗
h
vh, qh

))

= Bh

((

uh, ph
)

;
(

I∗
h
vh, qh

))

+ βch
(

ph, qh
)

. (2.24)

We can rewrite (2.21) in a compact form: find (uh, ph) ∈ Xh × Yh such that

Bh

((

uh, ph
)

;
(

I∗hvh, qh
))

+ b̃
(

uh, uh, I
∗
hvh

)

=
(

f, I∗hvh

)

, ∀
(

vh, qh
)

∈ Xh × Yh. (2.25)

3. Technical Preliminaries

This section considers preliminary estimates which will be very useful in the error estimates
of two-level finite volume solution (uh, ph).

The following lemma gives the boundedness of the trilinear form b(·, ·, ·).
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Lemma 3.1 (see [21]). The following estimates hold:

b(u,w, v) = −b(u, v,w),

|b(u,w, v)| ≤ 1
2
C0‖u‖1/20 |u|1/21

(

|w|1‖v‖
1/2
0 |v|1/21 + ‖w‖1/20 ‖w‖1/21 ‖v‖1/21

)

, ∀u, v,w ∈ X,

|b(u, v,w)| + |b(v, u,w)| + |b(w,u, v)| ≤ C1|u|1‖v‖2‖w‖0,

∀u ∈ X, v ∈
(

H2(Ω)
)2

∩X, w ∈ Y,

|b(u, v,w)| ≤ C
∣
∣logh

∣
∣
1/2|u|1|v|1‖w‖0, ∀u, v,w ∈ Xh.

(3.1)

Here and after Ci, i = 1, 2, and C are positive constants depending only on the data (ν, f,Ω).

The existence and uniqueness results of (2.7) can be found in [28, 29].

Theorem 3.2. Assume that ν > 0 and f ∈ Y satisfy the following uniqueness condition:

1 − N1

ν2
∥
∥f

∥
∥
−1 > 0, (3.2)

where

N1 = sup
u,v,w∈X

b(u, v,w)
|u|1|v|1|w|1

. (3.3)

Then the problem (2.7) admits a unique solution (u, p) ∈ (H1
0(Ω)2 ∩X,H1(Ω) ∩ Y ) such that

|u|1 ≤
1
ν

∥
∥f

∥
∥
−1, ‖u‖2 +

∥
∥p

∥
∥
1 ≤ C

∥
∥f

∥
∥
0. (3.4)

In [30] the following lemma was proved, which shows that the finite volume element
bilinear forms ah(·, I∗h·) and dh(I∗h·, ·) are equal to the finite element ones, respectively.

Lemma 3.3. For any uh, vh ∈ Xh, and qh ∈ Yh, one has

ah

(

uh, I
∗
hvh

)

= a(uh, vh),

dh

(

I∗hvh, qh
)

= d
(

vh, qh
)

.
(3.5)

The following theorem establishes the weak coercivity of (2.24) [6, 31].

Theorem 3.4. Given a a stabilization parameter β ≥ β0, suppose that every macroelement K ∈
Λh belongs to one of the equivalence classes EK̂ and that the following macroelement connectivity
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condition is valid: for any two neighboring macroelements K1 and K2 with
∫

K1∩K2
/= 0, there exists

v ∈ Xh such that

supp v ⊂ K1 ∩K2

∫

K1∩K2

v · nds/= 0. (3.6)

Then

α1
(

|uh|1 +
∥
∥ph

∥
∥
0

)

≤ sup
(vh,qh)∈Xh×Yh

Bh

((

u, p
)

;
(

I∗
h
vh, qh

))

|vh|1 +
∥
∥qh

∥
∥
0

, (3.7)

for all (uh, ph) ∈ Xh × Yh, and

∣
∣Bh

((

u, p
)

;
(

I∗hvh, qh
))∣
∣ ≤ α2

(

|uh|1 +
∥
∥ph

∥
∥
0

)(

|vh|1 +
∥
∥qh

∥
∥
0

) (

vh, qh
)

∈ Xh × Yh, (3.8)

where α1, α2 > 0 are constants independent of h and β, β0 is some fixed positive constant, and n is the
out-normal vector.

Next, we establish the existence and the uniqueness of FVE scheme (2.25), by the fixed-
point theorem, in the following.

Theorem 3.5 (see [6]). Suppose the assumptions of Theorems 3.2 and 3.4 hold, and the body force f
satisfies the following uniqueness condition

1 − 4N
ν2

∥
∥f

∥
∥
−1 > 0. (3.9)

Then the variation problem (2.25) admits a unique solution (uh, ph) ∈ (Xh × Yh) such that

|uh|1 ≤
1
ν

∥
∥f

∥
∥
−1,

∥
∥ph

∥
∥
0 ≤

α2

α1

∥
∥f

∥
∥
−1 +

4α2N

α1ν2
∥
∥f

∥
∥
−1, (3.10)

where

N = max{CN1,N2}, N2 = sup
u,v,w∈X

b̃
(

u, v, I∗hw
)

|u|1|v|1|w|1
. (3.11)

For the error estimate, we introduce the Galerkin projection (Rh,Qh) : X×Y → Xh×Yh

defined by

Bh

((

Rh

(

v, q
)

, Qh

(

v, q
))

;
(

I∗hvh, qh
))

= Bh

((

v, q
)

;
(

I∗hvh, qh
))

(3.12)

for each (v, q) ∈ X × Y and all (vh, qh) ∈ Xh × Yh. We obtain the following results by using the
standard Galerkin finite element [6, 17].
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Theorem 3.6. Under the assumptions of Theorems 3.2 and 3.4, the projection (Rh,Qh) satisfies

∣
∣v − Rh

(

v, q
)∣
∣
1 +

∥
∥q −Qh

(

v, q
)∥
∥
0 ≤ C

(

|v|1 +
∥
∥q

∥
∥
0

)

, (3.13)

for all (v, q) ∈ X × Y and

∥
∥v − Rh

(

v, q
)∥
∥
0 + h

(∣
∣v − Rh

(

v, q
)∣
∣
1 +

∥
∥q −Qh

(

v, q
)∥
∥
0

)

≤ Ch2(‖v‖2 +
∥
∥q

∥
∥
1

)

, (3.14)

for all (v, q) ∈ (D(A) ∩X) × (H1(Ω) ∩ Y ).

Then the optimal error estimates can be obtained as follows.

Theorem 3.7 (see [6, 32]). Under the assumptions of Theorems 3.2, 3.4, 3.5, and 3.6, the solution
(uh, ph) of (2.25) satisfies

‖u − uh‖0 + h
(

|u − uh|1 +
∥
∥p − ph

∥
∥
0

)

≤ Ch2. (3.15)

4. Two-Level FVE Algorithms and Its Error Analysis

In this section, we will present two-level stabilized finite volume element algorithm for
(1.1)–(1.3) and derive some optimal bounds for errors. The idea of the two-level method
is to reduce the nonlinear problem on a fine mesh into a linear system on a fine mesh by
solving a nonlinear problem on a coarse mesh. The basic mechanisms are two quasi-uniform
triangulations of Ω, TH , and Th, with two different mesh sizes H and h(h � H), and the
corresponding solutions spaces (XH, YH) and (Xh, Yh), which satisfy (XH, YH) ⊂ (Xh, Yh)
and will be called the coarse and the fine spaces, respectively. Now find (uh, ph) as follows.

Algorithm 4.1 (Simple two-level stabilized FVE approximation). We have the following steps:

Step 1. On the coarse mesh TH , solve the stabilized Navier-Stokes problem.
Find (uH, pH) ∈ XH × YH such that, for all (vH, qH) ∈ XH × YH ,

BH

((

uH, pH
)

;
(

I∗HvH, qH
))

+ b̃
(

uH, uH, I∗HvH

)

=
(

f, I∗HvH

)

. (4.1)

Step 2. On the fine mesh Th, solve the stabilized linear Stokes problem.
Find (uh, ph) ∈ Xh × Yh such that, for all (vh, qh) ∈ Xh × Yh,

Bh

((

uh, ph
)

;
(

I∗hvh, qh
))

+ b̃
(

uH, uH, I∗hvh

)

=
(

f, I∗hvh

)

. (4.2)

Next, we study the convergence of (uh, ph) to (u, p) in some norms. For convenience, we set
e = Rh(u, p) − uh and η = Qh(u, p) − ph.

Theorem 4.2. Under the assumptions of Theorems 3.2, 3.4, 3.5, and 3.6 for H and h, the simple
two-level stabilized FVE solution (uh, ph) satisfies the following error estimates:

∣
∣
∣u − uh

∣
∣
∣
1
+
∥
∥
∥p − ph

∥
∥
∥
0
≤ C

(

h +H2
)

. (4.3)
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Proof. Subtracting (4.2) from (2.25) and using the Galerkin projection (3.12), it is easy to see
that

Bh

((

e, η
)

;
(

I∗hvh, qh
))

+ b(u, u − uH, vh) + b(u − uH, u, vh) − b(u − uH, u − uH, vh)

+ b
(

u − uH, u − uH, vh − I∗hvh

)

− b
(

u − uH, u, vh − I∗hvh

)

− b
(

u, u − uH, vh − I∗hvh

)

+ b
(

u, u, vh − I∗hvh

)

=
(

f, vh − I∗hvh

)

,

(4.4)

for all (vh, qh) ∈ Xh × Yh. Due to (3.7), Lemma 3.1, (3.15), and (4.4), we have

α1
(

|e|1 +
∥
∥η

∥
∥
0

)

≤ sup
(vh,qh)∈Xh×Yh

Bh

((

u, p
)

;
(

I∗
h
vh, qh

))

|vh|1 +
∥
∥qh

∥
∥
0

≤ C‖u‖2‖u − uH‖0 + C|u − uH |21 + Ch‖u‖2|u − uH |1 + Ch

≤ C
(

H2 + h
)

,

(4.5)

which, along with (3.14), yields

∣
∣
∣u − uh

∣
∣
∣
1
+
∥
∥
∥p − ph

∥
∥
∥
0
≤
∣
∣u − Rh

(

u, p
)∣
∣
1 +

∥
∥p −Qh

(

u, p
)∥
∥
0 + |e|1 +

∥
∥η

∥
∥
0

≤ C
(

h +H2
)

.

(4.6)

Algorithm 4.3 (The Newton two-level stabilized FVE approximation). We have the following
steps:

Step 1. On the coarse mesh TH , solve the stabilized Navier-Stokes problem.
Find (uH, pH) ∈ XH × YH by (4.1).

Step 2. On the fine mesh Th, solve the stabilized linear Stokes problem.
Find (uh, ph) ∈ Xh × Yh such that, for all (vh, qh) ∈ Xh × Yh,

Bh

((

uh, ph
)

;
(

I∗hvh, qh
))

+ bh
(

uh, uH, I∗hvh

)

+ bh
(

uH, uh, I∗hvh

)

=
(

f, I∗hvh

)

+ bh
(

uH, uH, I∗hvh

)

.

(4.7)

Now, we will study the convergence of the Newton two-level stabilized finite element
solution (uh, ph) to (u, p) in some norms. To do this, let us set e = Rh(u, p)−uh, E = u−Rh(u, p),
and η = Qh(u, p) − ph.

Theorem 4.4. Under the assumptions of Theorems 3.2, 3.4, 3.5, and 3.6 for H and h, the Newton
two-level stabilized FVE solution (uh, ph) satisfies the following error estimates:

∣
∣
∣u − uh

∣
∣
∣
1
+
∥
∥
∥p − ph

∥
∥
∥
0
≤ C

(

h +
∣
∣logh

∣
∣
1/2

H3
)

. (4.8)
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Proof. Subtracting (4.7) from (2.25), using the Galerkin projection (3.12) and taking (vh, qh) =
(e, η), we get

Bh

((

e, η
)

;
(

I∗he, η
))

+ b(E, u, e) + b(Rh − uH, u − uH, e) + b(uH, E, e)

− b
(

Rh − uH,Rh − uH, e − I∗he
)

− b
(

Rh, Rh − u, e − I∗he
)

− b
(

Rh, u, e − I∗he
)

− b(e, uH, e) + b
(

e, uH, e − I∗he
)

+ b
(

uH, e, e − I∗he
)

=
(

f, e − I∗he
)

.

(4.9)

Using Lemma 3.1 and Theorems 3.2, 3.5, and 3.7, we obtain

∣
∣b(E, u, e) + b(uH, E, e) +

(

f, e − I∗he
)∣
∣ ≤ C(|u|1 + |uH |1)|E|1|e|1 +

∥
∥f

∥
∥
0

∥
∥e − I∗he

∥
∥
0

≤ Ch|e|1,
(4.10)

|b(Rh − uH, u − uH, e)| = |b(Rh − uH, e, u − uH)|

≤ C
∣
∣logh

∣
∣
1/2|Rh − uH |1|e|1|u − uH |0

≤ C
∣
∣logh

∣
∣
1/2|Rh − u|1 + |u − uH |1|e|1|u − uH |0

≤ C
∣
∣logh

∣
∣
1/2

H3|e|1.

(4.11)

∣
∣
∣b
(

Rh − uH,Rh − uH, e − I∗he
)
∣
∣
∣ ≤ C

∣
∣logh

∣
∣
1/2|Rh − uH |1|Rh − uH |1

∥
∥e − I∗he

∥
∥
0

≤ C
∣
∣logh

∣
∣
1/2

H3|e|1.
(4.12)

∣
∣
∣b
(

Rh, Rh − u, e − I∗
h
e
)
∣
∣
∣ ≤ N|Rh|1|Rh − u|1|e|1 ≤ Ch|e|1, (4.13)

∣
∣
∣b
(

Rh − u, e − I∗he
)
∣
∣
∣ ≤ C|Rh|1‖u‖2

∥
∥e − I∗he

∥
∥
0 ≤ Ch|e|1 ≤ Ch|e|1, (4.14)

ν|e|21 − |b(e, uH, e)| −
∣
∣
∣b
(

e, uH, e − I∗he
)
∣
∣
∣ −

∣
∣
∣b
(

uH, e, e − I∗he
)
∣
∣
∣

≥ ν|e|21 − 3N|uH |1|e|
2
1

≥ ν

(

1 − 3N
ν2

∥
∥f

∥
∥
−1

)

|e|21.

(4.15)

Combining (4.10)–(4.15)with (4.9) yields

|e|1 ≤ C
(

h +
∣
∣logh

∣
∣
1/2

H3
)

. (4.16)
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Thanks to (3.7), (4.9), Theorems 3.2 and 3.5, and estimates (4.10)–(4.14) and (4.16), we have

∥
∥η

∥
∥
0 ≤ (α1)−1 sup

(vh,qh)∈Xh×Yh

Bh

((

e, η
)

;
(

I∗hvh, qh
))

|vh|1 +
∥
∥qh

∥
∥
0

≤ C
(

h + log |h|1/2H3 + |e|1
)

≤ C
(

h + log |h|1/2H3
)

.

(4.17)

Combining (4.16) and (4.17)with (3.14) and Theorem 3.2 yields (2.13).
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