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We present exact mixed integer programming approaches including branch-and-cut and branch-
and-cut-and-price for the minimum label spanning tree problem as well as a variant of it having
multiple labels assigned to each edge. We compare formulations based on network flows and
directed connectivity cuts. Further, we show how to use odd-hole inequalities and additional
inequalities to strengthen the formulation. Label variables can be added dynamically to the model
in the pricing step. Primal heuristics are incorporated into the framework to speed up the overall
solution process. After a polyhedral comparison of the involved formulations, comprehensive
computational experiments are presented in order to compare and evaluate the underlying
formulations and the particular algorithmic building blocks of the overall branch-and-cut- (and-
price) framework.

1. Introduction

The minimum label spanning tree (MLST) problem was first introduced in [1] and has,
for instance, applications in telecommunication network design and data compression [2].
For the MLST problem we are given an undirected graph G = (V, E, l) with nodes (or
vertices) v ∈ V and edges e ∈ E connecting pairs of nodes. In addition a labelling function
l : E → L is given, assigning to each edge an element, called “label”, from a finite set L.
The objective is to find a minimum cardinality label subset L′ ⊆ L inducing a spanning tree
in the sense that for each edge in the spanning tree, its corresponding label is selected. We
also consider the situation of l : E → 2L where more than one label can be assigned to an
edge.
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2. Related Work

The minimum label spanning tree (MLST) problem has been introduced by Chang and
Leu [1] for the first time. In this work, the authors showed the MLST problem to be
NP-hard, and proposed an exact and an approximative algorithm called maximum vertex
covering Algorithm (MVCA). Krumke and Wirth [3] proposed a modified construction
algorithm and derived a performance guarantee for it. Moreover, it has been shown that
the problem cannot be approximated with a constant factor. An improved performance
bound has been obtained by Wan et al. [4], and a tight bound has then been found by
Xiong et al. [5]. An experimental comparison of further MVCA variations is presented in
[6].

Besides approximative methods many metaheuristic algorithms have been proposed
and studied in the literature during the last decade. Various genetic algorithms have been
developed in [7, 8]. Methods based on local search have been treated from a theoretical point
of view in [9], and from a more practical one in [10–14]. In particular, the latter publications
also cover metaheuristics like greedy randomized search procedures, local search, variable
neighborhood search and the pilot method.

Less work does exist regarding exact algorithms. An exact algorithm based on A∗-
search has been proposed in [1], a similar approach, however, not using the guidance
function of the A∗-algorithm, has been proposed in [12]. So far, only two mathematical-
programming approaches have been considered in the literature. The first mixed integer
programming (MIP) formulation proposed by Chen et al. [15] is based on Miller-Tucker-
Zemlin inequalities (cf. Section 3.1) which ensure that the decision variables for the edges
induce a connected subgraph covering all nodes of the initial graph. In a recent work of
Captivo et al. [16], the authors propose anMIP formulation based on single commodity flows,
a frequently used modelling technique for spanning trees. A branch-and-cut algorithm based
on directed connection cuts and cycle-elimination cuts for an extension of the MLST problem
has been described in [17]. For a general introduction to integer linear programming-
(ILP-) based algorithms like branch-and-cut and branch-and-price we refer the reader to
[18].

In this work we propose a branch-and-cut (and-price) (BCP) framework for the
solution of moderately sized problem instances. We present a polyhedral and computational
comparison of an underlying flow-formulation to a formulation based on directed connection
cuts. The latter is proposed for this particular problem for the first time, and it is further
shown how the cut-separation can be performed more efficiently than for many other
spanning tree problems. New inequalities based on the label variables are introduced
to strengthen the formulations. Optionally, also cycle-elimination cuts are separated.
Furthermore we show how to use odd hole inequalities to strengthen the formulation by
cutting off fractional values of the label variables. For these particular inequalities, a MIP-
based separation heuristic is proposed for the first time. We further consider branch-and-
cut-and-price, where instead of starting the algorithm with a full model, we start with
a restricted set of labels and include further (label) variables only on demand. In order
to obtain valid integral solutions in each node of the branch-and-bound (B&B) tree fast,
we apply primal heuristics based on the well known MVCA-heuristic [3]. A detailed
description of the formulations and algorithmic building blocks is given in Section 3, their
properties are then theoretically investigated in Section 3.6. In Section 4, we finally present
a comparison of the described formulations and algorithmic components based on compu-
tational experiments.
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3. Mixed Integer Programming Framework

In this section we first give a rather abstract formulation of the MLST as mixed integer
program (MIP). For the spanning-tree property, we present two concrete instantiations:
(1) based on a flow-formulation, and (2) a formulation based on directed connectivity
cuts, respectively. Both formulations as well as additional inequalities to strengthen the
formulations and methods for cutting-plane separation and dynamic variable generation
are described within one generic framework, as they can be used in different combina-
tions.

We use the following variables: variables zl ∈ {0, 1}, for all l ∈ L indicate if label
l is part of the solution; edge variables xe, for all e ∈ E, denote if edge e is used in the
final spanning tree; variables yi,j , for all i, j ∈ V , denote directed arc variables used for
the cut-based formulation, where we introduce for each edge e = {i, j} ∈ E two arcs
(i, j) and (j, i) ∈ A. For the flow formulation, we analogously introduce two directed flow
variables fij , fji ∈ [0, n − 1]. Let further L(e) denote the set of labels associated to edge
e.

3.1. Mixed Integer Formulation

The basic formulation is given by the following abstract integer linear program:

min .
∑

l∈L
zl, (3.1)

s.t.
∑

l∈L(e)
zl ≥ xe, ∀e ∈ E, (3.2)

x ≡ spanning tree, (3.3)

zl ∈ {0, 1} ∀l ∈ L. (3.4)

The objective function (3.1)minimizes the number of required labels, Inequalities (3.2)
ensure that for each selected edge (at least) one label is selected. For the abstract condition
(3.3), we will subsequently introduce alternative formulations.

The number of selected edges may be fixed according to a valid spanning tree:

∑

e∈E
xe = |V | − 1. (3.5)

Note, that (3.5) is however not required for a valid description of the MLST problem.
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3.1.1. Single-Commodity Flow Formulation

A single-commodity flow formulation, also considered in [16], is given as follows:

∑

(0,i)∈A
f0i = |V | − 1, (3.6)

∑

(i,t)∈A
fit −

∑

(t,j)∈A
ftj = 1 ∀t ∈ V \ {0}, (3.7)

fij ≤ (|V | − 1) · xe ∀{i, j} ∈ E, e =
{
i, j

}
. (3.8)

Equation (3.6) ensures the correct quantity of flow leaving the (arbitrary) root node
with index 0. For all other nodes flow consumption (3.7) must hold, that is, one unit of flow
is consumed at each node. Inequalities (3.8) finally ensure that only edges with a sufficient
amount of flow may be selected. Flow formulations have the big advantage that they permit
to formulate a spanning tree by a polynomial number of variables and therefore provide a
relatively compact model.

3.1.2. Multicommodity Flow Formulation

The single-commodity flow formulation’s major shortcoming is, however, that it provides a
relatively poor LP-relaxation [19]. This is particularly due to the weak coupling of f to x-
variables in Inequalities (3.8), the linking constraints. This drawback can be circumvented
by the introduction of multiple commodities k for each node v ∈ V . Again, all flows of
commodity k originate from node 0 and must be delivered to node k. The formulation is
given by the following equalities:

∑

(i,t)∈A
fk
it −

∑

(t,j)∈A
fk
tj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1, t = 0,

0, t /= 0 ∧ t /=k,

1, t = k.

∀k ∈ V \ {0}, (3.9)

Linkage of flow to edge variables is then given by

xe ≤ fk
ij ∀ commodities k, ∀ e =

{
i, j

} ∈ E. (3.10)

This formulation, however, has the drawback of havingmore variables than the single-
commodity flow formulation, that is, O(|V | · |E|) flow variables in contrast to only O(|E|).

3.1.3. Directed Cut Formulation

An alternative formulation is given by directed-connection inequalities, stating that to each
node a valid (directed) path must exist. In contrast to the flow model, this formulation
consists of an exponential number of inequalities and therefore cannot be directly passed to
an ILP-solver for larger instances. However, this formulation provides a better LP-relaxation
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to many spanning tree problems, as it exactly describes the convex hull of the minimum
spanning tree polyhedron. The corresponding inequalities, linkage to the edge variables are
given by the following:

∑

(i,j)∈δ−(S)

yij ≥ 1 ∀S ⊆ V, 0 /∈ S, (3.11)

xe ≥ yij ∀{i, j} ∈ E, e =
{
i, j

}
. (3.12)

Here δ−(S) denotes the set of ingoing arcs to some node set S ⊂ V . Instead of
Inequalities (3.12) we could also directly link the labels to the directed arcs. However,
we proceed with Inequalities (3.12) for sake of a unified notation. The separation of these
directed-connection inequalities is discussed in Section 3.2.

It is well known to be practically advantageous to initially add the inequalities

yij + yji ≤ 1, ∀{i, j} ∈ E, (3.13)
∑

(i,j)∈δ−(j)

yij ≥ 1, ∀j ∈ V \ {0}, (3.14)

to directed (cut-based) formulations, see [20, 21]. Inequalities (3.13) avoid short cycles corre-
sponding to a single edge, Inequalities (3.14) assure that each node has one incoming arc. By
δ−(i) we denote the set of incoming arcs to node i.

3.1.4. Cycle-Elimination Formulation

We can also ensure feasibility for integer solutions by cycle-elimination inequalities. These
inequalities enforce the resulting graph not to contain any cycles, which is together with the
enforced number of arcs also a sufficient condition for spanning trees, and is given by the
following Inequalities:

∑

e∈C
xe ≤ |C| − 1, ∀ cycles C ∈ G, |C| > 2. (3.15)

3.1.5. Miller-Tucker-Zemlin Formulation

A further way for prohibiting cycles is models based on the well-known Miller-Tucker-Zemlin
inequalities [22]. Such a model for the MLST problem has been proposed in [15], however
with some differences. Let ui ∈ � for all i ∈ V denote variables assigning numeric values to
each node. By inequalities

ui − uj + |V | · yij ≤ |V | − 1 ∀(i, j) ∈ A, (3.16)

ui ≤ |V | ∀i ∈ V, (3.17)

cycles can be inhibited by just using a polynomial number of variables, however with the
drawback, that a large multiplicative factor appears, usually leading to bad LP-relaxations.



6 Advances in Operations Research

Main difference to the formulation proposed in [15] is the meaning of the variables. Whereas
we use distinct variables for labels and edges (O(|E| + |L|) variables), and link them by
Inequalities (3.8) which are in total O(|E|) constraints, they introduce O(|E| · |L|) variables
xijk with i, j corresponding to edges {i, j} and index k corresponding to labels.

In [16], the authors pointed out an important property of the flow formulation. They
showed that the edge variables are not required to be an integer in order to obtain the correct
(optimal) objective function value. Furthermore it is easy to derive a valid MLST solution
based on the set of labels provided by the MIP solution. Based on this reasoning, we can
establish the following theorem, which extends this result to further MLST formulations, and
also immediately provides an improved cut formulation with a fast separation method.

3.1.6. Epsilon-Connectivity Formulation

Theorem 3.1. For any MIP formulation given by (3.1), (3.2) and (3.5), zl ∈ {0, 1}, for all l ∈ L
any set of labels corresponding to an optimal solution to this formulation, and additionally meeting the
following inequalities “epsilon-connectivity”

∑

e∈δ(S)
xe ≥ ε ∀S ⊂ V, S /= ∅ (3.18)

implies a valid MLST. Here, ε > 0 denotes some arbitrary small real number.

Proof. The number of edges is fixed by (3.5), but a solution may still contain fractional edges.
However, as the label variables z are integer and required to be greater than the value of the
corresponding edge variables by Inequalities (3.2), they are always one if the corresponding
edge variable has a value greater than ε. Consequently, fractional edge variables will only
appear in the final solution if they do not raise the objective function value (by requiring
additional labels). Due to Inequalities (3.18), the labels obtained from the MIP solution
facilitate paths between all pairs of nodes.

Given a label set of an optimal MIP solution, a feasible spanning tree can easily be
derived in polynomial time, by determining an arbitrary spanning tree on the edges induced
by the label set, as described in [16]. As a direct consequence of Theorem 3.1, the domain of
the variables x and y need not be restricted to Boolean values, restricting them to nonnegative
values by inequalities

xe ≥ 0, ∀e ∈ E,

yi,j ≥ 0, ∀{i, j} ∈ E,

yj,i ≥ 0, ∀{i, j} ∈ E,

(3.19)

is already sufficient.
Theorem 3.1 also suggests a further formulation for the MLST problem. Although not

explicitly containing any constraints describing a valid spanning tree, (3.1), (3.2), (3.5), and
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Figure 1: LP-solution that does not contain a cycle w.r.t. Inequalities (3.15), but still violates subtour
elimination constraints. Corresponding (integer) label solutions are not necessarily feasible.

(3.18) already provide a complete description to the MLST problem, and could be further
strengthened by

∑

e∈δ(i)
xe ≥ 1, ∀i ∈ V, (3.20)

and Inequalities (3.22), which are defined later on in Section 3.3. Inequalities (3.18)will again
be separated on demand as cutting planes, which can, however, be performedmore efficiently
than the separation for the directed connection cuts, which will be discussed in detail in
Section 3.2.

Note that epsilon-connectivity as defined by Theorem 3.1 is not guaranteed if cycle-
elimination Inequalities (3.15) are used exclusively to describe a valid spanning tree. A
fractional LP-solution not containing a cycle may still contain a subtour, that is, a subgraph
where the sum over corresponding edges is larger than the size of its nodes minus one. Such
a situation is depicted in Figure 1. As a consequence, the domain of the x-variables must
be restricted to Boolean values if only cycle-elimination inequalities are used to describe
a valid spanning tree. The same is true for the Miller-Tucker-Zemlin formulation given by
Inequalities (3.16).

We now draw our attention to the special case of having only one single label assigned
to each edge. If we have not fixed the number of edges, we can impose further equalities

∑

l∈L(e)
zl = xe, ∀e ∈ E, (3.21)

instead of Inequalities (3.2), which provide a more direct link between labels and their
corresponding edges. This approach emphasizes the search for a feasible label set of minimal
cardinality rather then the search for a feasible spanning tree.

3.2. Cutting-Plane Separation

The directed connection Inequalities (3.11) can be separated by computing the maximum
flow from the root node r to each node i as target node. This provides a minimum (r, i)-
cut. We have found a violated inequality if the value of the corresponding arcs according to
the sum of the LP-values is less than 1. Our separation procedure utilizes Cherkassky and
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Goldberg’s implementation of the push-relabel method for the maximum flow problem [23]
to perform the required minimum cut computations.

The cycle-elimination cuts (3.15) can be easily separated by shortest path computa-
tions with Dijkstra’s algorithm. Hereby we use 1 − yLP

ij as the arc weights with yLP
ij denoting

the current value of the LP-relaxation for arc (i, j) in the current node of the B&B-tree. We
obtain cycles by iteratively considering each arc (i, j) ∈ A and searching for the shortest path
from j to i. If the value of a shortest path plus yLP

ij is less than 1, we have found a cycle
violating Inequalities (3.15). We add this inequality to the LP and resolve it. In each node of
the B&B-tree, we perform these cutting plane separations until no further cuts can be found.

Theorem 3.1 suggested a formulation not requiring any auxiliary variables (like flow
or arc variables), where validity of the labels is obtained by Inequalities (3.18) exclusively.
Instead of using the minimum cut-based separation routine (which would also be valid), we
can perform a faster separation by a simple depth first search (DFS). Given an LP-solution, we
first select an arbitrary start node for which we call the DFS procedure. Within this procedure
we only consider edges e with xe ≥ ε. Within the DFS, we keep track of all visited nodes, if
there are unvisited nodes at the end of the DFS, we have found a valid cut. The DFS can be
carried out in O(|V | + |E|) time, which is clearly superior to the time of the maximum flow
algorithm running in O(|V | · |E| + |V |2+ε).

3.3. Strengthening the Formulations

As each node must be connected to the spanning tree by one of its incident edges, we can
further impose additional inequalities to strengthen the formulation w.r.t. the label variables:

∑

l∈L(v)
zl ≥ 1, ∀v ∈ V. (3.22)

Here, L(v), v ∈ V denotes the set of labels being associated to the edges incident to
node v. We will subsequently refer to this set of |V | inequalities as node-label-inequalities.
Figure 2 gives a simple example of an LP solution where the node is sufficiently connected
according to the sum of the LP-values of the ingoing arcs and therefore its incident edges,
but the corresponding sum over the labels associated to these edges is clearly infeasible
w.r.t. Inequalities (3.22). Therefore Inequalities (3.22) strengthen the presented formulations
w.r.t. their LP-relaxation. In Section 3.6, we formally prove this property with respect to the
particular proposed MIP-formulations for the MLST. Note, that we will use MIP variables
and their corresponding graph-entities equivalently in the the context of subsequent figures
and proofs for simplicity, for example, we will simply designate a label by a, b, . . . (or la, lb, . . .)
instead of explicitly referring to the MIP variables za, zb, . . . .

This basic idea used in Inequalities (3.22) can be pursued by considering sets of two
nodes, say v1 and v2. Let e12 denote the edge joining v1 and v2. Let further L(e12) denote the
set of labels associated with this edge. For set L(v1) ∪ L(v2), we can observe, that at least two
labels are required to feasibly connect the nodes v1 and v2, if L(v1) ∩ L(v2) = ∅. However, if
L(v1) ∩ L(v2) = L(e12), we still require two labels from L(v1) ∪ L(v2). We therefore obtain the
following valid inequalities:

∑

l∈L(v1)∪L(v2)
zl ≥ 2, ∀v1, v2 ∈ V with L(v1) ∩ L(v2) = L(e12), (3.23)
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a1 = 1/2

l1 = 1/2

e1 = 1/2

e2 = 1/2

l1 = 1/2

a2 = 1/2

Figure 2: Example of node that is feasible connected w.r.t. its incoming arcs, but not w.r.t. Inequalities
(3.22). Edges e1 = e2 = 1/2 in the current LP-solutions, but as both edges have assigned the same label
l1 = 12 the sum over the set of all labels assigned to incident edges of the considered node is also 1/2. Such
situations are forbidden by Inequalities (3.22).

le12 = 1/2

e12 = 1/2
v1 v2

∑
l∈L(v1)/le12

l = 1/2
∑

l∈L(v2)/le12
l = 1/2

Figure 3: Example of node-label-constraints for sets of two nodes (3.23) dominating Inequalities (3.22),
that is, the node-label constraints for single nodes. For both nodes vi, i = 1, 2 it holds that

∑
l∈L(vi) l ≥ 1.

Corresponding Inequality (3.23) is however violated, as
∑

l∈L(v1)∪L(v2) l = 3/2.

which are not directly implied by Inequalities (3.22). Figure 3 shows an example where
Inequalities (3.23) dominate Inequalities (3.22).

As we can expect a lot of branching on the label variables, further cutting-planes
cutting of fractional label solutions may be helpful. In order to identify such valid inequalities,
we consider situations where fractional label variables lower the objective value of LP
solutions. Such a situation is depicted in Figure 4. If labels a = b = c = 1/2 in the LP solutions,
the corresponding arcs can be set to 1/2 as well without violating any directed connectivity
inequality. However, w.r.t. these arc set, at least two labels must be selected in an integer
solution. Consequently, adding the inequality a+ b+ c ≥ 2 will cut off this fractional solution,
but is only valid if no additional arcs/edges are incident to these nodes.

In the following we show how to apply odd hole inequalities to cut-off such and
more general situations. These inequalities are well known from studies of the set-covering
polytope, their application becomes evident by the observation that the MLST problem can
be seen as a set covering problem where each node v needs to be covered by a label from
the set L(v) and the corresponding edges fulfilling further constraints (i.e., forming a valid
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a ab b c c

1 2 3

V \{1, 2, 3}

Figure 4: Example of fractional label solution.

spanning tree). In particular, we use a MIP-based heuristic to separate valid inequalities for
the set-covering problem with coefficients {0, 1}, which have been proposed in [24].

Let Λ be a |V | × |L| matrix with λij = 1 if node i is labeled with j, λij = 0 otherwise. A
|V ′| × |L′| submatrix Λ′ of Λ of odd order is called an odd hole if it contains exactly two ones
per row and column. For the subproblem Λ′z′ ≥ 1 the inequality

∑

l∈L′
zl ≥ |L′| + 1

2 (3.24)

is valid. In [24] the authors showed that this inequality even remains valid if H ≤ Λ′ ≤ H∗,
where H is an odd hole, and H∗ being a special matrix closely related to H. Finding an odd
hole H to a given matrix Λ′ is NP-hard, but if we have found such an odd hole, it is possible
to decide in polynomial time whether H ≤ Λ′ ≤ H∗ and therefore (3.24) is valid [24].

3.3.1. Separation-Heuristic for the Odd Hole Inequalities

In order to cut off fractional label solutions, we consider the subset of nodes V ′′ ⊆ V whose
labels are either fractional or zero in the current LP solution. Let Λ̃

V ′′
denote the matrix where

each entry λij represents the current LP value of label j associated to node i, or −1 if the label
j is not associated to node i. Let further ΛV ′′

denote the corresponding matrix representing
which labels are assigned to particular nodes, that is, its elements λV ′′

ij are one if label j ∈
L(δ(i)), and zero otherwise. Our goal is to heuristically search for odd holes in ΛV ′′

, based on

the information provided by matrix Λ̃
V ′′
, and then transform the related inequality to a valid

inequality for the initial problem by the according lifting steps. We are hence searching for an
odd hole H with H ≤ ΛV ′ ,L′

with V ′ ⊆ V ′′, L′ ⊆ L′′ and |V ′| = |L′| being odd. By the procedure
of [24] we can now decide if

∑

l∈L′′\L′
γl · zl +

∑

l∈L′
zl ≥ |L′| + 1

2 (3.25)

is valid for ΛV ′ ,L′
. The term

∑
l∈L′′\L′ γl · zl results from lifting all labels which are associated to

a node v ∈ V ′ but are not part of the odd hole induced by V ′ and L′. The lifting-coefficient
is denoted by γl, the calculation of its value will be discussed later on. By the following MIP
(3.26)–(3.38) we aim to find subsets V ′ and L′ forming an odd hole and for which inequality
(3.25) is violated according to the current LP solution. For this purpose we define a bipartite
directed graph G̃ = (Ṽ = Ṽ1 ∪ Ṽ2, Ã), Ṽ1 = V ′′, Ṽ2 = L′′, Ã = {(i, j) | i ∈ V ′′ ∧ j ∈ L′′(V ′′)}.
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Each cycle with length 4 · k + 2 corresponds to an odd cycle w.r.t. the number labels, and is,
therefore, a potential odd hole. Variables xij ∈ {0, 1} represent the arcs from node i ∈ V ′′ to
label j ∈ L′′(V ′′) and are intended to finally describe a valid odd hole. Variables aij ∈ [0, 1]
denote other arcs which connect nodes i ∈ V ′′ being part of the odd hole (described by the x
variables) and other labels not being part of the odd hole. For each arc a = (i, j) the coefficient
ca is the LP value of label j if j ∈ L′ and zero otherwise;

max k + 1 −
∑

i∈Ã
xi · ci −

∑

i∈Ã
ai · ci, (3.26)

s.t. k + 1 −
∑

i∈Ã
xi · ci −

∑

i∈Ã
ai · ci ≥ 0, (3.27)

∑

i∈Ã
xi = 4 · k + 2, (3.28)

∑

(i,j)∈δ−(j)

xij ≤ 1 ∀j ∈ L′′, (3.29)

∑

(i,j)∈δ+(i)

xij ≤ 1 ∀i ∈ V ′′, (3.30)

∑

(i,j)∈A
xij −

∑

(j,k)∈A
xjk = 0 ∀i ∈ Ṽ , (3.31)

yi − yj + 1 +
∣∣∣Ṽ

∣∣∣ · xij −
∣∣∣Ṽ

∣∣∣ · zi ≤
∣∣∣Ṽ

∣∣∣, (3.32)
∑

i∈V
zi ≤ 1, (3.33)

∑

(k,i)∈δ−(i)

xki −
∑

(j,l)∈δ−(j)

xjl ≤ aij ∀(i, j) ∈ Ã, (3.34)

yi ≤
∣∣∣Ṽ

∣∣∣ ∀i ∈ Ṽ , (3.35)

zi ∈ {0, 1} ∀i ∈ Ṽ , (3.36)

xi ∈ {0, 1} ∀i ∈ Ã, (3.37)

0 ≤ ai ≤ 1 ∀i ∈ Ã. (3.38)

From (3.28), we can see that (|L′| + 1)/2 = k + 1. As we prefer solutions where (3.25) is
considerably violated, we maximize the difference between (|L′| + 1)/2 and

∑
i∈Ã xi · ci. The

term
∑

i∈Ã ai · ci gives a lower bound for the sum over all labels we need to lift w.r.t. some
particular x. The correct coefficient which is to be discussed later on, cannot be formulated
by a linear expression. By (3.27), this particular expression is enforced to be larger than zero,
as the resulting inequality to be added to the MLST-MIP would not be violated otherwise.
As a consequence, all feasible solutions to MIP (3.26)–(3.38) fulfill this property which is
desirable for the heuristic separation procedure discussed subsequently. For each node on
the cycle, the numbers of ingoing and outgoing arcs are limited to one by equations (3.29)
and (3.30) and flow-conservation is imposed for each node (3.31). The integer variables yi
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la
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v2

v3
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ld
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lf

Figure 5: Example for a solution to (3.26)–(3.38). The octagon-shaped cycle constitutes the odd hole. The
dashed arcs do not contribute to the objective function, whereas the solid arcs (which connect nodes to
labels) contribute with the LP-value of the target-label as coefficient. The further arcs provide a lower
bound for the contribution of all labels that need to be lifted in order to obtain a valid inequality for the
initial problem.

assign numeric values to the nodes i ∈ V ′′ ∪ L′′ and prevent multiple cycles in the solution by
Miller-Tucker-Zemlin-inequalities (3.32), that is, by enforcing for each arc on the cycle (except
the one going out from the node i with zi = 1 (3.33)) to have at least one smaller source than
target node. By Inequalities (3.34) all arcs connecting nodes i ∈ V ′ which are part of the odd
cycle to be determined (by x-variables) to nodes j ∈ L′′(i) not being part of this cycle. Finally,
yi, for all i ∈ Ṽ are enforced to be smaller than |Ṽ | (3.35), and the node selection and arc
variables are required to be Boolean (3.36), (3.37). The a-variables only need to be restricted
to 0 ≤ ai ≤ 1, for all i ∈ Ã, as they are implicitly integer by Inequalities (3.34). Figure 5 shows
an example for a solution to the MIP. The arcs selected by x-variables are depicted in red
color, the dashed ones do not contribute to the objective function. The blue arcs correspond
to the “lifting-arcs”, selected by a-variables.

Given a solution to the MIP (3.26)–(3.38), we still need to check, if (3.25) is valid for
this particular solution. The z-variables are derived by taking all labels j ∈ L′ selected by
xij in (3.26)–(3.38). For this purpose, we use the criteria described in [24]—here we only
provide a rough explanation. An arc connecting two nodes on the odd cycle determined by
(3.26)–(3.38) which is not part of the cycle itself is called a chord. In order to fulfill (3.24), and
therefore (3.25) after the lifting, all chords of the odd cycle must be compatible. The chord set
is called compatible, if (1) no chord induces even cycles (w.r.t. nodes i ∈ V ′ on the cycle), and
(2) every pair of crossing chords is compatible. Compatibility for crossing chords is defined
on the basis of the mutual distances of their adjacent nodes on the cycle. Let aij = (vi, lj), vi ∈
V ′, lj ∈ L′ and ahk = (vh, lk), vh ∈ V ′, lk ∈ L′ be two crossing chords. We now remove lj and
its two incident arcs from the odd hole. The chords are compatible, if the unique path from vi

to vh has an even distance w.r.t. nodes in V ′ in this graph.
It remains to determine the lifting-coefficients γl. If a lifting-label only covers one node

of the odd hole, the sum over all labels necessary to feasibly cover all nodes from the odd hole
does not change. The label can, however, be used alternatively for one of the odd hole labels
and therefore gets coefficient one. Otherwise, if one lifting-label covers all odd hole nodes,
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the coefficient must equal the right-hand side of (3.25), that is, γl = (|L′| + 1)/2 in this case.
Suppose some lifting-label l covers νl odd hole nodes, then the size of the remaining odd hole
nodes is (|L′| + 1)/2 = �|L′|/2�. These remaining nodes are still adjacent to two labels in the
odd hole, pairwise having one label in common. We can, therefore, derive the following value
for the lifting coefficient

γl =
⌈ |L′|

2

⌉
−
⌈ |L′| − νl

2

⌉
=
|L′| + 1

2
−
( |L′| + 1

2
−
⌈νl
2

⌉)
=
⌈νl
2

⌉
. (3.39)

During the branch-and-bound MLST solution process, the MIP (3.26)–(3.38) is solved
with very tight runtime limits. As soon as an incumbent integer solution has been found,
this solution is checked for validity by the mentioned criterions. Obtained valid MLST-
inequalities are added immediately. Then the incumbent integer solution is rejected to the
MIP solver by which we enforce to search for further solutions. This process continues until
the time limit is reached.

3.4. Heuristics

In order to improve the overall performance—in particular the ability to generate feasible
integer solutions fast—we embed a primal heuristic into the framework. For this purpose we
adopt the well-known MVCA heuristic [1, 3, 6]. This heuristic can create feasible solutions
from scratch, but also complete partial solutions given by label set L̃ ⊂ L. Creating complete
solutions is important for the acquisition of strong upper bounds to efficiently cut-off
unprofitable branches of the B&B-tree from the beginning on, but also to obtain an initial
solution for BCP (Section 3.5). On the other hand the MVCA heuristic can be used to obtain
feasible integer solutions and therefore upper bounds for each B&B-node based upon some
variables already fixed to integer values. Many further fast metaheuristic techniques do exist
for this problem, which could also easily be integrated into this framework. This is however
beyond the scope of this work, as we primarily focus onmathematical programmingmethods
for the MLST.

3.5. Pricing Problem

Problem formulations with a large (usually exponential) number of variables are frequently
solved by column generation or branch-and-price algorithms. Such algorithms start with a
restricted set of variables and add potentially improving variables during the solution process
on demand. If these algorithms also include cutting-plane generation, we call them branch-
and-cut-and-price (BCP). Although the presented MLST formulation only has a polynomial
number of label variables, these particular variables typically lead to extensive branching on
them, requiring a special treatment. Hence we based a solution approach on BCP, operating
on just a subset of variables. Such approaches follow the same idea as sparse graph techniques
as proposed in [25].

We obtain the restricted master problem by replacing the complete set of labels L by a
subset L′ ⊆ L in (3.1). The set L′ is required to imply a feasible solution and is obtained by
the MVCA heuristic. Then, new variables and, therefore, columns potentially improving the
current objective function value in the simplex tableau are created during the B&B process.
These new variables are obtained from the solution of the pricing problemwhich is based upon
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Figure 6: Example graph used in the following to show the properties of the formulations listed in Table 1.
The set of labels is given by L = {a, b, c, d, e}, the optimal solution value is f = 3.

the dual variables. Let πi denote the dual variables corresponding to constraints (3.2), and μi

the ones corresponding to (3.22). They reflect a measure for the costs of some particular edge
e w.r.t. the currently selected labels (πe), and the costs of connecting some node v w.r.t. the
currently selected labels (μv). The pricing problem is to find a variable with negative reduced
costs

cl = 1 −
∑

(i,j)∈A(l)

πij −
∑

i∈V (l)

μi, (3.40)

within the set of all labels L. HereA(l) denotes all arcs having label l and V (l) denotes the set
of nodes incident to arcs with label l. Finding such a variable or even the one with minimal
reduced costs can be done by enumeration. Although only a polynomial number of labels
is involved, we may benefit from the pricing scheme as we only need to solve smaller LPs
within the B&B procedure.

3.6. Polyhedral Comparison

In this section we compare various formulations resulting from combining the equations
and inequalities from Section 3 as listed in Table 1. The only formulation just requiring a
polynomial number of constraints is the flow-formulation with roughlyO(|L|+3·|E|) variables
andO(|L|+ |V |+ |E|) constraints. The directed cut-formulation requiresO(|L|+3 · |E|) variables
and an exponential number of constraints. Also, the modified “epsilon” cut-formulation
requires exponentially many constraints, but only has O(|L| + |E|) variables.

In the following we use the graph depicted in Figure 6 to show the properties of the
polyhedra defined by the formulations listed in Table 1.

Proposition 3.2.

P SCFtno � P SCFtn � P SCF t � P SCF. (3.41)

Proof. As P SCFtn contains the same equations and inequalities as P SCFt , but additionally
Inequalities (3.22); thus we have P SCFtn ⊆ P SCFt . Figure 7 shows an LP solution of P SCFt that
is not contained in P SCFtn , which implies P SCFtn � P SCFt . Such an LP solution may still contain
fractional labels due to odd holes, as shown in Figure 5, by which we obtain P SCFtno � P SCFtn .
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Figure 7: LP solution of SCFt with objective value f lp = 1 + 5/8 (la = 1/4, lb = 3/8, lc = 1). The blue arcs
depict the flow variables with their according LP-values. Corresponding values for the edge variables are
also shown. This solution is not valid for SCFtn, as the sum over the set of labels adjacent to node v2 is
smaller than one.
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Figure 8: LP solution of DCutt with objective value f lp = (2 + 1)/6 (lb = 1/2, lc = 2/3, la + ld + le ≥
1,w.l.o.g. la = 1). The green arcs depict the arc variables with their according LP values. The solution is
not valid for DCuttn, as the sum over the set of labels adjacent to node v5 is smaller than one.

If the values of the edge and label variables in Figure 7 are decreased as much as
possible for SCF, we obtain la = 1/4, lb = 38, and lc = 1/8 implying f lp = 3/4. As SCFt
contains the additional Inequality (3.5), we can conclude that P SCFt � P SCF.

Proposition 3.3.

PDCuttno � PDCuttn � PDCutt � PDCut. (3.42)

Proof. The proof of PDCuttno � PDCuttn � PDCutt follows by the same reasoning as for the
proof of Proposition 3.2. Figure 8 shows that PDCuttn � PDCutt . However, the requirement
that each directed cut must have a value greater than one already implies that

∑
e∈δ(v) xe ≥

1, for all v ∈ V . This implies
∑

e∈E xe ≥ |V | − 1. An LP-solution to DCut may contain more
edges than an LP-solution to DCutt, which does, however, due to the minimality not affecting
the objective value of the LP-relaxation, that is, PDCutt

z = PDCut
z .

Let PS denote the projection of some polyhedron P to a subspace S.
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Figure 9: LP solution of ECt with objective value f lp = 3/2 + ε (la = ε, lb = 1/2, lc = 1). The solution is not
valid for ECtn, as the sum over the set of labels adjacent to nodes v1 and v2 are smaller than one.

Proposition 3.4.

PECtno
x � PECtn

x � PECt
x � PEC

x . (3.43)

Proof. By applying the same reasoning as for the proofs of the last two theorems, we can prove
Proposition 3.4. Figure 9 gives an example for PECtn/⊆PECt .

In the following we will show the relations between the formulations SCFt, DCutt and
ECt.

Theorem 3.5.

PDCutt
x � P SCFt

x � PECt
x . (3.44)

Proof. Figures 8, 7, and 9 already showed that the polyhedrons are not equal. To prove that
PDCutt
x � P SCFt

x , we show a procedure to transform all x-variables of any valid LP-solution of
DCutt to a valid x-solution in SCFt. For all i, j ∈ V , there exists at least one path from i to
j with all edges (k, l) having LP-values xlp

kl
greater than zero. If we consider a network with

source i and target j, only containing edges e being part of one of these paths and having
capacities xlp

e there exists a flow of at least one unit from s to t. We now arbitrarily select a
root node r (w.l.o.g. r = 0) and show how to construct a valid flow permitting the same x-
configuration for SCFt as in DCutt. For an edge e to have LP value xlp

e , a corresponding flow
variable must be larger than x

lp
e /(n − 1). We start by setting all flow variables to zero. Then,

for each node ti, i = 1, . . . , n − 1 we construct all paths from r to ti, considering all edges with
x
lp
e > 0. Summing up x

lp
e > 0 for all edges e on these paths may not exceed n−1, as the number

of edges is fixed by (3.5)when i = 2. However, this summay usually be smaller than n−1, say
λl, but integer. Now, we backtrack all these paths and set their flow values to minimal values
according to flow conservation (3.7) and LP-values for the edges. Note that

∑
i∈δ(r) fri = λ1

after this first step. We then continue this procedure for all further ti, i = 2, . . . , n−1. According
to (3.5) in step tk at most (n−1)−∑l<k λk not yet considered edges need to be added, possibly
increasing

∑
i∈δ(r) fri by exactly this amount. We finally end up with all nodes being feasibly

connected and
∑

i∈δ(r) fri = (n − 1) fulfilling (3.6) and flow conservation (3.7) being fulfilled
at each node.
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Figure 10: Valid LP-solution of ECtn with f lp = 2 + ε (la = 1, lb = ε, lc = 1) that is not valid for SCFtn. It can
however be transformed to such, by increasing x3,4 to 1/5, yielding f lp = 2 + 1/5. It is easy to see, that this
solution is still not valid for DCuttn.

It is trivial to see that the x-variables of a valid LP-solution of SCFt are also valid for
ECt.

Theorem 3.6.

PDCuttn
x � P SCFtn

x � PECtn
x . (3.45)

Proof. In the proof of Theorem 3.5, we already showed how each projection of a solution of
DCutt to the subspace defined by the x-variables can be transformed into a solution of SCFt,
and likewise SCFt to ECt. The only difference of the polyhedrons considered in Theorem 3.6
are the constraints (3.22), which clearly do not affect this transformation. It needs to be shown
that the polyhedrons are not equal, which is done by the example in Figure 10. The depicted
ECtn solution is not valid for SCFtn or DCutn, respectively, although the node-label constraints
(3.22) are fulfilled. However, the value of edge {3, 4} can be increased to 1/5 (implying the
need to decrease the values of edges {1, 4} and {3, 6} accordingly), which makes the solution
feasible to SCFtn. Nevertheless, this solution remains infeasible to DCuttn, by which we have
shown the theorem.

4. Results

In this section we present a comprehensive computational comparison of the presented
formulations and separation strategies, and compare our methods to other work. Three
different data sets are used for our computational tests. We start by a description of the test
instances used for our experiments and tests.

4.1. Test Instances

The first set is the publicly available benchmark set used in [6, 10, 12, 13]. We refer to this data
set as Set-I. It consists of graphswith 100 to 500 nodes and various densities d ∈ {0.2, 0.5, 0.8},
defined by |E| = d · (|V | · (|V | − 1)/2), and different numbers of labels |L| = l/4, l ∈ {1, 2, 4, 5}.
The instances are organized in groups of ten for each configuration of d and |L| for each
|V |. So far, primarily metaheuristics have been applied to this instance set, but also an exact
algorithm based on A∗-search, as reported in [12].
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Table 1: MLST formulations resulting from combining the equations and inequalities from Section 3.
Further variants are given by the use of the components listed in the second part of the table, to be used as
index for the formulation to be used with.

Abbrevation Involved equations and inequalities
SCF (3.1), (3.2), (3.6)–(3.8)
MCF (3.1), (3.2), (3.5), (3.9), (3.8)
DCut (3.1), (3.2), (3.5), (3.11), (3.12), (3.13), (3.14)
EC (3.1), (3.2), (3.5), (3.20), (3.18)
MTZ (3.1), (3.2), (3.16)
CEF (3.1), (3.2), (3.15)
n Node-label-constraints (3.22)
ñ Extended node-label-constraints (3.23)
t Tree search, that is, fixed number of edges (3.5)
s Strong linkage (3.21)
c Cycle elimination inequalities (3.15)
o Odd hole inequalities
p Variable pricing

The second test set Set-II is created following the specification of the instances used in
[16], in order to obtain comparable results to theMIPs presented therein. This set is organized
in four groups. In contrast to SET-I, the instances of the first two groups just contain very few
labels, that is, |L| ∈ {5, 10, 20}. The number of nodes ranges from 20 to 1000, and network
densities are set to |E| = 4 · |V |. Moreover, this set contains various grid-graphs (group 3) of
sizes 2×10, 4×5, 2×18, 3×12, and 6×6. The fourth group contains instanceswith |V | ∈ {20, 50}
and |L| = |V | and various network densities d ∈ {0.2, 0.5, 0.8}.

In addition to SET-I and SET-II we created a further test set Set-III containing also
instances with multiple labels assigned to the edges. The construction is performed by first
creating a spanning tree and assigning labels from set L∗ ⊆ L to its edges. Usually L∗ = L if not
stated otherwise, but |L∗| � |L| is used to study the effect of having optimal solutions with
significantly less labels than for completely random label assignment for the particular graph
properties. Next further edges are added until a specified density d · (n · (n− 1))/2, 0 < d ≤ 1
or specified number of edges m := |E| is reached. Then, we randomly assign all labels not
used yet. In the final step we iterate over all edges and assign further labels by uniform
random decision. Parameter a specifies how many labels can be assigned to each edge,
if not stated otherwise a = 1. Instead of directly using |L| as a parameter, we may also
specify the size of the label set by parameter r = |L|/|E|, 0 < r ≤ 1. In contrast to the
other instances, the instances of SET-III have relatively high values of r, that is, r = 1/4
and r = 3/4. Although such instances are less likely to occur within practical applications
regarding telecommunication network design, they may be relevant for other scenarios, as
for instance the compression model based on the MLST problem presented in [17].

4.2. Test Environment

The generic framework presented in Section 3 has been implemented in C++ (�������)
within the SCIP framework [26]. The standard plugins have been used for all computational
tests unless explicitly stated otherwise. In addition some branch-and-cut algorithms (not
involving any pricing procedures) have been implemented within the ILOG CONCERT



Advances in Operations Research 19

Ta
b
le

2:
C
om

p
ar
is
on

of
se
le
ct
ed

va
ri
an

ts
of

fo
rm

u
la
ti
on

s
E
C
,D

C
u
t,
an

d
SC

F
on

th
e
in
st
an

ce
s
fr
om

SE
T-
Iw

it
h
|V

|=
10
0.

|L
|=

50
|L
|=

10
0

|L
|=

12
5

d
al
g

cn
t

op
t

ob
j

t
bb

n
cu

ts
cn

t
op

t
ob

j
t

bb
n

cu
ts

cn
t

op
t

ob
j

t
bb

n
cu

ts

0.
2

E
C

10
10

6.
7

7
23
4

65
10

10
9.
7

62
38
76

10
72

9
9

11
.2

12
3

93
65

28
43

E
C
t

10
10

6.
7

8
34
7

19
6

10
10

9.
7

25
24
82

41
4

9
9

11
.2

34
37
69

87
1

E
C
tn

10
10

6.
7

4
10
0

17
3

10
10

9.
7

11
85
7

33
9

9
9

11
.2

16
14
01

40
2

E
C
n

10
10

6.
7

0
24

3
10

10
9.
7

9
12
98

17
9

9
9

11
.2

33
26
48

59
4

E
C
sn

10
10

6.
7

0
31

3
10

10
9.
7

6
11
27

34
9

9
11
.2

12
25
70

89
D
C
ut

10
10

6.
7

80
11
67

69
1

10
10

9.
7

10
13

14
37
8

77
98

9
8

11
.2

14
70

19
64
6

11
40
3

D
C
u
t t

10
10

6.
7

12
5

14
58

95
4

10
10

9.
7

47
8

66
76

39
19

9
9

11
.2

74
0

10
27
3

64
50

D
C
u
t tn

10
10

6.
7

21
12
7

11
6

10
10

9.
7

86
10
21

72
9

9
9

11
.2

11
5

14
26

10
17

D
C
u
t n

10
10

6.
7

11
90

96
10

10
9.
7

57
11
57

59
9

9
9

11
.2

17
6

31
86

18
68

D
C
u
t s
n

10
10

6.
7

12
94

89
10

10
9.
7

51
11
90

51
6

9
9

11
.2

12
9

30
86

15
36

SC
F

10
2

6.
8

70
28

13
69
30

−1
10

0
10
.3

72
00

19
85
4

−1
9

0
12
.4

72
00

17
29
6

−1
SC

F t
10

1
6.
7

71
33

14
32
26

−1
10

0
10
.3

72
00

10
13
19

−1
9

0
11
.7

72
00

11
96
83

−1
SC

F t
n

10
10

6.
7

15
83

−1
10

10
9.
7

67
67
3

−1
9

9
11
.2

85
10
33

−1
SC

F n
10

10
6.
7

15
83

−1
10

10
9.
7

63
67
3

−1
9

9
11
.2

84
10
33

−1

0.
5

E
C

10
10

3.
0

17
46

5
10

10
4.
7

37
4

55
84

28
2

10
10

5.
2

44
6

53
07

63
0

E
C
t

10
10

3.
0

14
69

14
8

10
10

4.
7

17
5

50
39

33
0

10
10

5.
2

12
9

32
49

38
2

E
C
tn

10
10

3.
0

9
7

13
6

10
10

4.
7

34
52
4

16
5

10
10

5.
2

39
45
2

27
7

E
C
n

10
10

3.
0

0
2

0
10

10
4.
7

8
22
1

4
10

10
5.
2

9
12
7

4
E
C
sn

10
10

3.
0

0
2

0
10

10
4.
7

9
17
3

4
10

10
5.
2

11
37
0

12
D
C
ut

10
10

3.
0

21
7

48
8

27
2

10
8

4.
8

38
58

15
81
0

72
14

10
10

5.
2

31
50

93
16

41
87

D
C
u
t t

10
10

3.
0

19
0

46
5

25
6

10
9

4.
7

34
71

11
77
0

62
46

10
10

5.
2

17
94

53
66

31
75

D
C
u
t tn

10
10

3.
0

56
13

28
10

10
4.
7

40
1

11
33

45
0

10
10

5.
2

30
5

63
3

34
2

D
C
u
t n

10
10

3.
0

27
12

28
10

10
4.
7

26
1

15
97

51
8

10
10

5.
2

25
0

11
79

40
1

D
C
u
t s
n

10
10

3.
0

27
23

55
10

10
4.
7

21
6

15
39

39
0

10
10

5.
2

22
5

12
34

36
2

SC
F

10
10

3.
0

85
0

14
75

−1
10

0
5.
0

72
00

11
45
3

−1
10

0
5.
8

72
00

75
86

−1
SC

F t
10

10
3.
0

72
2

15
97

−1
10

6
4.
7

53
19

23
61
8

−1
10

0
5.
5

72
00

18
16
9

−1
SC

F t
n

10
10

3.
0

22
1

−1
10

10
4.
7

21
1

61
7

−1
10

10
5.
2

17
1

29
8

−1
SC

F n
10

10
3.
0

20
1

−1
10

10
4.
7

20
3

61
7

−1
10

10
5.
2

17
6

29
8

−1

0.
8

E
C

10
10

2.
0

12
2

12
10

10
3.
0

16
1

84
8

98
10

10
4.
0

99
9

43
10

20
E
C
t

10
10

2.
0

11
7

19
6

10
10

3.
0

36
14
2

17
9

10
10

4.
0

13
5

23
44

13
0

E
C
tn

10
10

2.
0

14
4

10
2

10
10

3.
0

24
11

18
7

10
10

4.
0

44
39
4

83
E
C
n

10
10

2.
0

0
1

0
10

10
3.
0

1
3

2
10

10
4.
0

17
10
2

0
E
C
sn

10
10

2.
0

0
1

0
10

10
3.
0

2
4

1
10

10
4.
0

17
51

0
D
C
ut

10
10

2.
0

25
5

97
65

10
9

3.
1

23
67

24
40

12
86

10
0

4.
0

72
00

69
58

35
25

D
C
u
t t

10
10

2.
0

19
8

12
7

13
1

10
9

3.
1

19
97

27
02

16
35

10
9

4.
0

50
83

63
63

34
10

D
C
u
t tn

10
10

2.
0

87
7

19
10

10
3.
0

31
4

37
0

21
6

10
10

4.
0

92
3

11
93

40
8

D
C
u
t n

10
10

2.
0

40
5

22
10

10
3.
0

41
8

93
2

45
7

10
10

4.
0

78
0

18
53

54
6

D
C
u
t s
n

10
10

2.
0

33
3

29
10

10
3.
0

12
8

16
1

93
10

10
4.
0

74
0

21
54

66
8

SC
F

10
10

2.
0

27
4

10
3

−1
10

0
3.
6

72
00

28
26

−1
10

0
4.
0

72
00

27
52

−1
SC

F t
10

10
2.
0

33
5

−1
10

0
4.
0

72
00

30
35

−1
10

0
4.
0

72
00

28
49

−1
SC

F t
n

10
10

2.
0

28
1

−1
10

10
3.
0

29
2

−1
10

10
4.
0

24
3

34
9

−1
SC

F n
10

10
2.
0

28
1

−1
10

10
3.
0

29
2

−1
10

10
4.
0

23
0

34
9

−1



20 Advances in Operations Research

Ta
b
le

3:
C
om

p
ar
is
on

of
se
le
ct
ed

va
ri
an

ts
of

fo
rm

u
la
ti
on

s
E
C
,D

C
u
t,
an

d
SC

F
on

th
e
in
st
an

ce
s
fr
om

SE
T-
Iw

it
h
|V

|=
20
0.

|L
|=

10
0

|L
|=

20
0

|L
|=

25
0

d
al
g

cn
t

op
t

ob
j

t
bb

n
cu

ts
cn

t
op

t
ob

j
t

bb
n

cu
ts

cn
t

op
t

ob
j

t
bb

n
cu

ts

0.
2

E
C

10
8

8.
0

37
70

52
68
2

16
62
1

10
0

12
.9

72
00

42
28
9

22
30
3

10
0

15
.4

72
00

32
00
9

18
66
9

E
C
t

10
7

8.
0

45
41

43
75
6

76
65

10
0

13
.6

72
00

43
29
8

80
07

10
0

16
.0

72
00

43
79
2

72
93

E
C
tn

10
10

7.
9

12
96

14
25
4

53
9

10
2

13
.3

68
78

60
64
3

14
36

10
1

14
.9

67
61

46
29
6

16
58

E
C
n

10
10

7.
9

20
1

83
79

5
10

5
12
.2

51
46

18
90
33

97
3

10
3

13
.8

63
87

14
45
97

52
07

E
C
sn

10
10

7.
9

19
1

83
22

4
10

7
12
.1

43
31

18
22
37

81
10

3
13
.9

61
53

25
01
29

15
8

D
C
ut

10
0

8.
8

72
00

10
92
9

89
71

10
0

14
.5

72
00

38
50

36
32

10
0

18
.9

72
00

36
81

35
48

D
C
ut

t
10

0
9.
0

72
00

43
92

40
36

10
0

14
.5

72
00

28
96

28
66

10
0

16
.1

72
00

26
53

26
22

D
C
ut

tn
10

7
8.
1

54
87

13
05
6

80
36

10
0

13
.0

72
00

55
88

47
63

10
0

15
.7

72
00

39
82

35
52

D
C
ut

n
10

9
8.
0

33
98

14
65
3

86
37

10
0

12
.9

72
00

15
87
7

12
20
0

10
0

14
.9

72
00

11
20
7

94
94

D
C
ut

sn
10

9
8.
0

29
96

14
93
7

76
58

10
0

12
.7

72
00

19
28
0

13
56
9

10
0

14
.7

72
00

13
71
2

10
83
7

SC
F

10
0

9.
3

72
00

10
17

−1
10

0
14
.5

72
00

63
4

−1
10

0
16
.8

72
00

55
9

−1
SC

F t
10

0
8.
9

72
00

32
04

−1
10

0
13
.5

72
00

47
33

−1
10

0
15
.8

72
00

53
26

−1
SC

F t
n

10
8

8.
0

33
53

93
62

−1
10

0
12
.4

72
00

68
54

−1
10

0
14
.1

72
00

43
43

−1
SC

F n
10

8
8.
0

34
98

83
08

−1
10

0
12
.4

72
00

64
68

−1
10

0
14
.1

72
00

40
99

−1

0.
5

E
C

10
10

3.
4

76
9

20
82

69
10

0
5.
8

72
00

86
03

53
9

10
0

6.
5

72
00

53
80

45
6

E
C
t

10
10

3.
4

14
52

27
44

55
8

10
0

5.
8

72
00

10
30
7

64
7

10
0

6.
4

72
00

90
84

10
24

E
C
tn

10
10

3.
4

57
0

46
9

67
8

10
7

5.
5

42
49

65
50

90
8

10
0

6.
5

72
00

15
87
0

86
1

E
C
n

10
10

3.
4

25
12
6

1
10

9
5.
4

12
91

14
28
4

12
10

8
6.
4

43
23

57
71
5

31
E
C
sn

10
10

3.
4

19
92

1
10

9
5.
4

11
76

14
65
3

6
10

9
6.
4

40
49

62
37
1

18
D
C
ut

9
0

4.
1

72
00

10
86

72
8

10
0

7.
2

72
00

32
3

26
5

10
0

7.
9

72
00

27
2

21
5

D
C
ut

t
9

0
4.
3

72
00

61
3

46
9

10
0

7.
9

72
00

29
8

29
0

10
0

8.
2

72
00

33
5

30
7

D
C
ut

tn
10

8
3.
5

51
35

95
4

48
1

10
0

6.
6

72
00

55
7

34
9

10
0

7.
4

72
00

42
0

28
2

D
C
ut

n
10

8
3.
5

31
32

10
79

50
7

10
0

6.
2

72
00

17
95

92
9

10
0

7.
1

72
00

10
97

56
4

D
C
ut

sn
10

9
3.
4

20
54

97
9

41
2

10
0

6.
0

72
00

20
72

91
2

10
0

6.
7

72
00

14
32

67
1

SC
F

10
0

4.
3

72
00

12
4

−1
10

0
7.
0

72
00

69
−1

10
0

7.
8

72
00

54
−1

SC
F t

10
0

3.
9

72
00

20
7

−1
10

0
6.
5

72
00

16
6

−1
10

0
7.
3

72
00

15
0

−1
SC

F t
n

10
10

3.
4

11
02

27
0

−1
10

0
5.
7

72
00

82
8

−1
10

0
6.
5

72
00

83
9

−1
SC

F n
10

10
3.
4

12
04

27
0

−1
10

0
5.
7

72
00

74
9

−1
10

0
6.
4

72
00

72
8

−1

0.
8

E
C

10
10

2.
6

28
03

29
68

16
10

0
4.
0

72
00

11
32

16
10

0
5.
0

72
00

16
40

48
E
C
t

10
10

2.
6

30
40

36
50

50
5

10
0

4.
0

72
00

21
46

65
6

10
2

4.
4

70
64

67
63

75
7

E
C
tn

10
9

2.
7

27
39

10
3

61
3

10
10

4.
0

50
38

68
19

63
4

10
9

4.
1

29
02

13
31

77
6

E
C
n

10
10

2.
6

76
2

73
10

10
4.
0

11
22

59
75

1
10

10
4.
0

60
9

33
24

3
E
C
sn

10
10

2.
6

28
1

1
10

10
4.
0

91
1

48
45

1
10

10
4.
0

30
1

77
7

1
D
C
ut

4
0

3.
0

72
00

15
2

13
4

10
0

8.
2

72
01

10
5

11
0

10
0

7.
1

72
00

69
70

D
C
ut

t
10

0
3.
9

72
00

15
1

17
1

10
0

5.
2

72
02

11
0

11
2

10
0

6.
8

72
00

11
1

11
2

D
C
ut

tn
10

3
3.
3

63
44

14
2

67
10

0
4.
6

72
00

17
7

10
2

10
0

5.
5

72
00

12
0

98
D
C
ut

n
10

3
2.
7

65
28

11
03

44
4

10
0

4.
2

72
00

32
9

17
0

10
0

4.
9

72
00

15
8

12
6

D
C
ut

sn
10

6
2.
6

51
35

79
9

29
2

10
0

4.
0

72
00

55
6

22
7

10
0

5.
0

72
00

22
6

14
0

SC
F

10
0

2.
9

72
00

69
−1

10
0

4.
9

72
00

35
−1

10
0

5.
5

72
00

33
−1

SC
F t

10
2

2.
8

59
23

54
−1

10
0

4.
3

72
00

58
−1

10
0

5.
1

72
01

35
−1

SC
F t

n
10

9
2.
6

41
77

74
−1

10
1

4.
0

69
29

39
1

−1
10

3
4.
7

67
12

26
4

−1
SC

F n
10

9
2.
6

41
83

79
−1

10
1

4.
0

69
73

37
5

−1
10

2
4.
7

68
71

22
9

−1



Advances in Operations Research 21

Ta
b
le

4:
C
om

p
ar
is
on

of
se
le
ct
ed

va
ri
an

ts
of

fo
rm

u
la
ti
on

s
E
C
,D

C
u
ta

nd
SC

F
on

th
e
in
st
an

ce
s
fr
om

SE
T-
II
.

|L
|=

5
|L
|=

10
|L
|=

20
|V

|,|
E
|

al
g

cn
t

op
t

ob
j

t
bb

n
cu

ts
cn

t
op

t
ob

j
t

bb
n

cu
ts

cn
t

op
t

ob
j

t
bb

n
cu

ts

20
0,

80
0

E
C

10
10

3.
0

0
1

0
10

10
5.
0

0
3

0
10

10
7.
9

0
13

2
E
C
t

10
10

3.
0

0
2

23
6

10
10

5.
0

0
8

31
5

10
10

7.
9

2
47

58
2

E
C
tn

10
10

3.
0

0
2

15
7

10
10

5.
0

0
6

24
9

10
10

7.
9

1
20

51
5

E
C
n

10
10

3.
0

0
1

0
10

10
5.
0

0
1

0
10

10
7.
9

0
6

2
E
C
sn

10
10

3.
0

0
1

0
10

10
5.
0

0
1

0
10

10
7.
9

0
6

1
D
C
ut

10
10

3.
0

1
6

38
10

10
5.
0

4
14

63
10

10
7.
9

14
12
7

17
1

D
C
u
t t

10
10

3.
0

3
6

26
10

10
5.
0

7
18

37
10

10
7.
9

18
16
1

17
3

D
C
u
t tn

10
10

3.
0

0
4

29
10

10
5.
0

2
7

36
10

10
7.
9

8
21

63
D
C
u
t n

10
10

3.
0

0
2

24
10

10
5.
0

0
6

49
10

10
5.
0

0
6

49
D
C
u
t s
n

10
10

3.
0

0
1

0
10

10
5.
0

0
1

0
10

10
7.
9

0
6

1
SC

F
10

10
3.
0

2
2

−1
10

10
5.
0

9
32

−1
10

10
7.
9

69
80
0

−1
SC

F t
10

10
3.
0

3
2

−1
10

10
5.
0

9
32

−1
10

10
7.
9

71
80
0

−1
SC

F t
n

10
10

3.
0

0
1

−1
10

10
5.
0

1
3

−1
10

10
7.
9

6
16

−1
SC

F n
10

10
3.
0

0
1

−1
10

10
5.
0

1
3

−1
10

10
7.
9

6
16

−1

50
0,

20
00

E
C

10
10

3.
5

0
1

0
10

10
5.
9

0
2

0
10

10
9.
9

0
12

0
E
C
t

10
10

3.
5

3
2

62
1

10
10

5.
9

6
7

83
3

10
10

9.
9

16
44

11
29

E
C
tn

10
10

3.
5

2
1

54
1

10
10

5.
9

5
6

76
3

10
10

9.
9

16
25

13
85

E
C
n

10
10

3.
5

0
1

0
10

10
5.
9

0
1

0
10

10
9.
9

0
8

0
E
C
sn

10
10

3.
5

0
1

0
10

10
3.
5

0
1

0
10

10
9.
9

0
7

0
D
C
ut

10
10

3.
5

5
5

34
10

10
5.
9

14
14

76
10

10
9.
9

48
15
2

18
4

D
C
u
t t

10
10

3.
5

13
7

25
10

10
5.
9

28
15

34
10

10
9.
9

68
18
1

14
4

D
C
u
t tn

10
10

3.
5

2
3

16
10

10
5.
9

9
8

33
10

10
5.
9

9
8

33
D
C
u
t n

10
10

3.
5

1
2

46
10

10
5.
9

3
6

67
10

10
9.
9

20
20

13
9

D
C
u
t s
n

10
10

3.
5

1
2

82
10

10
5.
9

3
6

60
10

10
9.
9

20
19

12
9

SC
F

10
10

3.
5

10
3

−1
10

10
5.
9

28
18

−1
10

10
9.
9

37
2

66
1

−1
SC

F t
10

10
3.
5

11
3

−1
10

10
5.
9

29
18

−1
10

10
9.
9

38
4

66
1

−1
SC

F t
n

10
10

3.
5

0
1

−1
10

10
5.
9

4
3

−1
10

10
9.
9

20
20

−1
SC

F n
10

10
3.
5

0
1

−1
10

10
5.
9

3
3

−1
10

10
9.
9

18
20

−1

10
00
,4

00
0

E
C

10
10

4.
1

0
1

0
10

10
6.
6

0
1

0
10

10
11
.3

0
13

0
E
C
t

10
10

4.
1

20
1

11
82

10
10

6.
6

46
6

17
62

10
10

11
.3

12
1

54
35
14

E
C
tn

10
10

4.
1

30
0

1
38
23

10
10

6.
6

23
4

6
26
60

10
10

11
.3

10
8

26
29
09

E
C
n

10
10

4.
1

0
1

0
10

10
6.
6

0
1

0
10

10
11
.3

0
7

0
E
C
sn

10
10

4.
1

0
1

0
10

10
6.
6

0
1

0
10

10
11
.3

0
6

0
D
C
ut

10
10

4.
1

16
5

40
10

10
6.
6

47
13

25
9

10
10

11
.3

14
4

19
1

27
5

D
C
u
t t

10
10

4.
1

54
6

22
10

10
6.
6

90
20

36
10

10
11
.3

24
0

18
9

15
0

D
C
u
t tn

10
10

4.
1

7
3

23
10

10
6.
6

26
7

26
10

10
11
.3

10
3

36
47

D
C
u
t n

10
10

4.
1

12
1

18
4

10
10

6.
6

13
5

19
5

10
10

11
.3

64
26

35
5

D
C
u
t s
n

10
10

4.
1

11
1

17
8

10
10

6.
6

47
6

49
5

10
10

11
.3

57
24

25
3

SC
F

10
10

4.
1

30
2

−1
10

10
6.
6

99
14

−1
10

10
11
.3

12
43

41
6

−1
SC

F t
10

10
4.
1

31
2

−1
10

10
6.
6

96
14

−1
10

10
11
.3

13
03

41
6

−1
SC

F t
n

10
10

4.
1

1
1

−1
10

10
6.
6

12
3

−1
10

10
11
.3

52
31

−1
SC

F n
10

10
4.
1

1
1

−1
10

10
6.
6

12
3

−1
10

10
11
.3

48
31

−1



22 Advances in Operations Research

Table 5: Comparison of selected variants of formulations EC, DCut and SCF on the instances from SET-III
with |V | = 100; α = 1.

|L| = 1/4 · |E| |L| = 3/4 · |E|
d alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts

0.05

EC 10 10 19.6 2 1892 1722 10 0 61.6 7200 108393 124719

ECt 10 10 19.6 23 6887 6026 10 1 51.3 6480 178187 195559

ECtn 10 10 19.6 14 4944 4486 10 2 51.2 5760 163875 182801

ECn 10 10 19.6 2 1491 1246 10 0 62.5 7200 103413 119245

ECsn 10 10 19.6 1 1313 966 10 0 55.5 7200 133833 151889

DCut 10 10 19.6 35 5214 3026 10 0 50.7 7200 367146 337417

DCutt 10 10 19.6 34 4174 2487 10 4 49.8 4381 76629 55867

DCuttn 10 10 19.6 12 1148 759 10 6 49.8 3195 87152 60318

DCutn 10 10 19.6 13 1437 941 10 0 50.4 7200 337882 315950

DCutsn 10 10 19.6 1 1313 966 10 0 50.4 7200 360801 343056

SCF 10 3 19.6 5576 987720 −1 10 0 51.5 7200 1815207 −1
SCFt 10 9 19.6 1354 513872 −1 10 5 50.0 3823 3081605 −1
SCFtn 10 10 19.6 31 5160 −1 10 8 49.9 1508 800971 −1
SCFn 10 10 19.6 49 9415 −1 10 0 50.6 7200 894051 −1

0.2

EC 10 1 15.1 7099 208082 117362 10 0 45.1 7200 62300 63102

ECt 10 10 14.8 675 54742 23790 10 4 36.5 6326 138547 137549

ECtn 10 10 14.8 344 36386 16745 10 2 37.1 6450 120465 121687

ECn 10 2 15.3 6369 136657 94927 10 0 46.0 7200 40163 41557

ECsn 10 4 14.8 4894 231148 95062 10 0 39.2 7200 65167 63256

DCut 10 0 16.3 7200 48073 35316 10 0 38.9 7200 119789 87861

DCutt 10 6 14.8 3196 55169 37144 10 6 35.8 3706 61762 47626

DCuttn 10 10 14.8 835 13677 8698 10 7 35.8 2432 36099 27852

DCutn 10 0 15.7 7200 39132 29700 10 0 38.5 7200 48576 40239

DCutsn 10 1 15.6 7134 78339 57546 10 0 38.0 7200 88645 73235

SCF 10 0 17.0 7200 14435 −1 10 0 40.5 7200 39472 −1
SCFt 10 0 15.5 7200 173479 −1 10 0 37.8 7200 480980 −1
SCFtn 10 9 14.8 2401 31073 −1 10 1 36.1 6495 152260 −1
SCFn 10 0 15.2 7200 63078 −1 10 0 38.4 7200 29479 −1

0.5

EC 10 0 15.8 7200 69554 36260 10 0 38.8 7200 54153 55751

ECt 10 8 13.3 2570 62487 30425 10 5 30.7 4064 51442 50552

ECtn 9 8 13.2 1400 34106 18769 10 4 31.0 5038 59605 57375

ECn 10 0 16.2 7200 35944 18323 10 0 38.9 7200 28984 31127

ECsn 10 0 13.7 7200 296782 88962 10 0 33.8 7200 63430 64801

DCut 10 0 15.4 7200 7645 4291 10 0 36.0 7200 31008 19324

DCutt 10 6 13.5 5152 9463 9036 10 6 30.3 4331 16003 13285

DCuttn 10 5 13.5 4557 9195 8543 10 7 30.2 3552 12337 9780

DCutn 10 0 15.4 7200 5807 3785 10 0 36.6 7200 6935 5131

DCutsn 10 0 14.4 7200 12834 8154 10 0 32.4 7200 14108 9913

SCF 10 0 16.4 7200 1345 −1 10 0 34.5 7200 3160 −1
SCFt 10 0 14.6 7200 19313 −1 10 0 32.3 7200 35869 −1
SCFtn 10 5 13.5 4756 9842 −1 10 2 30.7 5842 16960 −1
SCFn 10 0 14.5 7200 6765 −1 10 0 33.1 7200 2327 −1

framework [27] for comparison purposes. As LP solver ILOG CPLEX (in version 12.0) [27]
has been used for both frameworks.

All computational tests have been performed on an Intel Xeon E5540 processor
operating at 2.53GHz and having 24GB for total 8 cores. The operation system is Ubuntu
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Table 7: Comparison of selected variants of formulations EC, DCut and SCF on the grid graph instances
from SET-III with |E| ≈ 4 · |V |.

|V | = 10 × 10 |V | = 20 × 20

|L| alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts

30

EC 10 10 9.2 4 2041 1540 10 10 11.5 61 7496 400

ECt 10 10 9.2 6 2641 1843 10 10 11.5 183 7547 5819

ECtn 10 10 9.2 4 1639 1544 10 10 11.5 91 3757 4231

ECn 10 10 9.2 1 1369 656 10 10 11.5 17 3602 200

ECsn 10 10 9.2 1 1281 601 10 10 11.5 17 3558 175

DCut 10 10 9.2 61 4948 3240 2 2 11.0 5224 6233 37505

DCutt 10 10 9.2 93 6196 4135 10 10 11.5 3029 22956 19238

DCuttn 10 10 9.2 34 1892 1710 10 10 11.5 627 4058 10961

DCutn 10 10 9.2 18 1512 1364 1 0 12.0 7200 39 24766

DCutsn 10 10 9.2 19 1356 2314 1 0 13.0 7200 26 23113

SCF 10 10 9.2 815 118270 −1 10 0 11.8 7200 22192 −1
SCFt 10 10 9.2 641 90448 −1 10 0 11.7 7200 22091 −1
SCFtn 10 10 9.2 17 1280 −1 10 10 11.5 251 3127 −1
SCFn 10 10 9.2 12 1008 −1 10 10 11.5 218 3076 −1

50

EC 9 8 13.0 1018 54653 41036 10 9 17.1 4341 464602 31132

ECt 9 7 13.1 1959 99397 73687 10 0 17.0 7200 301858 167539

ECtn 9 8 13.0 1578 83996 67834 10 10 17.0 3834 212265 107170

ECn 9 9 12.9 129 25299 16378 10 10 17.0 1347 208221 11217

ECsn 9 9 12.9 66 22339 13131 10 10 17.0 1087 193213 8470

DCut 9 9 12.9 867 67360 37873 7 0 17.3 7200 29390 47832

DCutt 9 9 12.9 1032 74718 42088 10 0 17.2 7200 32248 33668

DCuttn 9 9 12.9 302 20596 12907 10 0 17.0 7200 86172 64236

DCutn 9 9 12.9 336 28974 17613 7 0 16.3 7200 3345 36785

DCutsn 9 9 12.9 207 20951 13323 7 0 15.7 7200 648 23682

SCF 9 0 13.3 7200 368322 −1 10 0 18.5 7200 13103 −1
SCFt 9 0 13.2 7200 741954 −1 10 0 18.5 7200 19592 −1
SCFtn 9 9 12.9 215 21632 −1 10 0 17.1 7200 131296 −1
SCFn 9 9 12.9 299 34004 −1 10 8 17.1 5532 169723 −1

80

EC 10 0 19.5 7200 134608 118377 10 0 25.0 7200 199143 139246

ECt 10 0 19.9 7200 231789 208661 10 0 24.9 7200 143214 104486

ECtn 10 0 19.6 7200 229619 202787 10 0 24.8 7200 146616 112030

ECn 10 0 19.5 7200 162192 138904 10 0 24.6 7200 305748 138953

ECsn 10 0 18.9 7200 228167 176741 10 0 24.6 7200 299188 134344

DCut 10 0 18.8 7200 252826 225273 10 0 25.5 7200 31756 32402

DCutt 10 0 18.9 7200 248123 216513 9 0 19.8 7200 24121 25391

DCuttn 9 0 18.7 7200 283625 220940 10 0 25.2 7200 43604 44755

DCutn 10 0 18.8 7200 239489 197073 8 0 24.6 7200 54226 62124

DCutsn 10 0 18.9 7200 248966 213157 7 0 25.1 7200 25262 46754

SCF 10 0 19.7 7200 285092 −1 10 0 27.0 7200 9767 −1
SCFt 10 0 19.2 7200 948572 −1 10 0 28.0 7200 22180 −1
SCFtn 10 0 19.0 7200 689593 −1 10 0 25.3 7200 68435 −1
SCFn 10 0 18.8 7200 863039 −1 10 0 25.2 7200 99643 −1
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Table 8: Comparison of formulations ECt and DCutt with Inequalities (3.22), indicated with index n, and
with additional Inequalities (3.23), indicated with index ñ.

ECtn/DCuttn ECtñ/DCuttñ
|V |, |E|, a, |L| cnt opt obj t bbn cuts cnt opt obj t bbn cuts

100, 247, 1, 61
10 10 19.6 14 4944 4486 10 10 19.6 0 499 492

10 10 19.6 12 1148 759 10 10 19.6 19 1577 1034

100, 247, 1, 185
10 2 51.2 5760 163875 182801 10 7 50.0 2174 65781 68723

10 6 49.8 3195 87152 60318 10 5 49.8 4284 86769 62183

100, 900, 1, 247
10 10 14.8 344 36386 16745 10 10 14.8 177 18352 6741

10 10 14.8 835 13677 8698 10 10 14.8 1949 26973 16494

100, 900, 1, 742
10 2 37.1 6450 120465 121687 10 7 35.8 2403 48038 45398

10 7 35.8 2432 36099 27852 10 8 35.7 1822 20522 15153

100, 2475, 1, 618
10 8 13.2 1400 34106 18769 9 8 13.2 1801 46469 22363

10 5 13.5 4557 9195 8543 10 4 13.6 5417 10773 9933

100, 2475, 1, 1856
10 4 31.0 5038 59605 57375 10 7 30.3 2506 27241 24957

10 7 30.2 3552 12337 9780 10 8 30.2 2907 3715 3689

100, 247, 2, 61
10 10 16.6 12 4707 4080 10 10 16.6 1 601 498

10 10 16.6 16 1162 787 10 10 16.6 21 1348 907

100, 247, 2, 185
10 7 35.0 2375 102179 93532 10 10 34.7 9 3269 3274

10 10 34.7 61 4661 3696 10 10 34.7 19 1425 1226

100, 900, 2, 247
10 10 11.9 629 42052 20637 10 10 11.9 912 55106 20864

10 10 11.9 681 5906 5180 10 10 11.9 1523 16435 12011

100, 900, 2, 742
10 3 26.3 5242 119550 107358 10 7 25.8 3265 69685 53785

10 9 25.6 1489 24931 17663 10 9 25.6 1583 17076 12240

100, 2475, 2, 618
10 10 10.9 506 22467 6432 10 10 10.9 558 37153 3921

10 5 11.2 5664 11813 9786 10 1 11.7 7050 12503 11444

100, 2475, 2, 1856
10 4 23.2 5213 61908 53294 10 3 23.2 5757 73145 57657

10 5 22.8 4259 8850 8481 10 8 22.5 3649 4185 4254

100, 247, 5, 61
10 10 10.5 0 306 359 10 10 10.5 0 248 306

10 10 10.5 5 115 134 10 10 10.5 11 316 321

100, 247, 5, 185
10 6 20.6 3467 143690 125295 10 9 20.5 1202 60571 49983

10 10 20.5 698 45870 25073 10 10 20.5 498 36774 20977

100, 900, 5, 247
10 10 7.8 128 12441 651 10 10 7.8 288 39324 825

10 10 7.8 1628 15222 9552 10 5 7.8 5675 66499 42125

100, 900, 5, 742
10 3 15.1 5140 139983 90176 9 4 15.0 4344 155589 73198

10 6 14.8 4406 44628 32312 10 4 14.9 5171 50434 38692

100, 2475, 5, 618
10 10 6.9 255 6604 532 10 10 6.9 624 27936 785

10 6 7.1 5089 5318 3529 10 0 7.4 7200 8303 6431

100, 2475, 5, 1856
10 6 13.0 3472 72582 38165 10 6 13.0 3848 103635 41651

10 4 13.1 5743 7934 7389 10 1 13.6 7191 8419 8617

10 × 10, 360, 1, 30
10 10 9.2 4 1639 1544 10 10 9.2 6 2641 1843

10 10 9.2 34 1892 1710 10 10 9.2 90 6196 4135

10 × 10, 360, 1, 50
9 8 13.0 1578 83996 67834 9 8 13.0 1877 102421 75692

9 9 12.9 302 20596 12907 9 9 12.9 1034 74718 42088

10 × 10, 360, 1, 80
10 0 19.6 7200 229619 202787 10 0 19.9 7200 251957 226941

10 0 18.7 7200 283625 220940 9 0 18.8 7200 283288 241399

20 × 20, 1520, 1, 30
10 10 11.5 91 3757 4231 10 10 11.5 176 7547 5819

10 10 11.5 627 4058 10961 10 10 11.5 2866 22956 19238

20 × 20, 1520, 1, 50
10 10 17.0 3834 212265 107170 10 1 17.0 7194 326051 178058

10 0 17.0 7200 86172 64236 10 0 17.2 7200 34742 35779

20 × 20, 1520, 1, 80
10 0 24.8 7200 146616 112030 10 0 24.9 7200 150529 110120

10 0 25.2 7200 43604 44755 10 0 20.6 7200 25718 26997
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Table 9: Comparison of various formulations based on cycle elimination, that is, the Miller-Tucker-Zemlin
formulation MTZ and the CEF on the instances from SET-III with |V | = 100, a = 1. Furthermore results for
connectivity-based formulations (EC and DCut), enhanced by cycle elimination inequalities are reported.

|L| = 1/4 · |E| |L| = 3/4 · |E|
d alg cnt opt obj t bbn cuts cec cnt opt obj t bbn cuts cec

0.05

MTZtn 10 5 19.7 3931 502063 −1 −1 10 7 49.9 3112 721279 −1 −1
CEFtn 10 6 19.6 3000 135407 −1 16638 10 10 49.8 901 94205 −1 6389

CEFtñ 10 5 19.6 3998 155632 −1 17642 10 7 49.9 2208 208113 −1 14321

ECnc 10 10 19.6 14 1353 121 59 10 0 50.3 7200 532836 170798 1783

ECtnc 10 10 19.6 12 915 153 96 10 7 49.8 2566 62656 44607 5502

DCutnc 10 10 19.6 13 1433 931 55 10 0 50.4 7200 376649 351288 1630

DCuttnc 10 10 19.6 13 1029 700 94 10 7 49.8 2291 36745 27748 2859

0.2

MTZtn 10 7 15.0 4276 45276 −1 −1 10 5 35.8 4272 87003 −1 −1
CEFtn 10 7 14.9 3217 36913 −1 3298 10 7 35.7 2313 91215 −1 5422

CEFtñ 10 3 15.2 5307 61399 −1 5690 10 7 35.7 2668 40566 −1 2478

ECnc 10 0 15.6 7200 31835 143 118 10 0 37.8 7200 59337 1533 30

ECtnc 10 10 14.8 701 10687 196 670 10 8 35.7 1871 51079 15544 3426

DCutnc 10 0 15.9 7200 39225 29755 171 10 0 39.4 7200 47294 39206 3

DCuttnc 10 10 14.8 737 11214 7212 581 10 8 35.7 1537 21721 13795 1400

0.5

MTZtn 10 5 13.5 5555 7818 −1 −1 10 3 30.9 5658 13851 −1 −1
CEFtn 10 5 13.6 5038 8686 −1 763 10 7 30.1 4444 19156 −1 1653

CEFtñ 10 3 13.6 5791 8399 −1 1063 10 5 30.5 5570 6646 −1 711

ECnc 10 0 14.1 7200 3463 26 35 10 0 32.7 7200 6497 118 25

ECtnc 10 7 13.5 3865 8772 116 913 10 9 30.1 2112 9120 1344 665

DCutnc 10 0 15.6 7200 5353 3395 24 10 0 38.2 7200 6964 5357 6

DCuttnc 10 8 13.5 3394 7452 6433 675 10 9 30.0 2427 7475 5918 576

9.10 with Linux-kernel 2.6.31. All runs have been performed in single-threaded mode, CPU
times have been limited to 7200 seconds, unless stated otherwise.

4.3. Comparison of Described Methods

In this section, we present a comparison of the described formulations based on computa-
tional tests. Furthermore, we analyze the impact of particular “components” to each of the
formulations. These components consist of the node-label-inequalities (3.22), the extended
node-label-inequalities (3.23), the strong linkage of the edges to the edges (3.21), which can,
however, only be used if only one label is assigned to the edges and the number of edges is not
fixed by (3.5). Table 1 provides an overview of these components and corresponding notation.
After the comprehensive analysis and comparison of the particular methods in this section,
we compare the results of the newly proposed methods to previous work in Section 4.4.

4.3.1. MIP Formulations

In this section, we primarily focus on the comparison of formulations EC, DCut and SCF.
However, particularities like node-label-constraints (3.22), or fixed number of edges (3.5), or
the direct linkage of labels to edges (3.21), may significantly change the picture regarding the
superiority of one method over another one. For this reason, we present the results not only
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for three formulations, but rather four to five variants of each formulation. Recall, that directly
linking the labels to edges by (3.21) is only possible for instances with one label assigned to
each edge (3.21), that is, a = 1 and is generally not possible for flow-formulations. In order
not to be biased towards some particular class of instances, we report these results for each
of the three instance sets.

Tables 2 and 3 show the results for instances of SET-I with |V | = 100 and |V | = 200.
These instances include graphs with various densities d ∈ {0.2, 0.5, 0.8}, where |E| = d ·
(|V | · (|V | − 1)/2), and different numbers of labels, that is, |L| = 1/2 · |V |, |L| = |V |, and
|L| = 5/4 · |V |. In these tables, as well as in the following ones, we report the following
entities for each method and group of instances. Columns “cnt” contain the number of
instances within each group, which is 10 in most of the cases. The reason for less than ten
instances reported is not being able to finish some instances with particular formulations
due to high memory requirements. Columns “opt” report the number of instances that have
been solved and proved to be optimal within the time limit. In columns “obj” the average
objective value for all instances in the group is reported. If all instances have not been solved
to optimality, this value corresponds to the average value of feasible solutions that have been
found within the timelimit. Average running times in seconds are then reported in columns
“t”. The average number of branch-and-bound nodes is listed in columns “bbn”, the average
number of generated cuts in column “cuts”. Results of the fastest method(s) for each group
are emphasized with bold letters.

From Tables 2 and 3 we can already observe that the difficulty of solving these
instances is strongly correlated to the objective function values of the instances. Higher
values, in particular those larger than ten, require significantly more B&B-nodes, and the
separation of more cuts. This also implies longer average running times. This property holds
for all of the considered formulations. The results in Tables 2 and 3 show that formulation
ECsn consistently gives the best results for these instances. The single-commodity flow
formulations show a slightly better performance than the directed-cut formulations for most
of the instances.

The strength of the node-label-inequalities (3.22) is also demonstrated by the results
in Tables 2 and 3. Their addition to the plain formulations does not only yield a significant
speedup, but also enables to solve more instances regarding the set with |V | = 200. The
difference between Inequalities (3.22) and their extended form, given by Inequalities (3.23) is
examined in Section 4.3.2. Regarding Equation (3.5) no clear conclusion can be drawn from
these instances. If, however, combinations of these components are considered, the variants
only using the node-label-constraints are superior in most of the cases. For formulations EC
and DCut it is also possible to directly link the edges to the labels by (3.21). In most of the
cases, this yields the best results, when combined with the node-label-inequalities for both
formulations, and in particular in combination with EC the overall best results.

Table 4 reports the results for the same formulations for the instances of SET-II. These
instances have the major difference to contain only graphs of extremely low density d and
just very few labels. Again, we can observe a clear superiority of formulations ECsn and
ECn, which are able to solve all these instances with average running times of less than half
second.

In Tables 5, 6, and 7, results for the instances from SET-III are reported. Table 5 shows
the results for instances with |V | = 100 and a = 1, that is, one single label assigned to the
edges. As alreadymentioned in Section 4.1, this instances differ from the previous ones in the
way that they contain a higher number of labels, that is, r = 1/4 and r = 3/4 with r = |L|/|E|.
It can be observed that it is beneficial to limit the number of edges to |V |−1 by (3.5) in this case.
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Thus, the stronger LP-relaxation implied by this restriction is beneficial in the case of higher
values of r. For instances with r = 1/4 formulation EC still shows the best performance, but
DCut provides better results in the case of r = 3/4. Hence, the strong LP-relaxation becomes
even more important if |L| is in the same order of magnitude as |E|.

With a single exception, the same effect can be observed for the instances with a ∈
{2, 5} reported in Table 6. The effect of more than one label being assigned to the edges seems
to make the problem easier to solve, but the effect is relatively small. It is important to note,
that directly linking the labels to the edges, which was beneficial for the instances with a = 1,
cannot be applied to instances with larger a.

Table 7 shows the result for grid-graphs with 100 and 400 nodes and |L| ∈ {30, 50, 80}.
The average optimal objective value on these graphs is relatively high, which makes them
difficult to solve. However, all instances with |L| ∈ {30, 50} could be solved to optimality by
formulation ECsn, which showed the overall best performance on this class of instances.

Having now analyzed the main variations of the discussed formulations we draw our
attention to further approaches and enhancements that have been proposed in Section 3.

4.3.2. Further Methods

In Section 4.3.1 the node-label-inequalities (3.22) have been shown to be of utter importance
for a strong formulation. In Section 3.3 we have also presented an extension of this idea,
where two nodes are considered instead of just one. This led to the class of Inequalities (3.23).
Table 8 shows a comparison of formulations ECt and DCutt with on the one hand the node-
label-inequalities (3.22) and on the other hand additional Inequalities (3.23). In particular for
formulation ECt these further inequalities turn out to be useful in many cases. They do not
only speedup the solution process, but moreover frequently enable to solve more instances to
provable optimality. However, also the opposite is often the case. It is therefore not possible to
decide which approach is superior over the other based on the available data. On grid-graphs
Inequalities (3.23) have not been beneficial at all.

Further formulations, considered in Section 3, are based on the property that a tree
must not contain a cycle by definition. Formulation MTZtn requires just a polynomial
number of variables, but contains constraints with infamous “Big-M” constants, as the SCF
formulation does. On the contrary CEF contains an exponential number of Inequalities (3.15),
which need to be separated as cutting-planes as for the DCut or EC formulation. Due to
their fast separation by a simple shortest-path computation, other formulations may benefit
from additionally using cycle-elimination cuts. Corresponding results are reported in Table 9,
column “cec” lists the average number of separated cycle-elimination cuts. Whereas MTZtn

and CEFtn show a relatively weak performance on the instances with r = 1/4, they provide
good results in the case of r = 3/4. In particular, for the low-density graphs CEFtn could solve
all instances to optimality, which no other method was able to do. For the dense graphs best
results are obtained by DCuttnc and ECtnc.

Table 10 shows the results that have been obtained by including primal heuristics
into the branch-and-bound algorithm. Formulations ECtn, ECsn, DCuttn, and DCutsn are
considered for this purpose. As indicated by preliminary experiments it turned out to be
advantageous only to use the primal heuristics in the root node, as they were generally not
able to find improved solutions based on the information provided by the LP-solution in
other B&B-nodes. Embedding MVCA in B&B has a positive effect w.r.t. the variants “tn” of
formulations EC and DCut, but a negative impact concerning variants “ts”.
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Table 12: Branch-and-cut-and-price results for a special class of instances containing many labels and
isolated optima with a relatively low number of labels.

|V |, |E|, a, |L| Method cnt opt obj t bbn cuts priced

100, 247, 2, 61

ECtn 10 10 5.0 0 1 32 −1
DCuttn 10 10 5.0 0 1 7 −1
ECtnp 10 10 5.0 0 1 64 14
DCuttnp 10 10 5.0 0 1 13 17

100, 247, 2, 185

ECtn 10 10 10.0 0 1 1 −1
DCuttn 10 10 10.0 0 1 2 −1
ECtnp 10 10 10.0 0 1 2 11
DCuttnp 10 10 10.0 0 1 3 7

100, 900, 2, 247

ECtn 10 10 5.0 0 1 30 −1
DCuttn 10 10 5.0 1 1 15 −1
ECtnp 10 10 5.0 0 1 72 29
DCuttnp 10 10 5.0 0 2 19 28

100, 900, 2, 742

ECtn 10 10 10.0 0 14 42 −1
DCuttn 10 10 10.0 8 13 25 −1
ECtnp 10 10 10.0 2 497 328 30
DCuttnp 10 10 10.0 12 32 41 25

100, 2475, 2, 618

ECtn 10 10 5.0 1 2 46 −1
DCuttn 10 10 5.0 19 4 15 −1
ECtnp 10 10 5.0 1 6 51 27
DCuttnp 10 10 5.0 11 4 19 26

100, 2475, 2, 1856

ECtn 10 10 10.0 2 15 48 −1
DCuttn 10 10 10.0 40 11 23 −1
ECtnp 10 10 10.0 10 237 174 24
DCuttnp 10 10 10.0 36 23 26 16

300, 22425, 2, 1856

ECtn 10 10 10.0 228 1 273 −1
DCuttn 10 10 10.0 617 1 6 −1
ECtnp 10 10 10.0 105 1 257 2
DCuttnp 10 10 10.0 459 1 13 2

300, 35880, 2, 8970

ECtn 9 6 6.7 3846 1 600 −1
DCuttn 9 8 8.9 4113 1 17 −1
ECtnp 9 9 10.0 880 1 674 14
DCuttnp 9 9 10.0 1131 1 20 12

300, 35880, 2, 26910

ECtn 10 10 10.0 627 1 254 −1
DCuttn 10 10 10.0 2735 1 10 −1
ECtnp 10 10 10.0 259 1 262 2
DCuttnp 10 10 10.0 1212 1 18 3

4.3.3. Odd hole Inequalities

We now draw our attention to the odd hole inequalities. Within preliminary tests, we
determined a tight timelimit of 10−3 seconds for solving the MIP (3.26)–(3.38) to show a
generally good performance. Two algorithmic variants are considered for the results reported
in Table 11. The first version (denoted with index o) simply adds the found valid cutting-
planes to the MIP. Alternatively, the set of labels corresponding to the obtained odd hole



32 Advances in Operations Research

Table 13: Overview of all test instances from SET-I, SET-II, and SET-III and corresponding best formula-
tions.

Set |V | d/|E| |L| a Best formulation
Set-I 100 0.2 50 1 ECsn

100 ECsn, ECsnh

125 ECsn

0.5 50 ECsn, ECn, ECsnh

100 ECn, ECsnh

125 ECn, ECsnh

0.8 50 ECsn, ECn

100 ECn, ECsnh

125 ECsn, ECn, ECsnh

200 0.2 100 ECsn, ECsnh

200 ECsn

250 ECsn, ECsnh

0.5 100 ECsn

200 ECsn

250 ECsn, ECsnh

0.8 100 ECsn

200 ECsn, ECsnh

250 ECsn, ECsnh

Set-II 1000 4000 5 EC∗ (several variants having same performance)
10 EC∗ (several variants having same performance)
20 EC∗ (several variants having same performance)

Set-III 100 0.05 1/4 · |E| Several methods having same performance
3/4 · |E| CEFtn

0.2 1/4 · |E| ECtñ

3/4 · |E| DCuttnc
0.5 1/4 · |E| ECtño

3/4 · |E| ECtnc

0.05 1/4 · |E| 2 EC∗ (several variants having same performance)
3/4 · |E| ECtñob, ECtnc

0.2 1/4 · |E| ECtñob, ECtnh

3/4 · |E| DCuttñobc
0.5 1/4 · |E| ECtnob

3/4 · |E| ECtnoc

0.05 1/4 · |E| 5 Several methods having t ≤ 0
3/4 · |E| DCuttñc

0.2 1/4 · |E| ECtn

3/4 · |E| DCuttnco
0.5 1/4 · |E| ECtn, ECtnh

3/4 · |E| ECtnob, ECtnh

10 × 10 30 1 EC∗ (several variants having same performance)
50 ECsnob

80 DCutsñob (best relaxation)
20 × 20 30 ECsn, ECn

50 ECsn

80 DCuttñ (best relaxation)
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Table 14: Running times in seconds reported in [16], rounded to integers.

l 5 10 20 5 10 20 5 10 20
n 20 50 100
MLSTb 0 0 0 0 0 1 0 1 3
MLSTc 0 0 0 0 0 1 0 1 7
MLST-CL 0 0 0 0 0 0 0 0 1
l 5 10 20 5 10 20 5 10 20
n 200 500 1000
MLSTb 0 3 15 1 9 136 2 43 621
MLSTc 1 6 34 4 38 371 5 132 1994
MLST-CL 0 0 6 0 0 71 0 0 360
l 5 10 20 5 10 20 5 10 20
n 20 50 — — —
MLSTb 0 0 0 10 9 8 — — —
MLSTc 0 0 0 6 9 4 — — —
MLST-CL 0 0 0 45 0 0 — — —

Table 15: Running times for instances that have been created according to specification from [16]. The first
column lists the method for the corresponding row. In parenthesis the corresponding method from [16] is
reported.

l 5 10 20 5 10 20 5 10 20
n 20 50 100
avg (|LT |) 2.0 2.5 3.8 2.4 3.3 5.0 3.0 4.1 6.6
SCF (MLSTb) 0 0 0 0 0 0 0 0 19
SCFtn 0 0 0 0 0 0 0 0 1
DCuttn 0 0 0 0 0 0 0 0 1
ECtn 0 0 0 0 0 0 0 0 0
ECsn 0 0 0 0 0 0 0 0 0
A∗ (MLST-CL) 0 0 0 0 0 0 0 0 1
l 5 10 20 5 10 20 5 10 20
n 200 500 1000
avg (|LT |) 3.0 5.0 7.9 3.5 5.9 9.9 4.1 6.6 11.3
SCF (MLSTb) 3 3 9 71 29 384 31 96 1303
SCFtn 0 1 6 0 4 19 1 13 51
DCuttn 0 0 4 1 3 21 12 13 67
ECtn 0 0 0 0 0 0 0 0 0
ECsn 0 0 0 0 0 0 0 0 0
A∗ (MLST-CL) 0 0 13 0 0 159 0 0 609
d 0.2 0.5 0.8 0.2 0.5 0.8 — — —
n 20 50 — — —
avg (|LT |) 7.1 3.5 2.2 3.0 3.9 7.6 — — —
SCF (MLSTb) 0 0 0 23 40 25 — — —
SCFtn 0 0 0 3 0 1 — — —
DCuttn 0 0 0 5 2 2 — — —
ECn 0 0 0 0 0 0 — — —
ECsn 0 0 0 0 0 0 — — —
A∗ (MLST-CL) 0 0 0 67 0 0 — — —
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Table 16: Comparison to results reported in [12] for the A∗-algorithm. Columns MLSTECn list the average
total running times for each group of this particular MIP in seconds, columns A∗ list the running times in
seconds (rounded to integers) reported in [12], at which the best solution was found.

|V | |L| d avg (|LT |) A∗ MLSTECtn opt |V | |L| d avg (|LT |) A∗ MLSTECtn opt

100 25 0.8 1.8 0 0 10 400 100 0.8 2.0 n/a 60 10

100 25 0.5 2.0 0 0 10 400 100 0.5 2.2 n/a 61 10

100 25 0.2 4.5 0 0 10 400 100 0.2 5.8 (∗) n/a NF 8

100 50 0.8 2.0 0 0 10 400 200 0.8 3.0 n/a 817 10

100 50 0.5 3.0 0 0 10 400 200 0.5 NA n/a NA NA

100 50 0.2 6.7 10 0 10 400 200 0.2 9.3 (∗) n/a NF 0

100 100 0.8 3.0 0 2 10 400 400 0.8 — n/a NF 0

100 100 0.5 4.7 2 9 10 400 400 0.5 6.2 (∗) n/a NF 0

100 100 0.2 9.7 NF 6 10 400 400 0.2 14.6 (∗) n/a NF 0

100 125 0.8 4.0 0 17 10 400 500 0.8 — n/a NF 0

100 125 0.5 5.2 180 11 10 400 500 0.5 7.3 (∗) n/a NF 0

100 125 0.2 11.0 NF 12 10 400 500 0.2 17.1 (∗) n/a NF 0

200 50 0.8 2.0 0 3 10 500 125 0.8 2.0 0 157 10

200 50 0.5 2.2 0 2 10 500 125 0.5 2.6 0 196 10

200 50 0.2 5.2 5 10 10 500 125 0.2 6.3 (∗) NF NF 2

200 100 0.8 2.6 0 28 10 500 250 0.8 3.0 5 2192 10

200 100 0.5 3.4 0 19 10 500 250 0.5 4.3 (∗) NF NF 1

200 100 0.2 7.9 NF 191 10 500 250 0.2 10.3 (∗) NF NF 0

200 200 0.8 4.0 23 911 10 500 500 0.8 4.8 (∗) NF NF 0

200 200 0.5 — NF NF 9 500 500 0.5 6.9 (∗) NF NF 0

200 200 0.2 — NF NF 7 500 500 0.2 16.4 (∗) NF NF 0

200 250 0.8 4.0 21 301 10 500 625 0.8 5.1 (∗) NF NF 0

200 250 0.5 — NF NF 9 500 625 0.5 8.4 (∗) NF NF 0

200 250 0.2 — NF NF 3 500 625 0.2 19.0 (∗) NF NF 0

can also be used to deduce a branching rule. This was motivated by the observation that
many lifted odd hole cutting planes, found by MIP (3.26)–(3.38), were not strong enough to
define facets w.r.t. the involved label variables. As a consequence, these variables remained
fractional after the cutting-plane was added to the MIP. However, odd holes provide
important information and references to situations where special configurations of label-
variables artificially reduce the LP-relaxation. Hence it is likely that immediately branching
over these variables may be beneficial. This is done by inserting all labels of the odd hole into
a global queue, and always branch over such a variable unless the queue is empty. Index ob
denotes this approach in Table 11. Odd hole cuts are separated with lowest priority amongst
the user-defined cutting-planes, and are only separated in levels of the B&B-tree which are
multiples of ten.

The results in Table 11 show that the odd hole inequalities are beneficial in many
cases, in particular when used to deduce branching rules from the corresponding label-
variables. For instances from SET-I and SET-II, almost no odd holes have been found with
the described parameter settings. For dense graphs it is less likely to find odd holes that are
violated by the current LP-solution, as each node is incident to many edges. Hence |L(v)| is
in the same order of magnitude as |V | in the expected case. This implies many nonzero lifting
coefficients in Inequalities (3.25), reducing the chance of finding a valid inequality that is
actually violated by the current LP-solution. Hence, the separation of odd hole inequalities is
most beneficial for sparse graphs. Also the number of labels compared to the number of edges
has an impact on the efficiency of the odd hole separation. If the number of labels is relatively
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low, the expected label frequency νl will be high. This implies high values for the lifting
coefficients γl, which in turn reduces the chance of finding violated odd hole inequalities. If,
on the other hand, the number of edges is too high, odd holes are generally less likely to
occur, as the sets L(v)∩L(u), for all v, u ∈ V can be expected to be very small or even empty.

4.3.4. Branch-and-Cut-and-Price

Additionally, using the column generation approach within the B&C framework, that is,
branch-and-cut-and-price (BCP) is only beneficial for a very special class of instances. For
most of the instances almost all variables are priced in during the solution process. The
computational overhead for solving the pricing problem and resolving the MIP implies
significantly higher running times in this case. However, if the instances consist of a high
number of labels, and have an optimal solution that is significantly lower than the average
optimal solution value when assigning the labels to the edges randomly in the instance
construction process, BCP shows a superior performance. To study this effect, special
instances have been created containing single optima having a relatively low number of
labels. The computational results for these instances are reported in Table 12. In particular
for the larger instances a clear superiority of the BCP approach w.r.t. the corresponding B&C
algorithm can be observed. For this special class of instances, the percentage of created label
variables is always less than 30% of the total number of labels (reported in column “priced”).
Although the importance of such instances may be quite limited for many purposes, the
instances used for the data compression approach presented in [17] exhibit comparable
properties. For the data-compression application presented therein, the BCP approach is thus
a valuable and important mean for exactly solving large instances.

4.3.5. Summary

In Table 13, we finally report the best method for each group of instances from the three
instance sets. For this purpose, variations including primal heuristic and using cycle-
elimination cut separation are also considered. In the case a variant including a primal
heuristic yields the best performance, we additionally report the best method not using
primal heuristics. Formulations ECsn and ECsnh are the best formulations for almost all
instances of SET-I, with the primal heuristic often yielding small improvements. The same
is true for the instances of SET-II, where almost all variations of formulation EC are able to
solve the considered instances in less than a second. For SET-III formulation DCut is superior
for many instances with |L| = 3/4 · |E|, whereas EC is better for instances with |L| = 1/4 · |E|.
In contrast to SET-I, it is beneficial to restrict the number of edges to |V | − 1 as indicated with
index “t”. Additionally separating cycle-elimination cuts frequently yields the overall best
method, in particular for instances with |L| = 3/4 · |E|. Furthermore it can be observed that
variants using separation of odd hole inequalities are frequently the overall best methods for
this group.

4.4. Comparison to Other Work

In this section, we present direct comparisons to existing work, in particular [16]. Table 14
shows the results presented in [16], running times have been rounded to integers.
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Formulation “MLSTb” corresponds to formulation SCF of this work. Formulation “MLSTc”
only uses a weaker coupling of labels to edges, given by the following inequalities:

∑

(i,j)∈A
xij ≤ min{|V | − 1, A(l)}zl, ∀l ∈ L. (4.1)

Table 14 furthermore reports results for the implementation of the exact backtrackingmethod
from [1], labelledwith “MLST-CL”. Table 15 shows the running times of selectedMIP variants
in comparison to our reimplementation of the flow formulation “MLSTb” from [16] (SCF).
Formulation ECtn is clearly superior to the others, all instances have been solved in less than
one second. Higher running times of SCF as opposed to “MLSTb” can be explained due to
the fact that the SCIP framework [26] has been used for the implementation of SCF whereas
“MLSTb” has been implemented with the ILOG CONCERT framework [27].

Table 16 shows the results of selected MIP variants in comparison to the exact A∗

backtracking-search procedure used in [12]. The A∗-algorithm is very effective for instances
with small optimal objective value, but instances with larger objective values or large sets
of labels cannot be solved. The time limit imposed by the authors of [12] was three hours.
It is important to note that the running times listed in Table 16 are not directly comparable,
as the authors of [12] list the computation time at which the best solution was obtained,
and also different hardware has been used. For some groups, where A∗ could not solve all
instance (indicated by “NF”), the MIP method was able to do so. Furthermore, it is reported
if the MIP method could solve some but not all instances within some group. In any case the
average objective value for the ten instances of each group is reported in column “avg(|LT |)”,
also considering the best feasible solutions that have been found within the time limit of two
hours. If all instances have not been solved to optimality, this is indicated with “(∗)” in this
particular columns.

In general, it can be observed that relatively small instances could be solved efficiently
by the MIP approach, but, for larger instances with |V | = 400 and |V | = 500, it generally fails
to produce provable optimal solutions within the allowed time limit.

4.5. Summary

For all formulations, the node-label-constraints (3.22) significantly improved running times
and reduced the number of branch-and-bound nodes. Despite its relatively poor LP-
relaxation, formulation ECtn turned out to be superior to the other ones for a broad class
of test instances, which is mainly to the fast cut separation and the low number of involved
variables. Amongst the other considered formulations, DCuttn is superior to ECtn for dense
graphs with a huge number of labels.

The odd hole cuts (3.25) significantly improved running times and number of
branch-and-bound nodes for some classes of instances, in particular when branching rules
are deduced from the label sets corresponding to the found odd holes. Using BCP for
dynamically adding new labels during the solution process turned out to be beneficial only in
the case where the input instances significantly deviate from random label assignments, that
is, where the optimal solution is much lower than the expectation value of randomly assigned
labels. However, such solutions may likely easily be found also by heuristic methods.
Nevertheless, this could remain the only way to prove optimality for “easy” large-scale
instances.
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5. Conclusions

In this work we presented a branch-and-cut- (and-price) framework for solving MLST
instances exactly. We gave a comparison of an underlying flow-formulation in comparison to
the (better) directed cut-based formulations, which has been applied for the MLST problem
for the first time. Furthermore, a new connectivity formulation permitting a fast cutting-plane
separation has been presented. We further introduced new valid inequalities to strengthen
the formulations and the application of odd hole inequalities to this problem. To separate
cutting-planes based on these odd hole inequalities, a new separation heuristic based on a
mixed integer program using Miller-Tucker-Zemlin inequalities has been proposed.

Moreover, a detailed theoretical and computational comparison of the contribution
of the presented algorithmic building blocks has been presented. Our results show that the
presented framework is able to solve small- to medium-sized instances to optimality within
a relatively short amount of time. Existing benchmark instances could be solved within
a significantly shorter computation time than before, and new (larger) instances could be
solved to proven optimality for the first time.
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search for the minimum labelling Steiner tree problem,” Annals of Operations Research, vol. 172, pp.
71–96, 2009.



38 Advances in Operations Research

[15] Y. Chen, N. Cornick, A. O. Hall et al., “Comparison of heuristics for solving the gmlst problem,”
in Telecommunications Modeling, Policy, and Technology, vol. 44 of Operations Research/Computer Science
Interfaces Series, pp. 191–217, Springer, New York, NY, USA, 2008.

[16] M. E. Captivo, J. C. N. Clı́maco, and M. M. B. Pascoal, “A mixed integer linear formulation for the
minimum label spanning tree problem,” Computers & Operations Research, vol. 36, no. 11, pp. 3082–
3085, 2009.

[17] A. M. Chwatal, G. R. Raidl, and K. Oberlechner, “Solving a k-node minimum label spanning
arborescence problem to compress fingerprint templates,” Journal of Mathematical Modelling and
Algorithms, vol. 8, no. 3, pp. 293–334, 2009.

[18] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, John Wiley & Sons, New
York, NY, USA, 1999.

[19] T. L. Magnanti and L. A. Wolsey, “Optimal trees,” in Network Models, M. O. Ball et al., Ed., vol. 7
of Handbook in Operations Research and Management Science, pp. 503–615, North-Holland, Amsterdam,
The Netherlands, 1995.
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