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feasibility and efficiency of the proposed method.
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1. Introduction

Genetic algorithms (GAs) [1], initiated by Holland, his colleagues, and his students at the
University of Michigan in the 1970s, as stochastic search techniques based on the mechanism
of natural selection and natural genetics, have received a great deal of attention regarding
their potential as optimization techniques for solving discrete optimization problems or
other hard optimization problems. Although genetic algorithms were not much known at
the beginning, after the publication of Goldberg’s book [2], genetic algorithms have recently
attracted considerable attention in a number of fields as a methodology for optimization,
adaptation, and learning. As we look at recent applications of genetic algorithms to
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optimization problems, especially to various kinds of single-objective discrete optimization
problems and/or to other hard optimization problems, we can see continuing advances [3–
13].

Sakawa et al. proposed genetic algorithms with double strings (GADS) [14] for
obtaining an approximate optimal solution to multiobjective multidimensional 0-1 knapsack
problems. They also proposed genetic algorithms with double strings based on reference
solution updating (GADSRSU) [15] for multiobjective general 0-1 programming problems
involving both positive coefficients and negative ones. Furthermore, they proposed genetic
algorithms with double strings using linear programming relaxation (GADSLPR) [16] for
multiobjective multidimensional integer knapsack problems and genetic algorithms with
double strings using linear programming relaxation based on reference solution updating
(GADSLPRRSU) for linear integer programming problems [17]. Observing that some
solution methods for specialized types of nonlinear integer programming problems have
been proposed [18–23], as an approximate solution method for general nonlinear integer
programming problems, Sakawa et al. [24] proposed genetic algorithms with double strings
using continuous relaxation based on reference solution updating (GADSCRRSU).

In general, however, actual decision making problems formulated as mathematical
programming problems involve very large numbers of variables and constraints. Most
of such large-scale problems in the real world often have special structures that can
be exploited in solving problems. One familiar special structure is the block-angular
structure to the constraints and several kinds of decomposition methods for linear and
nonlinear programming problems with block-angular structure have been proposed [25].
Unfortunately, however, for large-scale problems with discrete variables, it seems quite
difficult to develop an efficient solution method for obtaining an exact optimal solution.
For multidimensional 0-1 knapsack problems with block-angular structures, by utilizing the
block-angular structures that can be exploited in solving problems, Sakawa et al. [9, 26]
proposed genetic algorithms with decomposition procedures (GADPs). For dealing with
multidimensional 0-1 knapsack problems with block angular structures, using triple string
representation, Sakawa et al. [9, 26] presented genetic algorithms with decomposition
procedures. Furthermore, by incorporating the fuzzy goals of the decision maker, they [9]
also proposed an interactive fuzzy satisficing method for multiobjective multidimensional
0-1 knapsack problems with block angular structures.

Under these circumstances, in this paper, as a typical mathematical model of large-
scale multiobjective discrete systems optimization, we consider multiobjective nonlinear
integer programming problems with block-angular structures. By considering the vague
nature of the decision maker’s judgments, fuzzy goals of the decision maker are introduced,
and the problem is interpreted as maximizing an overall degree of satisfaction with the
multiple fuzzy goals. For deriving a satisficing solution for the decision maker, we develop
an interactive fuzzy satisficing method. Realizing the block-angular structures that can be
exploited in solving problems, we also propose genetic algorithms with decomposition
procedures for nonlinear integer programming problems with block-angular structures.

The paper is organized as follows. Section 2 formulates multiobjective nonlinear
integer programming problems with block-angular structures. Section 3 develops an
interactive fuzzy satisficing method for deriving a satisficing solution for the decision
maker. Section 4 proposes GADPCRRSU as an approximate solution method for nonlinear
integer programming problems with block-angular structures. Section 5 provides illustrative
numerical examples to demonstrate the feasibility and efficiency of the proposed method.
Finally the conclusions are considered in Section 6 and the references.
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2. Problem Formulation

Consider multiobjective nonlinear integer programming problems with block-angular struct-
ures formulated as

minimize fl(x) = fl
(
x1, . . . , xP

)
, l = 1, 2, . . . , k

subject to g(x) = g
(
x1, . . . , xP

)
≤ 0

h1(x1) ≤ 0

. . .
...

hP
(
xP

)
≤ 0

x
J
j ∈

{
0, 1, . . . , V J

j

}
, J = 1, 2, . . . , P, j = 1, 2, . . . , nJ ,

(2.1)

where xJ , J = 1, 2, . . . , P , are nJ dimensional integer decision variable column vectors and
x = ((x1)T , . . . , (xP )T )T . The constraints g(x) = (g1(x), . . . , gm0(x))

T ≤ 0 are called as coupling
constraints with m0 dimension, while each of constraints hJ(xJ) = (hJ1(x

1), . . . , hJmJ
(xJ))T ≤ 0,

J = 1, 2, . . . , P, is called as block constraints with mJ dimension. In (2.1), it is assumed that
fl(·), gi(·), hJi (·) are general nonlinear functions. The positive integers V J

j , J = 1, 2, . . . , P ,

j = 1, 2, . . . , nJ , represent upper bounds for xJj . In the following, for notational convenience,
the feasible region of (2.1) is denoted by X.

As an example of nonlinear integer programming problems with block-angular
structures in practical applications, Bretthauer et al. [27] formulated health care capacity
planning, resource constrained production planning, and portfolio optimization with
industry constraints.

3. An Interactive Fuzzy Satisficing Method

In order to consider the vague nature of the decision maker’s judgments for each objective
function in (2.1), if we introduce the fuzzy goals such as “fl(x) should be substantially less
than or equal to a certain value,” (2.1) can be rewritten as

maximize
x∈X

(
μ1
(
f1(x)

)
, . . . , μk

(
fk(x)

))
, (3.1)

where μl(·) is the membership function to quantify the fuzzy goal for the lth objective function
in (2.1). To be more specific, if the decision maker feels that fl(x) should be less than or equal
to at least f0

l and fl(x) ≤ f1
l (≤ f

0
l ) is satisfactory, the shape of a typical membership function

is shown in Figure 1.
Since (3.1) is regarded as a fuzzy multiobjective optimization problem, a complete

optimal solution that simultaneously minimizes all of the multiple objective functions
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Figure 1: An example of membership functions.

does not always exist when the objective functions conflict with each other. Thus, instead
of a complete optimal solution, as a natural extension of the Pareto optimality concept
for ordinary multiobjective programming problems, Sakawa et al. [28, 29] introduced the
concept of M-Pareto optimal solutions which is defined in terms of membership functions
instead of objective functions, where M refers to membership.

Definition 3.1 (M-Pareto optimality). A feasible solution x∗ ∈ X is said to be M-Pareto optimal
to a fuzzy multiobjective optimization problem if and only if there does not exist another
feasible solution x ∈ X such as μl(fl(x)) ≥ μl(fl(x∗)), l = 1, 2, . . . , k, and μj(fj(x)) > μj(fj(x∗))
for at least one j ∈ {1, 2, . . . , k}.

Introducing an aggregation function μD(x) for k membership functions in (3.1), the
problem can be rewritten as

maximize
x∈X

μD(x), (3.2)

where the aggregation function μD(·) represents the degree of satisfaction or preference of
the decision maker for the whole of k fuzzy goals. In the conventional fuzzy approaches,
it has been implicitly assumed that the minimum operator is the proper representation of
the decision maker’s fuzzy preferences. However, it should be emphasized here that this
approach is preferable only when the decision maker feels that the minimum operator is
appropriate. In other words, in general decision situations, the decision maker does not
always use the minimum operator when combining the fuzzy goals and/or constraints.
Probably the most crucial problem in (3.2) is the identification of an appropriate aggregation
function which well represents the decision maker’s fuzzy preferences. If μD(·) can be
explicitly identified, then (3.2) reduces to a standard mathematical programming problem.
However, this rarely happens, and as an alternative, an interaction with the decision maker
is necessary to find a satisficing solution for (3.1).

In order to generate candidates of a satisficing solution which are M-Pareto optimal,
the decision maker is asked to specify the aspiration levels of achievement for all membership
functions, called reference membership levels. For reference membership levels given by the
decision maker μl, l = 1, 2, . . . , k, the corresponding M-Pareto optimal solution to µ, which
is the nearest to the requirements in the minimax sense or better than that if the reference
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membership levels are attainable, is obtained by solving the following augmented minimax
problem:

minimize
x∈X

max
l=1,2,...,k

⎧
⎨

⎩
(
μl − μl

(
fl(x)

))
+ ρ

k∑

j=1

(
μj − μj

(
fj(x)

))
⎫
⎬

⎭
, (3.3)

where ρ is a sufficiently small positive real number.
We can now construct an interactive algorithm in order to derive a satisficing solution

for the decision maker from among the M-Pareto optimal solution set. The procedure of the
interactive fuzzy satisficing method is summarized as follows.

3.1. An Interactive Fuzzy Satisficing Method

Step 1. Calculate the individual minimum and maximum of each objective function under
the given constraints by solving the following problems:

minimize
x∈X

fl(x), l = 1, 2, . . . , k,

maximize
x∈X

fl(x), l = 1, 2, . . . , k.
(3.4)

Step 2. By considering the individual minimum and maximum of each objective function,
the decision maker subjectively specifies membership functions μl(fl(x)), l = 1, 2, . . . , k, to
quantify fuzzy goals for objective functions.

Step 3. The decision maker sets initial reference membership levels μl, l = 1, 2, . . . , k.

Step 4. For the current reference membership levels, solve the augmented minimax problem
(3.3) to obtain the M-Pareto optimal solution and the membership function value.

Step 5. If the decision maker is satisfied with the current levels of the M-Pareto optimal
solution, stop. Then the current M-Pareto optimal solution is the satisficing solution of
the decision maker. Otherwise, ask the decision maker to update the current reference
membership levels μl, l = 1, 2, . . . , k, by considering the current values of the membership
functions and return to Step 4.

In the interactive fuzzy satisficing method, it is required to solve nonlinear integer
programming problems with block-angular structures (3.3) together with (3.4). It is
significant to note that these problems are single objective integer programming problems
with block-angular structures. Realizing this difficulty, in the next section, we propose genetic
algorithms with decomposition procedures using continuous relaxation based on reference
solution updating (GADPCRRSU).

4. Genetic Algorithms with Decomposition Procedures

As discussed above, in this section, we propose genetic algorithms with decomposition pro-
cedures using continuous relaxation based on reference solution updating (GADPCRRSU)
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ν(1) ν(2) · · · ν(n)

yν(1) yν(2) · · · yν(n)

Figure 2: Double string.

as an approximate solution method for nonlinear integer programming problems with block-
angular structures.

Consider single-objective nonlinear integer programming problems with block-
angular structures formulated as

minimize f(x) = f
(
x1, . . . , xP

)

subject to g(x) = g
(
x1, . . . , xP

)
≤ 0

h1(x1) ≤ 0

. . .
...

hP
(
xP

)
≤ 0

x
J
j ∈

{
0, 1, . . . , V J

j

}
, J = 1, 2, . . . , P, j = 1, 2, . . . , nJ .

(4.1)

Observe that this problem can be viewed as a single-objective version of the original problem
(2.1).

Sakawa et al. [24] have already studied genetic algorithms with double strings using
continuous relaxation based on reference solution updating (GADSCRRSU) for ordinary
nonlinear integer programming problems formulated as

minimize f(x)

subject to gi(x) ≤ 0, i = 1, 2, . . . , m,

xj ∈
{

0, 1, . . . , Vj
}
, j = 1, 2, . . . , n,

(4.2)

where an individual is represented by a double string. In a double string as is shown in
Figure 2, for a certain j, ν(j) ∈ {1, 2, . . . , n} represents an index of a variable in the solution
space, while yν(j), j = 1, 2, . . . , n, does the value among {0, 1, . . . , Vν(j)} of the ν(j)th variable
xν(j).

In view of the block-angular structure of (4.1), it seems to be quite reasonable to define
an individual S as an aggregation of P subindividuals sJ , J = 1, 2, . . . , P , corresponding to the
block constraint hJ(xJ) ≤ 0 as shown in Figure 3.

If these subindividuals are represented by double strings, for each of subindividuals
sJ , J = 1, 2, . . . , P , a phenotype (subsolution) satisfying each of the block constraints can be
obtained by the decoding algorithm in GADSCRRSU.

Unfortunately, however, the simple combination of these subsolutions does not
always satisfy the coupling constraints g(x) ≤ 0. To cope with this problem, a triple
string representation as shown in Figure 4 and the corresponding decoding algorithm are
presented as an extension of the double string representation and the corresponding decoding
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Figure 3: Division of an individual into P subindividuals.
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Figure 4: Triple string.

algorithm. By using the proposed representation and decoding algorithm, a phenotype
(solution) satisfying both the block constraints and coupling constraints can be obtained for
each individual S = (s1, s2, . . . , sP ).

To be more specific, in a triple string which represents a subindividual corresponding
to the Jth block, rJ ∈ {1, 2, . . . , P} represents the priority of the Jth block, each νJ(j) ∈
{1, 2, . . . , nJ} is an index of a variable in phenotype and each y

J

νJ (j) takes an integer value

among {0, 1, . . . , V J

νJ (j)}. As in GADSCRRSU, a feasible solution, called a reference solution, is
necessary for decoding of triple strings. In our proposed GADPCRRSU, the reference solution
is obtained as a solution x∗ to a minimization problem of constraint violation. In the following,
we summarize the decoding algorithm for triple strings using a reference solution x∗, where
N is the number of individuals and I is a counter for the individual number.

4.1. Decoding Algorithm for Triple String

Step 1. Let I := 1.

Step 2. If 1 ≤ I ≤ �N/2�, go to Step 3. Otherwise, go to Step 11.

Step 3. Let x := 0, r := 1, L := 0.

Step 4. Find J ∈ {1, 2, . . . , P} such that rJ = r. Let j := 1, l := 0.

Step 5. Let xJ
vJ (j) := yJ

νJ (j).

Step 6. If g(x) ≤ 0 and hJ(xJ) ≤ 0, let L := r, l := j, j := j + 1 and go to Step 7. Otherwise, let
j := j + 1 and go to Step 7.

Step 7. If j > nJ , let r := r + 1 and go to Step 8. Otherwise, go to Step 5.

Step 8. If r > P , go to Step 9. Otherwise, go to Step 4.
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Step 9. If L = 0 and l = 0, go to Step 11. Otherwise, go to Step 10.

Step 10. Find J(r) such that rJ(r) = r for r = 1, . . . , L − 1. Then, let xJ(r)
νJ(r)(j) := y

J(r)
νJ(r)(j), j =

1, 2, . . . , nJ(r). Furthermore, find J(L) such that rJ(L) = L and let xJ(L)
νJ(L)(j) := yJ(L)

νJ(L)(j), j = 1, 2, . . . , l.
The remainder elements of x are set to 0. Terminate the decoding process.

Step 11. Let x := x∗, r := 1 and go to Step 12.

Step 12. Find J ∈ {1, 2, . . . , P} such that rJ = r and let j := 1.

Step 13. Let xJ
νJ (j) := y

J

νJ (j). If yJ
νJ (j) = x

∗J
νJ (j), let j := j + 1 and go to Step 15. If yJ

νJ (j) /=x
∗J
νJ (j), go

to Step 14.

Step 14. If g(x) ≤ 0 and hJ(xJ) ≤ 0, let j := j +1 and go to Step 15. Otherwise, let xJ
νJ (j) := x∗J

νJ (j),
j := j + 1 and go to Step 15.

Step 15. If j ≤ nJ , go to Step 13. Otherwise, let r := r + 1 and go to Step 16.

Step 16. If r ≤ P , go to Step 12. Otherwise, I := I + 1 and go to Step 17.

Step 17. If I ≤N, go to Step 2. Otherwise, terminate the decoding process.

It is expected that an optimal solution to the continuous relaxation problem becomes a
good approximate optimal solution of the original nonlinear integer programming problem.
In the proposed method, after obtaining an (approximate) optimal solution x̂Jj , J = 1, 2, . . . , P ,
j = 1, 2, . . . , nJ to the continuous relaxation problem, we suppose that each decision variable
x
J
j takes exactly or approximately the same value that x̂Jj does. In particular, decision variables

x
J
j such as x̂Jj = 0 are very likely to be equal to 0.

To be more specific, the information of the (approximate) optimal solution x̂ to the
continuous relaxation problem of (4.1) is used when generating the initial population and
performing mutation. In order to generate the initial population, when we determine the
value of each y

J

νJ (j) in the lowest row of a triple string, we use a Gaussian random variable

with mean x̂
J

νJ (j) and variance σ. In mutation, when we change the value of yJ
νJ (j) for some

(J, j), we also use a Gaussian random variable with mean x̂J
νJ (j) and variance τ .

Various kinds of reproduction methods have been proposed. Among them, Sakawa
et al. [14] investigated the performance of each of six reproduction operators, that is, ranking
selection, elitist ranking selection, expected value selection, elitist expected value selection,
roulette wheel selection, and elitist roulette wheel selection, and as a result confirmed that
elitist expected value selection is relatively efficient for multiobjective 0-1 programming
problems incorporating the fuzzy goals of the decision maker. Thereby, the elitist expected
value selection—elitism and expected value selection combined together—is adopted. Here,
elitism and expected value selection are summarized as follows.

Elitism

If the fitness of an individual in the past populations is larger than that of every individual in
the current population, preserve this string into the current generation.
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Expected Value Selection

For a population consisting of N individuals, the expected number of each sJn, J = 1, 2, . . . , P ,
each subindividual of the nth individual Sn, in the next population, is given by

Nn =
f(Sn)

∑N
n=1 f(Sn)

×N. (4.3)

Then, the integral part of Nn(= �Nn�) denotes the definite number of sJn preserved in the next
population. While, using the decimal part of Nn(=Nn − �Nn�), the probability to preserve sJn,
J = 1, 2, . . . , P , in the next population is determined by

Nn − �Nn�
∑N

n=1(Nn − �Nn�)
. (4.4)

If a single-point crossover or multipoint crossover is directly applied to upper or middle
string of individuals of triple string type, the kth element of the string of an offspring may
take the same number that the k′th element takes. The same violation occurs in solving the
traveling salesman problems or scheduling problems through genetic algorithms. In order
to avoid this violation, a crossover method called partially matched crossover (PMX) is
modified to be suitable for triple strings. PMX is applied as usual for upper strings, whereas,
for a couple of middle string and lower string, PMX for double strings [14] is applied to every
subindividual.

It is now appropriate to present the detailed procedures of the crossover method for
triple strings.

4.2. Partially Matched Crossover (PMX) for Upper String

Let

X = r1
X, r

2
X, . . . , r

P
X (4.5)

be the upper string of an individual and let

Y = r1
Y , r

2
Y , . . . , r

P
Y (4.6)

be the upper string of another individual. Prepare copies X′ and Y ′ of X and Y , respectively.

Step 1. Choose two crossover points at random on these strings, say, h and k (h < k).

Step 2. Set i := h and repeat the following procedures.

(a) Find J such that rJX′ = r
i
Y . Then, interchange riX′ with rJX′ and set i := i + 1.

(b) If i > k, stop and let X′ be the offspring of X. Otherwise, return to (a).

Step 2 is carried out for Y ′ in the same manner, as shown in Figure 5.
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4.3. Partially Matched Crossover (PMX) for Double String

Let

X =
ν
J
X(1), ν

J
X(2), . . . , ν

J
X

(
nJ

)

y
J

ν
J
X(1)

, y
J

ν
J
X(2)

, . . . , y
J

ν
J
X(nJ )

(4.7)

be the middle and lower part of a subindividual in the Jth subpopulation, and

Y =
ν
J
Y (1), ν

J
Y (2), . . . , ν

J
Y

(
nJ

)

y
J

ν
J
Y (1)

, y
J

ν
J
Y (2)

, . . . , y
J

ν
J
Y (nJ )

(4.8)

be the middle and lower parts of another subindividual in the Jth subpopulation. First,
prepare copies X′ and Y ′ of X and Y , respectively.

Step 1. Choose two crossover points at random on these strings, say, h and k (h < k).

Step 2. Set i := h and repeat the following procedures.

(a) Find i′ such that νJX′(i
′) = ν

J
Y (i). Then, interchange (νJX′(i), y

J

ν
J

X′ (i)
)T with (νJX′(i

′),

y
J

ν
J

X′ (i
′)
)T and set i := i + 1.

(b) If i > k, stop. Otherwise, return to (a).

Step 3. Replace the part from h to k of X′ with that of Y and let X′ be the offspring of X.

This procedure is carried out for Y ′ and X in the same manner, as shown in Figure 6.
It is considered that mutation plays the role of local random search in genetic

algorithms. Only for the lower string of a triple string, mutation of bit-reverse type is adopted
and applied to every subindividual.

For the upper string and for the middle and lower string of the triple string, inversion
defined by the following algorithm is adopted

Step 1. After determining two inversion points h and k (h < k), pick out the part of the string
from h to k.

Step 2. Arrange the substring in reverse order.

Step 3. Put the arranged substring back in the string.

Figure 7 illustrates examples of mutation.
Now we are ready to introduce the genetic algorithm with decomposition procedures

as an approximate solution method for nonlinear integer programming problems with block
angular structures. The outline of procedures is shown in Figure 8.
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Figure 5: An example of PMX for upper string.

4.4. Computational Procedures

Step 1. Set an iteration index (generation) t = 0 and determine the parameter values for
the population size N, the probability of crossover pc, the probability of mutation pm, the
probability of inversion pi, variances σ, τ , the minimal search generation Imin and the maximal
search generation Imax.

Step 2. Generate N individuals whose subindividuals are of triple string type at random.

Step 3. Evaluate each individual (subindividual) on the basis of phenotype obtained by the
decoding algorithm and calculate the mean fitness fmean and the maximal fitness fmax of the
population. If t > Imin and (fmax−fmean)/fmax < ε, or, if t > Imax, regard an individual with the
maximal fitness as an optimal individual and terminate this program. Otherwise, set t = t + 1
and proceed to Step 4.

Step 4. Apply the reproduction operator to all subpopulations {sJn | n = 1, 2, . . . ,N}, J =
1, 2, . . . , P .

Step 5. Apply the PMX for double strings to the middle and lower part of every subindividual
according to the probability of crossover pc.

Step 6. Apply the mutation operator of the bit-reverse type to the lower part of every
subindividual according to the probability of mutation pm and apply the inversion operator
for the middle and lower parts of every subindividual according to the probability of
inversion pi.
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Figure 6: An example of PMX for double string.
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Figure 7: Examples of mutation.

Step 7. Apply the PMX for upper strings according to pc.

Step 8. Apply the inversion operator for upper strings according to pi and return to Step 3.

It should be noted here that, in the algorithm, the operations in the Steps 4, 5, and
6 can be applied to every subindividual of all individuals independently. As a result, it is
theoretically possible to reduce the amount of working memory needed to solve the problem
and carry out parallel processing.
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Figure 8: The outline of procedures.

Table 1: The whole process of interaction.

Interaction 1st 2nd 3rd
μ1 1 1 1

μ2 1 0.900 0.900

μ3 1 1 0.900

μ1(f1(x)) 0.496 0.552 0.554

μ2(f2(x)) 0.497 0.450 0.474

μ3(f3(x)) 0.491 0.558 0.524

f1(x) 1500050 1335423 1326906

f2(x) −1629427 −1475077 −1553513

f3(x) 158226 86012 123127

Computation time (sec)

GADPCRRSU (proposed method) 26.7 32.8 24.2

GADSCRRSU (no decomposition) 539.6 584.7 503.3
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Figure 9: The comparison of computation time.

5. Numerical Examples

In order to demonstrate the feasibility and efficiency of the proposed method, consider
the following multiobjective quadratic integer programming problem with block-angular
structures:

minimize fl(x) =
P∑

J=1

(
cJ
l
xJ +

(
1
2

)(
xJ
)T
C
J
l
xJ
)
, l = 1, 2, . . . , k,

subject to gi(x) = −
P∑

J=1

(
a
J
i xJ +

(
1
2

)(
xJ
)T
A
J
i xJ

)
+ b0

i ≤ 0, i = 1, 2, . . . , m0,

h
J
i

(
xJ
)
= −

(
d
J
i xJ +

(
1
2

)(
xJ
)T
D
J
i xJ

)
+ bJi ≤ 0,

J = 1, 2, . . . , P, i = 1, 2, . . . , mJ ,

x
J
j ∈

{
0, 1, . . . , V J

j

}
, J = 1, 2, . . . , P, j = 1, 2, . . . , nJ ,

(5.1)

For comparison, genetic algorithms with double strings using continuous relaxation based
on reference solution updating (GADSCRRSU) [24] are also adopted. It is significant to note
here that decomposition procedures are not involved in GADSCRRSU.

For this problem, we set k = 3, P = 5, n1 = n2 = · · · = n5 = 10, m0 = 2 and m1 = m2 =
· · · = m5 = 5, V J

j = 30, J = 1, 2, . . . , 5, j = 1, 2, . . . , 10. Elements of cJl , C
J
l , a

J
i , A

J
i , d

J
i and D

J
i in

objectives and constraints of the above problem are determined by uniform random number
on [−100, 100], and those of bJ in constraints are determined so that the feasible region is not
empty.

Numerical experiments are performed on a personal computer (CPU: Intel Celeron
Processor, 900 MHz, Memory: 256 MB, C Compiler: Microsoft Visual C++ 6.0).
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Parameter values of GADPCRRSU are set as: population size N = 100, crossover rate
pc = 0.9, mutation rate pm = 0.05, inversion rate pi = 0.05, variances σ = 2.0, τ = 3.0, minimal
search generation number Imin = 500, and maximal search generation number Imax = 1000.

In this numerical example, for the sake of simplicity, the linear membership function

μl
(
fl(x)

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, fl(x) < fl,1,

fl(x) − fl,0
fl,1 − fl,0

, fl,1 ≤ fl(x) ≤ fl,0,

0, fl(x) > fl,0

(5.2)

is adopted, and the parameter values are determined as [30]

fl,1 = fl,min = fl
(

xlmin

)
= min

x∈X
fl(x), l = 1, 2, . . . , k,

fl,0 = max
{
fl
(

x1
min

)
, . . . , fl

(
xl−1

min

)
, fl

(
xl+1

min

)
, . . . , fl

(
xkmin

)}
, l = 1, 2, . . . , k.

(5.3)

For the initial reference levels (1, 1, 1), the augmented minimax problem (3.3) is solved.
The obtained solutions are shown at the second column in Table 1. Assume that the
hypothetical decision maker is not satisfied with the current solution and he feels that
μ1(f1(x)) and μ3(f3(x)) should be improved at the expense of μ2(f2(x)). Then, the decision
maker updates the reference membership levels to (1, 0.9000, 1). The result for the updated
reference membership levels is shown at the third column in Table 1. Since the decision maker
is not satisfied with the current solution, he updates the reference membership levels to
(1, 0.900, 0.900) for obtaining better value of μ1(f1(x)). A similar procedure continues in this
way and, in this example, a satisficing solution for the decision maker is derived at the third
interaction.

Table 1 shows that the proposed interactive method using GADPCRRSU with
decomposition procedures can find an (approximate) optimal solution at each interaction
in shorter time than that using GADSCRRSU without decomposition procedures.

Furthermore, in order to see how the computation time changes with the increased
size of block-angular nonlinear integer programming problems, typical problems with 10,
20, 30, 40, and 50 variables are solved by GADPCRRSU and GADSCRRSU. As depicted in
Figure 9, it can be seen that the computation time of the proposed GADPCRRSU increases
almost linearly with the size of the problem while that of GADSCRRSU increases rapidly and
nonlinearly.

6. Conclusions

In this paper, as a typical mathematical model of large-scale discrete systems optimization,
we considered multiobjective nonlinear integer programming with block-angular structures.
Taking into account vagueness of judgments of the decision makers, fuzzy goals of the
decision maker were introduced, and the problem was interpreted as maximizing an
overall degree of satisfaction with the multiple fuzzy goals. An interactive fuzzy satisficing
method was developed for deriving a satisficing solution for the decision maker. Realizing
the block-angular structures that can be exploited, we also propose genetic algorithms
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with decomposition procedures for solving nonlinear integer programming problems with
block-angular structures. Illustrative numerical examples were provided to demonstrate the
feasibility and efficiency of the proposed method. Extensions to multiobjective two-level
integer programming problems with block-angular structures will be considered elsewhere.
Also extensions to stochastic multiobjective two-level integer programming problems with
block-angular structures will be required in the near future.
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