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We consider two coupled queues with a generalized processor sharing service discipline. The
second queue has a much smaller Poisson arrival rate than the first queue, while the customer
service times are of comparable magnitude. The processor sharing server devotes most of its
resources to the first queue, except when it is empty. The fraction of resources devoted to the second
queue is small, of the same order as the ratio of the arrival rates. We assume that the primary queue
is heavily loaded and that the secondary queue is critically loaded. If we let the small arrival rate
to the secondary queue be O(ε), where 0 ≤ ε � 1, then in this asymptotic limit the number of
customers in the first queue will be large, of order O(ε−1), while that in the second queue will be
somewhat smaller, of order O(ε−1/2). We obtain a two-dimensional diffusion approximation for
this model and explicitly solve for the joint steady state probability distribution of the numbers of
customers in the two queues. This work complements that in (Morrison, 2010), which the second
queue was assumed to be heavily or lightly loaded, leading to mean queue lengths that were
O(ε−1) or O(1), respectively.

1. Introduction

The study of two coupled queues is a fundamental problem in queueing theory and applied
probability. Classic examples include the shortest queue problem [1–3], the longer queue
problem [4], fork-join models [5–7] and two coupled queues with generalized processor
sharing [8–10], which is the subject of the present investigation. Computing the joint
probability distribution for these models typically leads to functional equations that may
sometimes be recast as boundary value problems [11], such as Dirichlet and Riemann-Hilbert
problems.

Generalized processor sharing (GPS) models have become quite popular in recent
years, as they provide scheduling algorithms that yield both service differentiation among
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different customer classes and also gains from statistical multiplexing. Some recent
investigations and applications of such models appear in [12–15], where they are used, for
example, for flow control in integrated service networks.

We consider here two parallel queues with respective Poisson arrival rates λ and εσ,
where 0 < ε � 1. Thus, the arrivals to the second queue are much less frequent than those
to the first, and we immediately scale the second arrival rate by ε, thus introducing σ. The
service times are assumed to be exponentially distributed in both queues, with respective
means 1/μ and 1. Thus, we are taking the unit of time as the mean service time in the second
queue. There is a single processor sharing server that works at unit rate and devotes 1 − εκ =
1 −O(ε) of its capacity to the first queue and the remaining εκ to the second queue, provided
both queues are nonempty. If one queue is empty, the processor devotes all of its capacity
to the other queue. The total load is given by λ/μ + εσ, and we assume that the system is
in heavy traffic so that this quantity will be close to 1. Hence, we define ω from the relation
λ/μ+ εσ = 1− εω and assume that ω > 0, so that the system is stable. This also means that the
first queue is heavily loaded. The second queue has traffic intensity εσ/(εκ) = σ/κ, and we
say it is underloaded if σ/κ < 1, overloaded if σ/κ > 1 and critically loaded if σ/κ ≈ 1 (more
precisely σ/κ = 1+O(

√
ε)). The underloaded and overloaded cases were analyzed in [16]. We

denote by N1 (resp., N2) the number of customers in the first (resp., second) queue and the
joint steady state probability distribution will be denoted by p(m,n) = Prob[N1 = m,N2 = n].

For the underloaded case most of the mass occurs on the scale m = O(ε−1) and
n = O(1), so there will tend to be only a few customers in the second queue. Asymptotically,
p(m,n) has a product form behavior, with an exponential distribution in εN1 and a geometric
distribution in N2 (see [16]). This analysis was recently extended to an arbitrary number of
parallel queues byMorrison and Borst [17], as long as one queue is heavily loaded and all the
others are underloaded (with similar assumptions about arrival rates and processor-sharing
factors as above). For the overloaded case most of the probability mass occurs for both
m,n = O(ε−1), and in [16] a diffusion limit of the form p(m,n) ∼ ε2P∗(ζ, τ) = ε2P∗(εm, εn) is
obtained. Here P∗ may be characterized as the solution to a parabolic PDE, in the variables ζ
and τ . Here, we will analyze the critically loaded case, which also leads to a diffusion limit
with now p(m,n) ∼ ε3/2φ0(ζ,w) = ε3/2φ0(εm,

√
εn), where φ0 will satisfy an elliptic PDE.

Thus the critically loaded case has N2 = O(ε−1/2) and leads to a somewhat more difficult
problem than either the underloaded or overloaded cases.

We will obtain the PDE for φ0(ζ,w) as a limiting case of the difference equation(s)
satisfied by p(m,n), and explicitly solve the PDE by transform methods. We will obtain
detailed results for the marginal distributions Prob[N1 = m] =

∑∞
n=0 p(m,n) and Prob[N2 =

n] =
∑∞

m=0 p(m,n), as well as the mean queue lengths. We will also obtain other
approximations to p(m,n) that are valid on scales where m = o(ε−1) and/or n = o(ε−1/2).
In particular, we shall show that p(m,n) is O(ε) on the scale m = O(ε−1/2) and n = O(1).

Previous work on this model includes Fayolle and Iasnogorodski [8] (see also [10])
and the more recent study of Guillemin and Pinchon [9]. There the authors consider the
double generating function F(x, y) =

∑
m,n x

mynp(m,n) and obtain a functional equation for
the boundary values F(x, 0) and F(0, y). This is ultimately converted to a Dirichlet problem,
which is solved to yield the boundary values of F in terms of elliptic integrals. One of the
authors (J. A. Morrison) has verified that by analyzing the results in [8] and [9], in the
asymptotic limit we consider and with the scaling x = 1 − O(ε) and y = 1 − O(

√
ε), and

then inverting the double transform, we also obtain our main approximation p(m,n) ∼
ε3/2φ0(ζ,w). However, this involves a lengthy calculation that takes far more work than
our direct approach, which consists of deriving a limiting PDE and solving it, along with
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appropriate boundary conditions. Also, this direct approach should work for other models
of this type, including ones with finite capacities of customers, and with 3 or more coupled
queues.

Other recent work on diffusion approximations for generalized processor sharing
models includes Ramanan and Reiman [18] (see also references therein). This work,
however, is more concerned with theoretical aspects of the diffusion approximations, such
as convergence of the discrete problem to a certain diffusion process. Here, our focus is on
obtaining the explicit solution to the limiting diffusion equation that arises from the balance
equations. It is highly likely that this equation can be interpreted as the Kolmogorov forward
equation for some appropriate diffusion process, but we do not consider such “process level”
aspects here, as our approach is largely analytical.

Our approach has the merit that it can be used to compute correction terms to the
diffusion approximations, and we do this in some cases here. Also, we treat scales other than
the basic diffusion scale, where, for example, some of the variables remain discrete, which we
then relate to the diffusion scale by asymptotic matching. This type of analysis is needed, for
example, to accurately compute boundary probabilities.

From a mathematical viewpoint, the diffusion approximation we obtain (i.e., φ0(ζ,w))
is somewhat nonstandard in that the density vanishes as ζ → 0 and the approximation
breaks down for ζ = O(

√
ε). Also, the corner behavior of the problem is much different than

what is typical. In [19] we analyzed a more general version of this model in another heavy
traffic limit, assuming that the arrival rates and processor-sharing factors were of comparable
magnitude. That analysis led to an elliptic PDE that was more complicated than the one
obtained here, but probably more representative of typical diffusion approximations to two
coupled queues, such as those considered in [20–22].

The present scaling limit leads to a separable, elliptic PDE in the variables εm and
√
εn.

Since the boundary conditions are somewhat simpler than those for the diffusion model in
[19], we are able to obtain a more explicit solution to this equation, using classical transform
theory [23]. We then evaluate the solution in various limiting cases, to obtain even simpler
results that yield more insight into model behavior.

Yet another analysis of the model considered here is done in [24], but there it was
assumed that both the arrival and service rates of the secondary customers are small, while
the server devotes comparable resources to each queue.

The paper is organized as follows. In Section 2, we state the problem more precisely
and give the balance equations satisfied by p(m,n). In Section 3, we summarize all of our
main results. The derivations are given in Section 4 for the scale m = O(ε−1), n = O(ε−1/2)
and in Section 5 for the other ranges of m,n.

Throughout the paper we will use the notation f(x) ∼ g(x) to mean limx→x0[f(x)/
g(x)] = 1, f(x) = o(g(x)) to mean limx→x0[f(x)/g(x)] = 0, and f(x) = O(g(x)) to mean that
|f(x)/g(x)| is bounded for x sufficiently close to x0.

2. Formulation

We consider two parallel infinite capacity queues for different traffic classes. The jobs arrive
as Poisson processes with rates λ for the primary class, and εσ for the secondary class, where
0 < ε � 1. Hence, the secondary jobs arrive much less frequently than the primary ones.
Moreover, it is assumed that the primary and secondary jobs have exponentially distributed
service requirements with mean service times 1/μ and 1, respectively, where μ = O(1). The
server works at unit rate, and if neither queue is empty devotes fractions 1 − εκ and εκ of its
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effort to the primary and secondary queues, respectively, where κ = O(1). The corresponding
service rates are (1 − εκ)μ and εκ. If one queue is empty the server works at unit rate on the
other queue, so that this model is work conserving. It is assumed that the primary queue is
heavily loaded, with

λ

μ
+ εσ = 1 − εω, 0 < ω = O(1). (2.1)

Moreover, we assume that the secondary queue is critically loaded, with

σ = κ + δ
√
ε, δ = O(1), (2.2)

where δmay have either sign. Thus, the asymptotic limit we consider has ε → 0+ withω, μ, κ
and δ fixed, and then σ and λ vary with ε so that (2.1) and (2.2) hold.

Since ω > 0 the system is stable. Let p(m,n) denote the stationary probability that
there are m jobs in the primary queue and n jobs in the secondary queue. Then, the balance
equations satisfied by p(m,n) are

[
λ + εσ + (1 − εκ)μ + εκ

]
p(m,n) = λp(m − 1, n) + εσp(m,n − 1)

+ (1 − εκ)μp(m + 1, n) + εκp(m,n + 1),

m � 1, n � 1,

(2.3)

(
λ + εσ + μ

)
p(m, 0) = λp(m − 1, 0) + μp(m + 1, 0) + εκp(m, 1), m � 1, (2.4)

(λ + εσ + 1)p(0, n) = εσp(0, n − 1) + (1 − εκ)μp(1, n) + p(0, n + 1), n � 1, (2.5)

(λ + εσ)p(0, 0) = μp(1, 0) + p(0, 1). (2.6)

The normalization condition is

∞∑

m=0

∞∑

n=0

p(m,n) = 1. (2.7)

The mean number of jobs in the primary and secondary queues are

E(N1) =
∞∑

m=0

∞∑

n=0

mp(m,n),

E(N2) =
∞∑

m=0

∞∑

n=0

np(m,n),

(2.8)
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From Little’s Law, the correspondingmeanwaiting times are E(N1)/λ and E(N2)/(εσ). From
[8], the conservation law of Kleinrock implies, using (2.1) and (2.2), that

E(N1)
μ

+ E(N2) =
1
εω

(
λ

μ2
+ εσ

)

=
1

εμω

[
1 + ε

(
μκ −ω − κ

)
+ ε3/2

(
μ − 1

)
δ
]
.

(2.9)

3. Summary of Results

We consider m = ζ/ε = O(1/ε) and n = w/
√
ε = O(1/

√
ε), with

p

(
ζ

ε
,
w√
ε

)

= ε3/2
[
φ0(ζ,w) +

√
εφ1(ζ,w) +O(ε)

]
,

0 < ζ = O(1), 0 < w = O(1).

(3.1)

We then have.

Proposition 3.1.

φ0(ζ,w) + I(δ < 0)
δω

κ
exp
(

−ωζ +
δw

κ

)

=
2ω
π

exp
(

−ωζ

2
+
δω

2κ

)∫∞

0

β
[
β cos

(
wβ
)
+ (δ/2k) sin

(
wβ
)]

(
β2 + δ2/(4κ2)

) exp

⎡

⎣−
√

ω2 +
δ2

κμ
+
4κβ2

μ

ζ

2

⎤

⎦dβ.

(3.2)

This gives the limiting density of (N1,N2), which applies for fixed values of ζ and w.
We next evaluate this density in various limiting cases, such asw → ∞ and δ → ±∞, to gain
more insight into its structure, and to verify consistency with results in [16].

Corollary 3.2. If δ = O(1), w 
 1 and 0 < ζ/
√
w � 1, then

φ0(ζ,w) ∼ ω
(
δ2 + κμω2)3/4ζ

√
πμ
(
δ +
√
δ2 + κμω2

)
w3/2

× exp
(

−ωζ

2

)

exp
[

−w

2κ

(√
δ2 + κμω2 − δ

)]

.

(3.3)
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Corollary 3.3. If −δ 
 1, w/|δ| > 0 and 0 < ζ = O(1), then

φ0(ζ,w) ∼ ω|δ|
2κ

exp
(

−ωζ

2

)

exp
[

−w

2κ

(√
δ2 + κμω2 + |δ|

)]

exp

(
μω2

4|δ|w
)

×
{

exp
(

−ωζ

2

)

Erfc

[(
μωw − |δ|ζ)

2
√|δ|μw

]

− exp
(
ωζ

2

)

Erfc

[(
μωw + |δ|ζ)

2
√|δ|μw

]}

,

(3.4)

where the complementary error function is given by [25]

Erfc(z) =
2√
π

∫∞

z

e−u
2
du. (3.5)

Corollary 3.4. If w 
 −δ 
 1 and 0 < ζ = O(1), then

φ0(ζ,w) ∼ 2|δ|5/2ζ√
πμκμωw3/2

exp
(

−ωζ

2

)

exp
[

−w

2κ

(√
δ2 + κμω2 + |δ|

)]

. (3.6)

Corollary 3.5. If −δ 
 1, 0 < w = O(1) and 0 < ζ = O(1), then

φ0(ζ,w) ∼ ω|δ|
κ

exp
(

−ωζ − |δ|w
κ

)

. (3.7)

Remark 3.6. This matches with [16, Result 7], with n = w/
√
ε, 0 < ε � 1 and |δ|√ε � 1.

Corollary 3.7. If δ 
 1, 0 < w/δ = O(1) and 0 < ζ = O(1), then

φ0(ζ,w) ∼ ω
√
δζ

2√πμw3/2
exp

[

− δ

4μw

(

ζ +
μωw

δ

)2
]

. (3.8)

Remark 3.8. This matches with [16, Result 4], with τ = w
√
ε, 0 < ε � 1 and δ

√
ε � 1.

In Propositions 3.9 and 3.16 below, we give the limitingmarginals ofN2 andN1, which
apply for w and ζ fixed, respectively. Then, we simplify these marginal densities in various
limiting cases.

Proposition 3.9. The scaled lowest order asymptotic approximation to the stationary distribution of
the number of jobs in the secondary queue is

∞∑

m=0

p

(

m,
w√
ε

)

∼ √
ε

∫∞

0
φ0(ζ,w)dζ, (3.9)
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where

∫∞

0
φ0(ζ,w)dζ + I(δ < 0)

δ

κ
exp
(
δw

κ

)

=
4ω
π

exp
(
δw

2κ

)

×
∫∞

0

β
[
β cos

(
wβ
)
+ (δ/2κ) sin

(
wβ
)]

(
β2 + δ2/4κ2

)[
ω +
√
ω2 + δ2/

(
κμ
)
+ 4κβ2/μ

]dβ.

(3.10)

Corollary 3.10. If δ = O(1) and w 
 1, then

∫∞

0
φ0(ζ,w)dζ ∼ 4

(
δ2 + κμω2)3/4

√
πμω

(
δ +
√
δ2 + κμω2

)
w3/2

exp
[

−w

2κ

(√
δ2 + κμω2 − δ

)]

, (3.11)

which is consistent with (3.3).

Corollary 3.11. If −δ 
 1 and 0 < w/|δ| = O(1), then

∫∞

0
φ0(ζ,w)dζ ∼ |δ|

κ
exp
[

−w

2κ

(√
δ2 + κμω2 + |δ|

)]

×
[(

1 +
μω2w

2|δ|

)

exp

(
μω2w

4|δ|

)

Erfc

(
ω

2

√
μw

|δ|

)

−ω

√
μw

π |δ|

]

.

(3.12)

Corollary 3.12. If w 
 −δ 
 1, then

∫∞

0
φ0(ζ,w)dζ ∼ 8|δ|5/2√

πμκμω3w3/2
exp
[

−w

2κ

(√
δ2 + κμω2 + |δ|

)]

, (3.13)

which is consistent with (3.6).

Corollary 3.13. If −δ 
 1 and 0 < w = O(1), then

∫∞

0
φ0(ζ,w)dζ ∼ |δ|

κ
exp
(

−|δ|w
κ

)

, (3.14)

which is consistent with (3.7).

Corollary 3.14. If δ 
 1 and 0 < w/δ = O(1), then

∫∞

0
φ0(ζ,w)dζ ∼ ω

√
μ

δ

[
1√
πw

exp

(

−μω
2

4δ
w

)

− ω

2

√
μ

δ
Erfc

(
ω

2

√
μw

δ

)]

, (3.15)

which is consistent with (3.8).
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Remark 3.15. This matches with [16, Result 3], with τ = w
√
ε, 0 < ε � 1 and δ

√
ε � 1.

Proposition 3.16. The scaled asymptotic approximation to the stationary distribution of the number
of jobs in the primary queue is

∞∑

n=0

p

(
ζ

ε
, n

)

= εω exp(−ωζ) + ε3/2Q1(ζ) +O
(
ε2
)
, (3.16)

where

Q1(ζ) − I(δ > 0)δ(1 −ωζ) exp(−ωζ)

=
ωμ

π
exp
(

−ωζ

2

)∫∞

0

β2

(
β2 + δ2/4κ2

)2

×
⎧
⎨

⎩

⎡

⎣ω +

√

ω2 +
δ2

κμ
+
4κβ2

μ

⎤

⎦ exp

⎡

⎣−
√

ω2 +
δ2

κμ
+
4κβ2

μ

ζ

2

⎤

⎦ − 2ω exp
(

−ωζ

2

)
⎫
⎬

⎭
dβ.

(3.17)

Corollary 3.17. If |δ| 
 1, then

∞∑

n=0

p

(
ζ

ε
, n

)

= ε exp(−ωζ)
[
ω +

√
εI(δ > 0)δ(1 −ωζ)

]
+O
(
ε2
)
. (3.18)

Remark 3.18. This matches with [16, Result 7] for δ < 0, and with [16, Result 2] for δ > 0 since,
for δ

√
ε � 1,

(ω + σ − κ) exp[−(ω + σ − κ)ζ] = exp(−ωζ)
[
ω +

√
εδ(1 −ωζ)

]
+O(ε). (3.19)

We next give expansions for the mean queue lengths, for ε → 0 (with ω, κ, μ, δ fixed).

Proposition 3.19. The lowest order asymptotic approximation to the stationary mean secondary
queue length is

E(N2) ∼ s√
ε
,

s =
δ

μω2

{

1 +
1

2πc4
[(

1 − c4
)
cos−1(−c) −

(
1 + c4

)
cos−1c − 2c

√
1 − c2

(
1 − 2c2

)]}

,

(3.20)

where

−1 < c =
δ

√
δ2 + κμω2

< 1, 0 < cos−1(±c) < π. (3.21)
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Remark 3.20. We have verified from (3.17) that
∫∞
0 ζQ1(ζ)dζ = −μs so that from (3.16),

E(N1) =
1
εω

− μs√
ε
+O(1), (3.22)

which is consistent with (2.9).

Corollary 3.21. If |δ|√ε � 1, then

s ∼ δ

μω2
, if δ 
 1; s ∼ −κ

δ
, if − δ 
 1. (3.23)

These match with [16, Result 1 and Corollary 10], respectively.

We next give some asymptotic results for φ0(ζ,w) that apply for δ fixed and ζ and/or
w → ∞. We also give the “corner” behavior as (ζ,w) → (0, 0).

Proposition 3.22. (i) ζ,w → ∞ with δ < 0 and 0 � w/ζ < |δ|/(μω),

φ0(ζ,w) ∼ ω|δ|
κ

exp
(

−ωζ − |δ|
κ
w

)

, (3.24)

(ii) ζ,w → ∞ with 0 < w/ζ < ∞ for δ > 0, or |δ|/(μω) < w/ζ < ∞ for δ � 0,

φ0(ζ,w) ∼ K(ζ,w) exp

⎛

⎝−ω
2
ζ +

δ

2κ
w − 1

2

√

ω2 +
δ2

μκ

√
μ

κ
w2 + ζ2

⎞

⎠, (3.25)

K(ζ,w) =
√

μ

πκ

ωbs
bs + δ/(2κ)

(

ω2 +
δ2

κμ

)1/4

ζ

(

ζ2 +
μ

κ
w2
)−3/4

,

bs = bs

(
w

ζ

)

=
μ

2κ

(

ω2 +
δ2

κμ

)1/2
w

√
ζ2 +
(
μ/κ
)
w2

,

(3.26)

(iii) ζ → ∞, w = O(1), δ > 0,

φ0(ζ,w) ∼ ω

δ

μ3/2

√
κ

(

ω2 +
δ2

κμ

)3/4
1√

πζ3/2

(

w +
2κ
δ

)

exp
[
δw

2κ

]

exp

⎡

⎣−1
2

⎛

⎝ω +

√

ω2 +
δ2

κμ

⎞

⎠ζ

⎤

⎦,

(3.27)
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(iv) w, ζ → ∞, ζ = O(
√
w),

φ0(ζ,w) ∼
√

2b+κ
μ

b+ω

b+ + δ/(2κ)
ζ√

πw3/2
exp

[(
δ

2κ
− b+

)

w − ω

2
ζ − b+κ

2μ
ζ2

w

]

, (3.28)

b+ =
√
μ

2
√
κ

√

ω2 +
δ2

κμ
, (3.29)

(v) ζ,w → 0 with 0 < w/ζ < ∞,

φ0(ζ,w) ∼ 2ω
π

√
μ

κ

ζ

ζ2 +
(
μ/κ
)
w2

, (3.30)

(vi) ζ → 0 with 0 < w < ∞,

φ0(ζ,w) ∼
√

κ

μ

ω

π
ζa(w) exp

(
δw

2κ

)

, (3.31)

a(w) =
δ

2κ
1
w

∫∞

−∞
eiwβ

(
μ/4κ

)(
ω2 + δ2/μκ

) − i
(
βδ/2κ

)

(
β + iδ/2κ

)2[
β2 +

(
μ/4κ

)(
ω2 + δ2/κμ

)]1/2dβ

+
μ

4κ

(

ω2 +
δ2

μκ

)
1
w2

∫∞

−∞
eiwβ

[

β2 +
μ

4κ

(

ω2 +
δ2

κμ

)]−3/2
dβ.

(3.32)

Remark 3.23. The results show that for δ < 0 the density φ0 is asymptotically of product form
in a sector, and distinctly nonproduct form in the complimentary sector. For δ > 0 the product
form behavior is absent. Item (v) shows that φ0 has an integrable singularity near the corner,
while item (vi) shows that φ0 = O(ζ) as ζ → 0. The second integral in (3.32)may be expressed
in terms of a modified Bessel function, using the identity

∫∞

−∞
eiZU
(
Z2 + 1

)−3/2
dZ = 2UK1(U). (3.33)

The approximation p(m,n) ≈ ε3/2φ0(ζ,w) is only valid for m = O(ε−1) and n =
O(ε−1/2). For other ranges of (m,n), other expansions must be constructed, and these we
summarize below.
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Proposition 3.24. (i) m = S/
√
ε = O(ε−1/2), n = w/

√
ε = O(ε−1/2),

p(m,n) ∼ ε2[SP+(w) + P−(w)],

P+(w) =
ω

π

√
κ

μ
exp
(
δw

2κ

)

a(w),

P−(w) = μ

∫∞

w

P+(u)du,

(3.34)

(ii) m = S/
√
ε = O(ε−1/2), n = O(1),

p(m,n) ∼ ε
2ω
π

∫π

0
cos
(
Ω
2

)

cos
[(

n +
1
2

)

Ω
]

exp

[

−2
√

κ

μ
S sin

(
Ω
2

)]

dΩ (3.35)

(iii) m,n = O(1),

p(m,n) ∼ ε3/2
2ω
π

√
κ

μ

[
4

(2n + 3)(2n − 1)
m +

4n
4n2 − 1

μ

]

, n � 1,

p(m, 0) ∼ εω.

(3.36)

Remark 3.25. We comment that for n = O(1) and ζ > 0 (m = O(ε−1)) p(m,n) ∼ ε3/2φ0(ζ, 0) so
that the diffusion approximation still applies. For m = O(1) and w > 0 item (i) still applies,
and then p(m,n) ∼ ε2P−(w), which is independent of m and can be used to estimate the
boundary probabilities p(0, n), which are O(ε2) for n = O(ε−1/2). Note that in item (ii) and
for n = 0 in item (iii), p(m,n) is O(ε), which is larger than the order of magnitude (O(ε3/2))
of the diffusion approximation on the (ζ,w) scale. But, the total mass in the range in (ii) is
O(

√
ε), while that in ranges (i) and (iii) is O(ε).

4. Analysis of the Main Diffusion Approximation

If we let m = ζ/ε, n = w/
√
ε and use (3.1), (2.1), and (2.2), in (2.3) and (2.4), we obtain to

lowest order

μ
∂2φ0

∂ζ2
+ μω

∂φ0

∂ζ
+ κ

∂2φ0

∂w2
− δ

∂φ0

∂w
= 0, ζ > 0, w > 0, (4.1)

and the boundary condition

κ
∂φ0

∂w
(ζ, 0) = δφ0(ζ, 0), ζ > 0. (4.2)

We will discuss the second boundary condition, along ζ = 0, after (4.16).
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We let

φ0(ζ,w) = exp
(

−ωζ

2
+
δw

2κ

)

Φ0(ζ,w). (4.3)

It follows that

μ
∂2Φ0

∂ζ2
+ κ

∂2Φ0

∂w2
− 1
4

(

μω2 +
δ2

κ

)

Φ0 = 0, ζ > 0, w > 0, (4.4)

∂Φ0

∂w
(ζ, 0) =

δ

2κ
Φ0(ζ, 0). (4.5)

To solve (4.4) and (4.5) we apply a transform in the w variable. Using the theory
of distributions and Green’s functions for ordinary differential equations (see [23, p. 294,
exercise 4.24]), we have the following transform pair:

G(B) =
∫∞

0
[B cos(Bx) +A sin(Bx)]F(x)dx, (4.6)

F(x) = −I(A < 0)CAeAx +
2
π

∫∞

0

B cos(Bx) +A sin(Bx)
A2 + B2

G(B)dB. (4.7)

Here, the constant C appears only when A < 0 and the term AeAx corresponds to a single
discrete eigenvalue in the spectral theory. By multiplying (4.7) by eAx and integrating from
x = 0 and x = ∞, we find that C = 2

∫∞
0 F(x)eAxdx. Applying (4.6) with B = β and x = w, we

let

Ω0
(
ζ, β
)
=
∫∞

0

[

β cos
(
wβ
)
+

δ

2κ
sin
(
βw
)
]

Φ0(ζ,w)dw, (4.8)

then integration by parts and the boundary condition (4.5) leads to

∫∞

0

[

β cos
(
βw
)
+

δ

2κ
sin
(
βw
)
]
∂2Φ0

∂w2 (ζ,w)dw = −β2Ω0
(
ζ, β
)
. (4.9)

Hence, from (4.4),

∂2Ω0

∂ζ2
− 1
4

(

ω2 +
δ2

κμ
+
4κβ2

μ

)

Ω0 = 0, (4.10)

so that

Ω0
(
ζ, β
)
= Ω0

(
0, β
)
exp

⎡

⎣−
√

ω2 +
δ2

κμ
+
4κβ2

μ

ζ

2

⎤

⎦. (4.11)
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Applying the inversion formula (4.7)

Φ0(ζ, u) + I(δ < 0)
δ

κ
exp
(
δu

2κ

)∫∞

0
exp
(
δw

2κ

)

Φ0(ζ,w)dw

=
2
π

∫∞

0

[
β cos

(
uβ
)
+ (δ/2κ) sin

(
uβ
)]

(
β2 + δ2/(4κ2)

) Ω0
(
ζ, β
)
dβ.

(4.12)

Let

P0(ζ) =
∫∞

0
φ0(ζ,w)dw. (4.13)

Then, from (4.1) and (4.2),

d2P0

dζ2
+ω

dP0

dζ
= 0, ζ > 0. (4.14)

But, from the normalization condition (2.7), (3.1) and the Euler-Maclaurin summation
formula [26],

∫∞
0 P0(ζ)dζ = 1, so that

P0(ζ) = ωe−ωζ. (4.15)

Hence, from (4.3) and (4.13),

∫∞

0
exp
(
δw

2κ

)

Φ0(ζ,w)dw = ωe−ωζ/2. (4.16)

Also, if we use (3.1), (2.1), and (2.2), in (2.5), we obtain the lowest order boundary condition
∂φ0/∂w(0, w) = 0, for w > 0. We conclude that φ0(0, w) and Φ0(0, w) are proportional to a
delta function at w = 0+ and hence, from (4.8) and (4.16), that Ω0(0, β) = ωβ. Proposition 3.1
follows from (4.3), (4.11), (4.12), and (4.15).

We may rewrite the integral in (3.2) as

1
2

∫∞

−∞

βeiwβ

(
β + iδ/(2κ)

) exp

⎡

⎣−
√

ω2 +
δ2

κμ
+
4κβ2

μ

ζ

2

⎤

⎦dβ. (4.17)

We then deform the contour of integration to one around a cut in the β-plane from

(i/2κ)
√
δ2 + κμω2 to i∞, and let

β = i

(
1
2κ

√
δ2 + κμω2 + y

)

. (4.18)
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For δ < 0 there is a contribution from the pole at β = −iδ/(2κ), and we obtain

φ0(ζ,w) =
2ω
π

exp
(

−ωζ

2
+
δw

2κ

)

exp
(

−w

2κ

√
δ2 + κμω2

)

×
∫∞

0

(√
δ2 + κμω2 + 2κy

)
e−wy

(
δ +
√
δ2 + κμω2 + 2κy

) sin

(
√
y

√

κy +
√
δ2 + κμω2 ζ√

μ

)

dy.

(4.19)

For δ = O(1), w 
 1 and 0 < ζ/
√
w � 1, the main contribution to the integral comes from

y = O(1/w), and Corollary 3.2 follows.
If −δ 
 1, w > 0 and 0 < ζ = O(1), then the integral in (4.19) is approximated by

|δ|
2κ

∫∞

0

e−wy

(
y + μω2/4|δ|) sin

⎛

⎝ζ

√
|δ|y
μ

⎞

⎠dy =
|δ|
κ

∫∞

0

x exp
(−(μw/|δ|)x2)

(x2 +ω2/4)
sin(ζx)dx, (4.20)

which leads [27] to Corollary 3.3. Corollaries 3.4 and 3.5 follow from the asymptotic
approximation [25] Erfc(z) ∼ exp(−z2)/(√πz), z 
 1, and the limiting value Erfc(−∞) = 2.
If δ 
 1, 0 < w/δ = O(1) and 0 < ζ = O(1), then from (4.19), we obtain the approximation

φ0(ζ,w) ∼ ω

π
exp

(

−ωζ

2
− μω2

4δ
w

)∫∞

0
e−wy sin

⎛

⎝

√
δy

μ
ζ

⎞

⎠dy, (4.21)

and hence Corollary 3.7.
Proposition 3.9 follows from Proposition 3.1, (3.1) and the Euler-Maclaurin summa-

tion formula [26]. Next, from (4.19)

∫∞

0
φ0(ζ,w)dζ =

8ω
π

√
μ exp

(
δw

2k

)

exp
(

−w

2κ

√
δ2 + κμω2

)

×
∫∞

0

(√
δ2 + κμω2 + 2κy

)√
y

√

κy +
√
δ2 + κμω2e−wy

(
δ +
√
δ2 + κμω2 + 2κy

)[
μω2 + 4y

(
κy +

√
δ2 + κμω2

)]dy.

(4.22)

For δ = O(1) and w 
 1, the main contribution to the integral comes from y = O(1/w), and
Corollary 3.10 follows. If −δ 
 1 and 0 < w/|δ| = O(1), then

∫∞

0
φ0(ζ,w)dζ ∼ ω

√
μ|δ|

πκ
exp
[

−w

2κ

(√
δ2 + κμω2 + |δ|

)]∫∞

0

√
ye−wy

(
y + μω2/(4|δ|))2

dy, (4.23)

which leads [27] to Corollary 3.11. Corollaries 3.12, 3.13, and 3.14 follow directly from
Corollaries 3.4, 3.5, and 3.7, respectively.
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We now consider the first order correction term φ1(ζ,w) in (3.1). If we use (3.1), (2.1),
and (2.2), in (2.3) and (2.4), we obtain

μ
∂2φ1

∂ζ2
+ μω

∂φ1

∂ζ
+ κ

∂2φ1

∂w2
− δ

∂φ1

∂w
+ δ

(

μ
∂φ0

∂ζ
+
1
2
∂2φ0

∂w2

)

= 0, (4.24)

for ζ > 0 and w > 0, and the boundary condition

κ
∂φ1

∂w
(ζ, 0) − δφ1(ζ, 0) + μ

∂2φ0

∂ζ2
(ζ, 0) + μ(ω + κ)

∂φ0

∂ζ
(ζ, 0) +

κ

2
∂2φ0

∂w2 (ζ, 0) = 0. (4.25)

We let

P1(ζ) =
∫∞

0
φ1(ζ,w)dw. (4.26)

It follows, from (4.15) and (4.24)–(4.26), that

μ
d2P1

dζ2
+ μω

dP1

dζ
+ μ

∂2φ0

∂ζ2
(ζ, 0) + μ(ω + κ)

∂φ0

∂ζ
(ζ, 0) +

κ

2
∂2φ0

∂w2 (ζ, 0) −
δ

2
∂φ0

∂w
(ζ, 0) = δμω2e−ωζ.

(4.27)

Hence, from (4.1) at w = 0+,

P1(ζ) = Q1(ζ) − 1
2
φ0(ζ, 0), (4.28)

where

d2Q1

dζ2
+ω

dQ1

dζ
= δω2e−ωζ − κ

∂φ0

∂ζ
(ζ, 0). (4.29)

From Proposition 3.1,

φ0(ζ, 0) + I(δ < 0)
δω

κ
e−ωζ

=
2ω
π

exp
(

−ωζ

2

)∫∞

0

β2
(
β2 + δ2/(4κ2)

) exp

⎡

⎣−
√

ω2 +
δ2

κμ
+
4κβ2

μ

ζ

2

⎤

⎦dβ.

(4.30)
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It follows that

d2Q1

dζ2
+ω

dQ1

dζ
− I(δ > 0)δω2e−ωζ

=
ωκ

π
e−ωζ/2

∫∞

0

β2
[
ω +
√
ω2 + δ2/

(
κμ
)
+ 4κβ2/μ

]

(
β2 + δ2/(4κ2)

) exp

⎡

⎣−
√

ω2 +
δ2

κμ
+
4κβ2

μ

ζ

2

⎤

⎦dβ.

(4.31)

From (3.1), (4.13), (4.26), (4.28), and the Euler-Maclaurin summation formula [26],

∞∑

n=0

p

(
ζ

ε
, n

)

= εP0(ζ) + ε3/2Q1(ζ) +O
(
ε2
)
. (4.32)

Hence,

∫∞

0
Q1(ζ)dζ = 0. (4.33)

Proposition 3.16 follows in an elementary manner from (4.31) and (4.33).

If we let 2κy =
√
δ2 + κμω2(coshu − 1) in (4.22), we obtain

∫∞

0
φ0(ζ,w)dζ =

2ω
π

√
μ

κ

∫∞

0

sinh2u coshu exp
[
−(w/2κ)

√
δ2 + κμω2(coshu − c)

]

(coshu + c)
(
cosh2u − c2

) du, (4.34)

where c is given by (3.21). Hence,

∫∞

0

∫∞

0
wφ0(ζ,w)dζdw =

8δ
(
1 − c2

)3/2

πμω2c

∫∞

0

sinh2u coshu

(coshu + c)2(coshu − c)3
du. (4.35)

The evaluation of the integral in (4.35) is routine, but tedious, and Proposition 3.19 follows
from (3.1), since

E(N2) ∼ 1√
ε

∫∞

0

∫∞

0
wφ0(ζ,w)dζdw. (4.36)

We next establish the various asymptotic formulas in Proposition 3.22. We first note
that the integrand in Proposition 3.1 is an even function of β, and if β is viewed as complex it
has a simple pole at β = −iδ/(2κ) and branch points at

β = ±i
√
μ

2
√
κ

√

ω2 +
δ2

κμ
≡ ib±. (4.37)
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Then, we can represent, for any δ, φ0 as the contour integral

φ0(ζ,w) = exp
[

−ω
2
ζ +

δ

2κ
w

]
1
π

∫

C

βω

β + iδ/2κ

× exp

⎡

⎣iwβ − 1
2
ζ

√

ω2 +
δ2

κμ
+
4κ
μ
β2

⎤

⎦dβ.

(4.38)

Here, C is a horizontal contour in the β-plane, on which

max
{

− δ

2κ
, 0
}

< Im
(
β
)
< b+. (4.39)

The condition in (4.39) insures that if δ < 0 the pole at β = i|δ|/(2κ) lies below the contour C.
If δ > 0 we can shift the contour to the real β-axis, and then (4.38) becomes the same as

(3.2). If δ < 0 the pole must be taken into account in making this shift, and the residue from
this pole yields the exponential terms in the left hand side of (3.2).

To evaluate (4.38) for ζ,w → ∞we employ the saddle point method. There is a saddle
point where

d

dβ

⎡

⎣iwβ − 1
2
ζ

√

ω2 +
δ2

κμ
+
4κ
μ
β2

⎤

⎦ = 0, (4.40)

so that

β = ibs = ibs

(
w

ζ

)

≡ i
μ

2κ

√

ω2 +
δ2

κμ

w
√(

μ/κ
)
w2 + ζ2

. (4.41)

The saddle is on the imaginary axis and the directions of steepest descent are arg(β − ibs) =
0, π . Then shifting the contour C into another horizontal contour through ibs leads to (3.24).
Such a shift is always permissible if δ > 0, but if δ < 0 we need the saddle to lie above the
pole, that is, bs > |δ|/(2κ), and this occurs precisely when w/ζ > |δ|/(μω). We thus obtain
the condition in item (i) of Proposition 3.22. If δ < 0 and w/ζ < |δ|/(μω) the pole dominates
the saddle point contribution, and we obtain (3.23).

For ζ → ∞ and w = O(1) a different analysis is needed, as now bs → 0 so the saddle
approaches the real axis, where the integrand in (4.38) has as simple zero. In this case (which
applies only if δ > 0), we shift C back to the real axis and expand the integrand for β → 0.
Using

βω

β + iδ/(2κ)
eiwβ =

2βκω
iδ

[

1 + iβ

(

w +
2κ
δ

)

+O
(
β2
)]

, β −→ 0, (4.42)



18 Advances in Operations Research

we thus obtain

φ0(ζ,w) ∼ exp

⎡

⎣−
⎛

⎝ω

2
+
1
2

√

ω2 +
δ2

κμ

⎞

⎠ζ

⎤

⎦ exp
(

δ

2κ
w

)

× 2κω
πδ

∫∞

−∞

[
β

i
+ β2
(

w +
2κ
δ

)

+O
(
β3
)]

exp
[

− κζ

μΔ
β2
]

dβ,

(4.43)

where Δ =
√
ω2 + δ2/(κμ). Evaluating the integral(s) in (4.43) leads to (3.25). If we consider

the opposite limit, where ζ = O(1) and w → ∞, then the saddle point approaches the upper
branch point at ib+. But by deforming C to an integral about the branch cut we can show that
the final result coincides with the expansion of (3.25) for w/ζ 
 1, which is given by (3.28).

Next, we consider the corner behavior of φ0 as ζ,w → 0. Now, the main contribution
to the integral will come from where |β| is large. From (3.2) for δ > 0, we then obtain

φ0(ζ,w) ∼ ω

π

∫∞

−∞
eiwβe−

√
(κ/μ)ζ|β|dβ

=
ω

π

√
μ

κ

2
ζ

[

1 +
μ

κ

w2

ζ2

]−1
,

(4.44)

which yields (3.30), and this can be shown to remain valid for δ < 0.
Finally, we fix w and let ζ → 0. Simply, setting ζ = 0 in (3.2) leads to a divergent

integral. However, an integration by parts leads to, for δ > 0,

φ0(ζ,w) =
ω

π
exp
(

δ

2κ
w

)∫∞

−∞
exp

[

iwβ −
√

κ

μ

√

β2 +
μ

4κ
Δ2ζ

]
[−g ′

0
(
β
)]
dβ, (4.45)

where Δ =
√
ω2 + δ2/κμ and

g0
(
β
)
=

β

β + iδ/2κ

⎡

⎢
⎣iw − β

√
β2 +

(
μ/4κ

)
Δ2

√
κ

μ
ζ

⎤

⎥
⎦

−1

. (4.46)

Expanding (4.46) for ζ → 0 and noting that, by contour integration (if δ > 0),

∫∞

−∞
eiwβ d

dβ

[
β

β + iδ/(2κ)

]

dβ = 0, (4.47)
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we write the integrand as

eiwβ

[

1 −
√

κ

μ

√

β2 +
μ

4κ
Δ2ζ +O

(
ζ2
)
]

×

⎧
⎪⎨

⎪⎩

i

w

d

dβ

(
β

β + iδ/(2κ)

)

+
ζ

w2

d

dβ

⎡

⎢
⎣

β

β + iδ/(2κ)
β

√
β2 +

(
μ/(4κ)

)
Δ2

⎤

⎥
⎦ +O

(
ζ2
)

⎫
⎪⎬

⎪⎭
.

(4.48)

By using (4.47), identifying the O(ζ) terms in (4.48), and explicitly performing the
differentiation with respect to β, we ultimately obtain (3.31) and (3.32). This completes the
(sketched) derivation of Proposition 3.22.

5. Analysis of Boundary and Corner Regions

We analyze cases where m = o(ε−1) and/or n = o(ε−1/2). While these carry mass that is
asymptotically small, they must be considered to insure that p(m,n) is properly normalized
to higher orders in ε, and to compute higher order approximations to the moments. Also, to
determine φ0(ζ,w) we used the boundary condition φ0(0, w) = ωδ(w), and analysis of cases
where ζ and w are small will allow us to examine this condition more carefully.

First we observe from (3.31) that φ0(ζ,w) vanishes linearly as ζ → 0, which indicates
a nonuniformity in the asymptotics. We first consider the scale m = O(1) with w > 0 and set

p(m,n) = εν1P̃(m,w; ε) ∼ εν1P̃(m,w). (5.1)

Here, ν1 is a constant that will be determined by asymptotic matching. From (2.3), in terms
of the variables m and w, we have

[
λ + μ + ε

(
σ + κ − κμ

)]P̃(m,w; ε) = λP̃(m − 1, w; ε)

+ εσP̃(m,w − √
ε; ε
)

+ μ(1 − εκ)P̃(m + 1, w; ε)

+ εκP̃(m,w +
√
ε; ε
)
.

(5.2)

Thus, the leading term must satisfy, since λ = μ +O(ε), 2μP̃(m,w) = μP̃(m − 1, w) + μP̃(m +
1, w), and we write P̃ as

P̃(m,w) = mP̃+(w) + P̃−(w), (5.3)

which is a linear function of m. The expansion for m = O(1) must satisfy the boundary
condition (2.5), which is

(λ + εσ + 1)P̃(0, w; ε) = εσP̃(0, w − √
ε; ε
)
+ μ(1 − εκ)P̃(1, w; ε) + P̃(0, w +

√
ε; ε
)
. (5.4)
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To leading order, (5.4) implies that P̃(0, w) = P̃(1, w) so that (5.3) becomes P̃(m,w) = P̃−(w).
But, as m → ∞, εν1P̃−(w) cannot match to ε3/2φ0(ζ,w), since φ0 vanishes as ζ = mε → 0.
This indicates that we must analyze another scale, which has m 
 1 and m � 1/ε (with w
fixed).

We thus set m = S/
√
ε and

p(m,n) = εν2P(S,w; ε) ∼ εν2P(S,w). (5.5)

By rewriting (2.3) on the (S,w) scale, we obtain

μ
[
1 − ε(ω + κ) − ε3/2δ

][P(S,w; ε) − P(S − √
ε,w; ε

)]

= εσ
[P(S,w − √

ε; ε
) − P(S,w; ε)

]

+ εκ
[P(S +

√
ε,w; ε

) − P(S,w; ε)
]

+ μ(1−εκ)[P(S+√ε,w; ε
)−P(S,w; ε)

]
.

(5.6)

The limiting form of (5.6) as ε → 0 is PSS = 0, so we write

P(S,w) = SP+(w) + P−(w). (5.7)

On the (S,w) scale the boundary condition (2.5), using also λ = μ[1−ε(ω+σ)] and σ = κ+
√
εδ,

becomes

[
μ + 1 + ε

(
σ − σμ −ωμ

)]P(0, w; ε) = εσP(0, w − √
ε; ε
)

+ P(0, w +
√
ε; ε
)

+ μ(1 − εκ)P(√ε,w; ε
)
.

(5.8)

To leading order as ε → 0, (5.8) implies that

Pw(0, w) + μPS(0, w) = 0. (5.9)

Combining (5.7) and (5.9), we thus write the approximation on the (S,w) scale as

p(m,n) ∼ εν2
[

SP+(w) + μ

∫∞

w

P+(u)du
]

. (5.10)

We then determine ν2 and P+(w) by asymptotically matching (5.10), as S → ∞, to
ε3/2φ0(ζ,w) as ζ → 0. Noting that S = ζ/

√
ε, we find, in view of (3.31), that

ν2 = 2, P+(w) =
ω

π

√
κ

μ
exp
(
δw

2κ

)

a(w). (5.11)
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This establishes (3.34) in Proposition 3.24. Expression (5.10) remains valid for m = O(1) as
then S =

√
εm → 0 and we obtain p(m,n) ∼ ε2μ

∫∞
w P+(u)du, which is independent of m and

consistent with our previous analysis form = O(1).
We consider some limiting cases of the (S,w) scale result in (3.34). As δ → ∞ from

(3.28)we obtain b+ ∼ δ/(2κ) and then (3.32) yields, after some computations,

a(w) ∼ exp
(

−wδ

2κ

)√
2π

w3/2

1
2

√
δ

2κ
; δ −→ +∞, w = O(1). (5.12)

It follows from (3.34) that

P+(w) ∼ ω

2
√
π

√
δ

κ

1
w3/2

, P−(w) ∼ ω√
π

√
δμ

1√
w
; δ −→ +∞, w = O(1). (5.13)

The above results are consistent with those of Morrison in [16] for the case σ > κ, where it
was shown that

∞∑

m=0

p(m,n) ∼ εω
√
μ

√
π(σ − κ)εn

∼ p(m,n)
ε(σ − κ)

; σ > κ, n 
 1. (5.14)

Hence, for δ = (σ − κ)/
√
ε → ∞ our approximation p(m,n) ∼ ε2P−(w) agrees with (5.14).

We will next consider the scalem,n = O(1) and matching this to the (S,w) (or (m,w))
scale(s) will require the behavior of (3.34) as w → 0. For w → 0 the second integral in the
definition of a(w) in (3.32) dominates, and we obtain

a(w) ∼ 2
w2

, w −→ 0+, (5.15)

so that

P+(w) ∼ ω

π

√
κ

μ

2
w2

, w −→ 0+. (5.16)

Also, P−(w)will be less singular (O(w−1)) than P+(w), and, sincew = n/
√
ε, forw → 0+ the

approximation ε2[
√
εmP+(w) + P−(w)] becomes of order O(ε3/2) on the (m,n) scale.

On the scale m,n = O(1) we will show that p(m, 0) is asymptotically larger than
p(m,n) for n � 1, which we just inferred to be O(ε3/2). We thus set

p(m,n) =

⎧
⎨

⎩

ε3/2Q(m,n) +O
(
ε2
)
, n � 1,

εQ∗(m) + ε3/2Q
(1)
∗ (m) +O

(
ε2
)
, n = 0.

(5.17)

On the (m,n) scale, the limiting form of (2.3), with (5.17), becomes

2μQ(m,n) = μQ(m − 1, n) + μQ(m + 1, n), (5.18)
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while the boundary condition (2.5) yields

(
μ + 1

)
Q(0, n) = μQ(1, n) +Q(0, n + 1), n � 2. (5.19)

Hence, Q(m,n) is linear in m, and writing

Q(m,n) = Q+(n) ·m +Q−(n), (5.20)

we then obtain from (2.5), Q−(n) −Q−(n + 1) = μQ+(n) which we sum to get

Q−(n) = μ
∞∑

j=n

Q+
(
j
)
. (5.21)

Next, we consider the boundary condition (2.4) and the corner condition (2.6). Since λ =
μ +O(ε), we find that

2μQ∗(m) = μQ∗(m − 1) + μQ∗(m + 1), (5.22)

and Q
(1)
∗ (m) also satisfies (5.22). Hence, we have

Q∗(m) = γ + γ∗m, (5.23)

and Q
(1)
∗ (m) = γ (1) + γ

(1)
∗ m. The corner condition (2.6), with (5.17), yields to leading order

(O(ε))

μQ∗(0) = μQ∗(1), (5.24)

and at the next order (O(ε3/2))

μQ
(1)
∗ (0) = μQ

(1)
∗ (1) +Q(0, 1). (5.25)

It follows from (5.24) that γ∗ = 0. Also, (2.5) with n = 1 becomes (μ + 1)p(0, 1) = μp(1, 1) +
p(0, 2)+O(εp(0, 0)) so that (5.19) holds to leading order even if n = 1. To summarize, we have
obtained

p(m,n) ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε3/2

⎡

⎣mQ+(n) + μ
∞∑

j=n

Q+
(
j
)
⎤

⎦, n � 1,

εγ +O
(
ε3/2
)
, n = 0.

(5.26)
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It remains to determine Q+(n) and the constant γ . By letting m = S/
√
ε and n → ∞ and

matching to the (S,w) scale, we conclude that as n → ∞

Q+(n) ∼ ω

π

√
κ

μ

2
n2

, Q−(n) ∼ ω

π

√
μκ

2
n
. (5.27)

While these relations are consistent with (5.21), they do not determine Q+(n) for n = O(1).
We thus examine another scale, that has m = S/

√
ε = O(ε−1/2) and n = O(1). By

matching to (5.26) as m → ∞, we expect that p(m,n)will be O(ε) on this scale, so we set

p(m,n) ∼ εQ(S, n). (5.28)

Then, from (2.3), we obtain to leading order

μQSS(S, n) + κ
[
Q(S, n + 1) +Q(S, n − 1) − 2Q(S, n)

]
= 0, n � 1, (5.29)

while the boundary condition (2.4) leads to

μQSS(S, 0) + κ
[
Q(S, 1) −Q(S, 0)

]
= 0. (5.30)

Thus (5.29) corresponds to driftless diffusion in the S variable and a driftless random
walk in the discrete n variable. We may replace (5.30) by the “artificial” boundary condition
Q(S,−1) = Q(S, 0), by extending (5.29) to hold also at n = 0.

To analyze (5.29) consider the discrete Green’s function problem

G(n + 1) +G(n − 1) + (ν − 2)G(n) = −δ(n, n0),

G(−1) = G(0),
(5.31)

where ν is a “spectral” parameter. This is easily solved to yield

G = G(n;n0) =
1

√
ν(ν − 4)

[
A|n−n0| +An+n0+1

]
,

A = A(ν) =
1
2

[

2 − ν −
√
ν(ν − 4)

]

.

(5.32)

By integrating (5.32) over a loop in the complex ν-plane that encircles the branch cut Re(ν) ∈
[0, 4], we obtain

δ(n, n0) =
1

2πi

∮
[A(ν)]|n−n0| + [A(ν)]n+n0+1

√
ν(ν − 4)

dν

=
1
π

∫π

0
{cos[(n − n0)Ω] + cos[(n + n0 + 1)Ω]}dΩ,

(5.33)
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where we evaluated the contour integral explicitly. Here, δ(n, n0) is the Kronecker delta
symbol. From (5.33), we infer that for any sequence {f(n)}

f(n) =
2
π

∞∑

L=0

∫π

0
f(L) cos

[(

n +
1
2

)

Ω
]

cos
[(

L +
1
2

)

Ω
]

dΩ, (5.34)

which leads to the transform pair

g(Ω) =
∞∑

L=0

f(L) cos
[(

L +
1
2

)

Ω
]

f(L) =
2
π

∫π

0
g(Ω) cos

[(

L +
1
2

)

Ω
]

dΩ.

(5.35)

Returning to (5.29)we set

Q(S, n) =
2
π

∫π

0
q(s,Ω) cos

[(

n +
1
2

)

Ω
]

dΩ, (5.36)

and applying the transform in (5.35) to (5.29) and (5.30) leads to the ODE

qSS + 2
κ

μ
(cosΩ − 1)q = 0. (5.37)

Using cosΩ − 1 = 2sin2(Ω/2) and requiring also q to decay as S → ∞, we thus have

q = f(Ω) exp

[

−2
√

κ

μ
sin
(
Ω
2

)

s

]

, (5.38)

and hence

Q(S, n) =
2
π

∫π

0
f(Ω) cos

[(

n +
1
2

)

Ω
]

exp

[

−2
√

κ

μ
sin
(
Ω
2

)

S

]

dΩ. (5.39)

We determine the function f(Ω) by asymptotic matching.
First we consider the matching of εQ(S, n) as S → ∞ to ε3/2φ0(ζ, 0) as ζ =

√
εS → 0.

For S → ∞ the major contribution to the integral in (5.39) will come from near Ω = 0, and
the Laplace method yields

Q(S, n) ∼ 2
π

√
μ

κ

f(0)
S

. (5.40)

Setting w = 0 in (3.2) and letting ζ → 0, or, equivalently, using (3.30), we conclude that
f(0) = ω. Now, we match the (S, n) and (m,n) scales.
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For n � 1, εQ(S, n) as S → 0 should agree with ε3/2Q(m,n) as m → ∞, which is
possible only if Q(0, n) = 0. Thus, f(Ω) in (5.39) must be orthogonal to cos[(n + 1/2)Ω] for
all n � 1 and hence f(Ω) = k cos(Ω/2). The constant k must equal ω, since f(0) = ω.

Having determined f(Ω) we proceed to let S → 0 in (5.39). If n = 0, Q(S, 0) ∼
2ωπ−1 ∫π

0 cos2(Ω/2)dΩ = ω so that γ = ω in (5.26). If n � 1

Q(S, n) ∼ 2ω
π

(−2S)
√

κ

μ

∫π

0
cos
(
Ω
2

)

sin
(
Ω
2

)

cos
[(

n +
1
2

)

Ω
]

dΩ

=
2ω
π

√
κ

μ

S

(n + 3/2)(n − 1/2)
.

(5.41)

Thus, by matching ε3/2Q(m,n) as m → ∞ to εQ(S, n) as S → 0 we conclude that

Q+(n) =
2ω
π

√
κ

μ

4
(2n + 3)(2n − 1)

. (5.42)

Then, we easily obtain

∞∑

j=n

Q+
(
j
)
=

2ω
π

√
κ

μ

4n
4n2 − 1

. (5.43)

Now, Q+, Q− in (5.20) are determined, as is γ in (5.26), and we have established (3.36) in
Proposition 3.24. Also, using f(Ω) = ω cos(Ω/2) in (5.39) leads to (3.35) in Proposition 3.24.

Thus, we have used a singular perturbation analysis to approximate p(m,n) on scales
other than the (ζ,w) scale. While these carry mass that is o(1), the size of p(m,n)may actually
be larger than O(ε3/2), as is evident from (3.35).
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