
Hindawi Publishing Corporation
Advances in Operations Research
Volume 2011, Article ID 263762, 18 pages
doi:10.1155/2011/263762

Research Article
Outlier-Resistant L1 Orthogonal Regression via the
Reformulation-Linearization Technique

J. Paul Brooks and Edward L. Boone

Department of Statistical Sciences and Operations Research, Virginia Commonwealth University,
P.O. Box 843083, 1015 Floyd Avenue, Richmond, VA 23284, USA

Correspondence should be addressed to J. Paul Brooks, jpbrooks@vcu.edu

Received 9 September 2010; Revised 7 January 2011; Accepted 14 January 2011

Academic Editor: I. L. Averbakh

Copyright q 2011 J. P. Brooks and E. L. Boone. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Assessing the linear relationship between a set of continuous predictors and a continuous response
is a well-studied problem in statistics and data mining. L2-based methods such as ordinary least
squares and orthogonal regression can be used to determine this relationship. However, both
of these methods become impaired when influential values are present. This problem becomes
compounded when outliers confound standard diagnostics. This work proposes an L1-norm
orthogonal regression method (L1OR) formulated as a nonconvex optimization problem. Solution
strategies for finding globally optimal solutions are presented. Simulation studies are conducted
to assess the resistance of the method to outliers and the consistency of the method. The method is
also applied to real-world data arising from an environmental science application.

1. Introduction and Background

Data analysts are often posed with the problem of determining the relationship between
several variables and a response variable. The standard technique when all variables are
defined on a continuous domain is ordinary least squares regression (OLS). When outliers, or
unusual observations, are present in data, traditional regression techniques become impaired.
Methods such as M-regression (M-R) use M estimates to reduce the impact of outliers.
These methods are not designed for developing errors-in-variables models in which both the
predictors and the response have measurement error or are considered random components.
An example of such a situation is studying the relationship between pH and alkalinity in
freshwater habitats, where both measurements are subject to error.

Orthogonal regression (L2OR) is used when uncertainty is known to be present in
both independent and dependent variables. This assumption is in contrast to OLS, where the
predictors are assumed to be known with no measurement error. Furthermore, orthogonal
regression measures the distances orthogonal to the fitted hyperplane whereas in OLS
residuals are measured as the vertical distance of observations to the fitted surface.
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Figure 1: Two-dimensional illustration of different methods for incorporating the L1 norm into orthogonal
regression. In traditional orthogonal regression, the sum of distances of points (x, y) to bT (x, y)b is
maximized, the sum of distances of points (x, y) to aT (x, y)a is minimized, and the sum of the magnitudes
of aT (x, y)a is maximized. As noted in the text, each of these distance measures can be modified to
incorporate the L1 norm to derive different results. In this paper, the approach is to maximize the sum
of L1 distances of points (x, y) to bT (x, y)b which is illustrated by d1 + d2.

1.1. Previous Work on Robust Orthogonal Regression

The sensitivity of L2OR to outliers has been noted, and other investigators have worked to
develop robust methods [1–3]. The work of Zamar [3] includes the use of S andM estimates
for orthogonal regression. Späth and Watson [4] introduce a method for incorporating the L1

norm for measuring distances in orthogonal regression.
L2OR can be formulated as equivalent to finding the last principal component, or

the direction of minimum variation, in principal component analysis (PCA). Hence, any
robust PCA method can be used for robust orthogonal regression. Two main approaches for
robust PCA are (1) to find robust estimates of the covariance matrix (in traditional PCA,
the principal components are eigenvectors of the covariance matrix) and (2) to use a robust
measure of dispersion. Research in the former area includes [5–11]. Robust estimates of
dispersion in PCA have been investigated in [12–16]; each of these works is based on a
projection pursuit approach.

Our approach is closely related to that developed by Späth and Watson [4] and Kwak
[16] by the manner in which we incorporate the L1 norm into an orthogonal regression
procedure. Späth and Watson [4] measure the error of an observation as the L1 distance to
its orthogonal projection onto a fitted hyperplane. Kwak [16] finds successive directions of
maximum variation by maximizing the L1 distance to the L2 projection of points onto a line.
In contrast to these methods, our approach is to directly find the direction of least variation
by maximizing the L1 distance between points and their L2 projections onto a vector (see
Figure 1). Also, themethods presented in [4, 16] guarantee only local minima to the respective
optimization problems, while we present a method for deriving globally optimal solutions.

These threemethods can be viewed as approximating amaximum likelihood estimator
(MLE) for the linear errors-in-variables model with independent errors with a Laplace
distribution (see [23, 24]). The MLE for such a model corresponds to a hyperplane that
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minimizes the sum of L1 projections. Zwanzig [25] considers an L1 estimator for a nonlinear
generalization of the error-in-variables model and shows that under certain assumptions on
the error distribution, the estimator is consistent.When applied to the setting of L1 orthogonal
linear regression, the estimator is similar to the approach of Späth and Watson [4].

1.2. Traditional Orthogonal Regression

Suppose we are given observations with continuous predictors and responses (xi, yi) ∈ R
d ×

R, i = 1, . . . , n. L2OR seeks to find an orthogonal projection of the data onto a hyperplane such
that the sum of the orthogonal distances of the points (xi, yi) to the hyperplane is minimized.
We assume throughout this work that the medians have been subtracted from samples and
that the fitted hyperplane passes through the origin. We note that for large values of d, the
coordinate-wise median may not be a good estimate of the center of a data cloud (see [26]).

In L2OR, the sum of squared orthogonal distances of (xi, yi) to the hyperplane defined
by bT (x, y) = 0 is minimized. The vector b is normal to the best-fitting hyperplane and is the
direction of least variation of the data. Because b is the direction of least variation, the sum
of squared distances of observations to their projections along b is maximized. Therefore, we
can find b by solving the following optimization problem:

[L2OR]max
b

n∑

i=1

∥∥∥
(
xi, yi

) − bT(xi, yi

)
b
∥∥∥
2

2
, (1.1)

subject to

bTb = 1. (1.2)

The variables are in the vector b ∈ R
d+1. The term bT (xi, yi)b represents the orthogonal

projection of observation i along b in terms of the original coordinates of the data.
In this paper, we present a new outlier-resistant method for orthogonal regression

called L1OR. The direction of least variation in data is found by maximizing the L1

distances of observations to their projection points along a vector. The fitted hyperplane is
orthogonal to the direction of least variation. The problem is formulated as a nonconvex
optimization problem. We describe how globally optimal solutions can be derived based on
a reformulation-linearization technique (RLT) developed by Sherali and Tuncbilek [27]. We
present results of applying L1OR to simulated data that is contaminated with outliers and
compare the results to robust methods for orthogonal regression. The consistency of L1OR is
assessed using simulated data. L1OR is applied to data collected for the evaluation of marine
habitats, where uncertainty resides in both the dependent and independent variables.

2. Finding the Best-Fit Hyperplane

Suppose that instead of maximizing the sum of the squared perpendicular distances of
observations to their projection along the direction of least variation, we maximize the sum
of the L1 distances. Using the L1 metric reduces the impact of outlier observations.

In Figure 1, we illustrate different methods of incorporating the L1 norm into an
orthogonal regression procedure for a two-dimensional example. The fitted hyperplane is
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defined by its normal vector b, representing an approximation of the direction of least
variation in data. The vector a spans the space defined by the fitted hyperplane. Our approach
is to maximize the sum of L1 distances of points onto their projections on b. The L1 distance
of (x, y) to its L2 projection on b is given by d1 + d2 in the figure. The procedure proposed by
Späth and Watson [4] minimizes the sum of L1 distances of points to their L2 projections in
a fitted hyperplane. The distance of (x, y) to its projection in the fitted subspace is indicated
by d3 + d4. The procedure introduced by Kwak [16] maximizes the sum of L1 magnitudes
of the projections of points onto the fitted hyperplane. In Figure 1, this magnitude is given
by d5 + d6. When these three distances are measured using the L2 norm, the same regression
plane is optimal [28]; however, because the distances in each case are measured using the L1

norm, the resulting regression planes will not always coincide. The L1 projection of (x, y) on
to the fitted hyperplane is given by (x1, y1); an MLE approach would minimize the sum of L1

distances of points to their L1 projections.
Maximizing the sum of the L1 distances of points to a line passing through the origin

is written as

max
b

n∑

i=1

∥∥∥
(
xi, yi

) − bT(xi, yi

)
b
∥∥∥
1
= max

n∑

i=1

d∑

j=1

∣∣∣∣∣xij − bj

(
d∑

k=1

xikbk + yibd+1

)∣∣∣∣∣

+
n∑

i=1

∣∣∣∣∣yi − bd+1

(
d∑

k=1

xikbk + yibd+1

)∣∣∣∣∣.

(2.1)

The objective function is nonlinear and nonconvex. As with [L2OR], the optimal
hyperplane is defined by bT (x, y) = 0. Let rij be the L1 residual for component j of observation
i. Also, let a = b + 1, where 1 is a vector of 1’s, so that all aj variables are nonnegative.
This substitution is necessary for our solution method which is explained below. The math
program can then be formulated as

[L1OR]max
n∑

i=1

d+1∑

j=1

rij , (2.2)

subject to

rij =

⎧
⎪⎨

⎪⎩

[(
xi, yi

) − (a − 1)T
(
xi, yi

)
(a − 1)

]

j
if zij = 0, ∀i, j,

[
−(xi, yi

)
+ (a − 1)T

(
xi, yi

)
(a − 1)

]

j
if zij = 1, ∀i, j,

(a − 1)T (a − 1) = 1,

a ≥ 0,

a ≤ 2,

(2.3)

zij ∈ {0, 1}, i = 1, . . . , n; j = 1, . . . , d + 1. (2.4)

The quantities 0, 1, and 2 are vectors with each coordinate having the value 0, 1, and
2, respectively. The objective function is now linear, and the first three sets of constraints are
defined by nonconvex functions.
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To derive globally optimal solutions for [L1OR], we combine the use of branch-and-
bound for integer programming with branch-and-bound for the reformulation-linearization
technique (RLT) as described in [27]. Subproblemwill refer to a linear mixed-integer program
(MIP) that corresponds to a node in a branch-and-bound tree for the RLT. Each subproblem
can be converted to a linear MIP by expressing the conditional constraints as

rij ≤
[(
xi, yi

) − (a − 1)T
(
xi, yi

)
(a − 1)

]

j
+Mzij ,

rij ≤
[
−(xi, yi

)
+ (a − 1)T

(
xi, yi

)
(a − 1)

]

j
+Mzij ,

(2.5)

for a sufficiently large constant M.
The following is a summary of RLT applied to [L1OR].

(i) Subproblem optimization. Select a subproblem to solve. Each subproblem is a linear
MIP that relaxes the nonconvex constraints. If all subproblems are solved, then the
incumbent solution is optimal.

(ii) Check for new bound. If the solution satisfies the original nonconvex constraints, the
current solution is feasible. Update the incumbent solution and objective value if
appropriate.

(iii) Fathom. Fathom if (1) the solution satisfies the original constraints, (2) the
subproblem is infeasible, or (3) the objective value for the subproblem is less than
the incumbent objective value.

(iv) Branch. Select a variable for branching, creating two subproblems.

A flow-chart detailing the steps in the RLT branch-and-bound process is included in
Figure 2.

We now describe the construction of the root subproblem for RLT. For each occurrence
of ajak in the constraints, substitute a new variable Ajk into the formulation. Also, add
constraints of the form

(
2 − aj

)
(2 − ak) ≥ 0, j, k = 1, . . . , d + 1,

(ak − 0)
(
2 − aj

) ≥ 0, j, k = 1, . . . , d + 1,

(ak − 0)
(
aj − 0

) ≥ 0, j, k = 1, . . . , d + 1,

(2.6)

but again replace occurrences of ajak with Ajk. The presence of 0 in the constraints is to
reflect the lower bounds on the aj variables; these lower bounds will be changed during the
optimization algorithm as described below. The result is a linear MIP that is a relaxation of
[L1OR][27].

We now describe the branching procedure. The optimal solution to the relaxation is
feasible for [L1OR] if Ajk = ajak for all j, k. If this condition is not satisfied, then choose a
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Figure 2: Flowchart of the steps involved in RLT branch and bound procedure applied to a nonlinear
mixed-integer program.

variable aj withAjk /=ajak for some kwith current value aj and create two new subproblems.
One of the new subproblems will have constraints of the form

(
aj − aj

)
(2 − ak) ≥ 0, k = 1, . . . , d + 1,

(ak − 0)
(
aj − aj

) ≥ 0, k = 1, . . . , d + 1,

(ak − 0)
(
aj − 0

) ≥ 0, k = 1, . . . , d + 1,

aj ≤ aj .

(2.7)

Again, replace all occurrences of ajak with Ajk to create linear constraints. The other
new subproblem will have the linearized form of the constraints

(
2 − aj

)
(2 − ak) ≥ 0, k = 1, . . . , d + 1,

(
aj − aj

)
(2 − ak) ≥ 0, k = 1, . . . , d + 1,

(ak − 0)
(
aj − aj

) ≥ 0, k = 1, . . . , d + 1,

aj ≥ aj .

(2.8)

As nodes in the branch-and-bound tree are traversed, the bounds for the aj variables
are successively tightened. Sherali and Tuncbilek [27] prove that either the search for optimal
solutions terminates with a globally optimal solution in finite steps or else any accumulation
point of solutions along an infinite branch of the branch-and-bound tree is a globally optimal
solution.



Advances in Operations Research 7

3. Simulation Studies

In this section, the ability of L1OR to resist the effects of two types of outliers is assessed using
simulation studies. The approach is compared to L2OR and several robust procedures. The
consistency of L1OR is also assessed using a simulation study.

[L1OR] MIP subproblems are solved using CPLEX 12.1. If provable optimality is not
achieved for MIP subproblems after 2 minutes, the best-known integer feasible solution
is used. We implemented our own branch-and-bound algorithm for applying RLT in a C
program, with a time limit of 7200 CPU seconds for each instance. Problems are solved on
machines with 2 × 2.6GHz Opteron processors and 2GB RAM.

L1OR is compared to a robust approach based on projection pursuit [12], a τ scale-
based orthogonalized Gnanadesikan-Kettenring estimate [29] (hereafter τ-OGK), and a
method based on PCA-L1 [16]. The projection pursuit approach is applied by using the
method for principal component analysis described in [15]. The method is modified for
orthogonal regression by taking the last robust principal component as the coefficients of
the orthogonal regression hyperplane. We denote this method by ppOR-mad or ppOR-qn,
with the suffix indicating the scale function used. The other methods are denoted by τ-OGK
and PCA-L1. For PCA-L1, the initial vector is set tow0 = argmaxxi‖xi‖2 (see [16]).

L2OR and ppOR models are derived using prcomp() and PCAgrid() functions,
respectively, called in the R environment for statistical computing [30]. The function
PCAgrid() is in the pcaPP [31] library. R code for the τ-OGK estimator was provided by an
anonymous referee. We implemented the PCA-L1 method [16] in a C program.

3.1. Vertical Outliers

A simulation study is conducted to assess the ability of L1OR to detect linear relationships
in bivariate data in the presence of vertical outliers. Vertical outliers have significant variation
only in their response-variable values. A simulation design is utilized by varying the number
of contaminated observations (C) and contamination magnitude (m). Each method is run on
30 datasets with 100 observations under each treatment condition. For this study, C is varied
in the following manner: no contamination, C = 0, moderate contamination, C = 10, and
high contamination, C = 25. The magnitude of contamination m is varied as m = 1: low
contamination, m = 10: moderate magnitude, m = 50: large magnitude.

The data are sampled in the following manner.

(i) Generate the uncontaminated data: xi ∼ U[−1, 1] and yi = xi + εi, where εi ∼
N(0, 0.1), for i = 1, . . . , 100 − C.

(ii) Generate the contaminated data: xi ∼ U[0.5, 1] and yi ∼ |N(0, m × 0.1)|, for i =
101 − C, . . . , 100.

An example dataset with fitted models generated using m = 10 and C = 25 is given in
Figure 3(a).

To evaluate each method’s ability to accurately fit the known underlying model, the
following model discrepancy, D, is used:

D
(
f̂ , f
)
=
∫1

−1

∣∣∣f̂(x) − f(x)
∣∣∣dx, (3.1)
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Figure 3: Examples of data sets used in simulation experiments and fitted models: (a) a data set with
vertical outliers generated using parameters m = 10 and C = 25, (b) a data set with clustered leverage
outliers with n = 100 and generated using ε = 0.25, and (c) a data set with errors in both variables sampled
from a Laplace distribution with n = 200.

where f is the known model and f̂ is the estimated model. Note that D corresponds to the
area between f and f̂ . If the estimated model is close to the true model, thenD will be small.
For each of the simulations D is computed and recorded. Using these results the average
model discrepancy, D, and standard error are computed.

To analyze the simulation, the means and standard deviations of D are computed for
each setting of m and C and can be found in Table 1. For all configurations with m ≤ 10,
L1OR has lower means and standard deviations than all other methods tested, indicating
superior performance in resisting outlier contamination for such conditions. For m = 50,
L1OR performs worse than the robust methods with the exception of PCA-L1 but better than
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Table 1:Mean (standard deviation) ofD for L1OR, L2OR, ppOR-mad, ppOR-qn, τ-OGK, and PCA-L1 with
contamination magnitudesm = 1, 1010, and 5050 and contamination levels C = 0, 10, and 25.

Method m = 1 m = 10 m = 50

C = 0

L1OR 0.00997 (0.00540)

L2OR 0.01818 (0.01459)

ppOR-mad 0.13624 (0.09616)

ppOR-qn 0.08398 (0.07724)

τ-OGK 0.01870 (0.01486)

PCA-L1 0.02081 (0.01388)

C = 10

L1OR 0.00934 (0.00583) 0.08496 (0.01798) 0.31339 (0.05527)

L2OR 0.03070 (0.01578) 0.32365 (0.10149) 3.54666 (0.99552)

ppOR-mad 0.13714 (0.12535) 0.11584 (0.10239) 0.08906 (0.07094)

ppOR-qn 0.07475 (0.06369) 0.14938 (0.08210) 0.05840 (0.04831)

τ-OGK 0.03018 (0.01696) 0.18032 (0.03857) 0.20396 (0.03736)

PCA-L1 0.02608 (0.01667) 0.17335 (0.04240) 0.76836 (0.16126)

C = 25

L1OR 0.01190 (0.00573) 0.16172 (0.02743) 0.58962 (0.06106)

L2OR 0.04505 (0.01420) 0.62263 (0.12630) 6.26558 (1.35709)

ppOR-mad 0.12443 (0.10311) 0.25518 (0.24805) 0.31136 (0.28315)

ppOR-qn 0.08947 (0.08796) 0.59031 (0.18792) 0.24970 (0.12092)

τ-OGK 0.03865 (0.01879) 0.45040 (0.09105) 0.54522 (0.08887)

PCA-L1 0.03940 (0.01382) 0.35664 (0.06198) 1.87768 (0.31515)

the outlier-sensitive L2OR. In the case of extreme contamination (C = 25, m = 50), L2OR
and PCA-L1 are extremely sensitive to outliers as indicated by large values for D. The best-
performing method for this configuration is ppOR-qn. L1OR has mean discrepancy that is
only 0.34more than that of ppOR-qn but is at least 1.28 less than the outlier-sensitivemethods.
Overall, this suggests that L1OR performs well when no contamination is present and in the
presence of larger levels of contamination, but performance degrades relative to some of the
robust methods when the contamination magnitude is very large.

3.2. Clustered Leverage Outliers

The ability of L1OR to detect linear relationships in bivariate data with outliers is further
analyzed with a simulation using datasets with clustered leverage outliers. Clustered leverage
outliers in a dataset have very similar values but are far from the rest of the data set. The
simulation design varies the number of observations (n) and the contamination level (ε). For
each treatment condition and replication, a dataset is generated without contamination and a
companion dataset is generated replacing the first �εn	 observations with contaminated data.
There are 50 replications for each treatment condition. For this experiment, ε is varied in the
following manner: low contamination: ε = 0.05, moderate contamination: ε = 0.10, and high
contamination: ε = 0.25.
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The data are sampled as follows.

(i) Generate the uncontaminated data: (xi, yi) ∼ N(0,Σ), for i = 1, . . . , n.

(ii) Generate the contaminated data: (xi, yi) ∼ N(m, 10−2I), for i = 1, . . . , �εn	.
The covariance matrix (Σ) is varied across replications. First, a 2 × 2 matrix A is

generated such that each entry is sampled from aN(0, 1) distribution. The QR decomposition
A = QR is calculated. Let B = QI sgn(〈R〉), where 〈·〉 indicates taking the diagonal elements
as a vector and sgn(·) is the vector with the signs of the corresponding elements of a vector.
Then Σ is sampled from a Wishart(B, 5). The means (m) for the contaminated data are
generated such that

(1) the Mahalanobis distance ofm from the distribution N(0,Σ) is at least
√
2χ2

0.99,2′ ,

(2) min{xi : i = 1, . . . , n} ≤ m1 ≤ max{xi : i = 1, . . . , n}, and
(3) min{yi : i = 1, . . . , n} ≤ m2 ≤ max{yi : i = 1, . . . , n}.
An example dataset with 100 observations and fitted models generated using ε = 0.25

is given in Figure 3(b).
Each method is evaluated based on the similarity of the models fit on the companion

uncontaminated and contaminated datasets. The similarity measure S is defined as the
absolute value of the inner product

S
(
b1,b2

)
=
∣∣∣b1 · b2

∣∣∣, (3.2)

where b1 and b2 are the vectors of coefficients derived for the uncontaminated and
contaminated datasets. The values of S can be between 0 and 1, with larger values indicating
that the models are in agreement and that outliers do not affect the estimate.

The means across replications and the percentage of instances with S ≥ 0.90 for each
value of n and ε are contained in Table 2. For ε = 0.05, 0.10, the performance of L1OR is nearly
constant as n is increased. There is a slight degradation in performance for larger values of
n, which is likely due to the increased computational complexity of instances (see Section 5).
For ε = 0.05, all methods have high mean values for S and high percentages of instances with
S ≥ 0.9, including the outlier-sensitive L2OR. For ε = 0.10, L1OR and all of the robust methods
have larger mean values of S than L2OR. The ppOR-qn estimator has the most consistent
performance across different values of n for ε = 0.10, with mean values of S above 0.94 for
each. The L1OR estimator has mean values above 0.93 for n ≤ 100, but performance degrades
for n = 200. The τ-OGK estimator has the highest or second-highest mean values of S for
n ≤ 100. For ε = 0.25, the performance of L1OR lags the robust methods. For n ≤ 50, the
performance is similar to that of L2OR. For n ≥ 100, the mean values of S are less than those
for L2OR. For ε = 0.25, the preferred estimator appears to be ppOR-mad, as it has the highest
or second-highest value of S for each n.

3.3. Consistency

The consistency of L1OR is assessed by performing tests on instances with various sample
sizes. Bivariate data (xi, yi), i = 1, . . . , n are generated such that xi = νi+εi, where νi ∼ U[−1, 1]
and εi ∼ Laplace(0, 0.5), and yi = xi+ξi, where ξi ∼ Laplace(0, 0.5). The sample sizes tested are
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Table 2: Mean of S/percentage of instances with S ≥ 0.9 for L1OR, L2OR, ppOR-mad, ppOR-qn, τ-OGK,
and PCA-L1 with sample sizes n = 25, 50, 100, and 200 and contamination levels ε = 0.05, 0.10, and 0.25.

Method ε = 0.05 ε = 0.10 ε = 0.25

n = 25

L1OR 0.996/1.000 0.993/1.000 0.680/0.520

L2OR 0.981/0.980 0.963/0.920 0.648/0.240

ppOR-mad 0.967/0.900 0.933/0.740 0.859/0.500

ppOR-qn 0.963/0.880 0.944/0.800 0.869/0.460

τ-OGK 0.994/1.000 0.985/0.980 0.842/0.660

PCA-L1 0.962/0.940 0.969/0.960 0.794/0.380

n = 50

L1OR 0.998/1.000 0.932/0.920 0.602/0.360

L2OR 0.988/1.000 0.912/0.860 0.609/0.260

ppOR-mad 0.974/0.900 0.943/0.860 0.903/0.660

ppOR-qn 0.989/1.000 0.962/0.900 0.858/0.400

τ-OGK 0.997/1.000 0.974/0.980 0.818/0.640

PCA-L1 0.986/0.960 0.932/0.880 0.779/0.380

n = 100

L1OR 0.973/0.960 0.931/0.900 0.519/0.180

L2OR 0.981/0.960 0.884/0.700 0.623/0.200

ppOR-mad 0.979/0.960 0.956/0.900 0.923/0.700

ppOR-qn 0.989/1.000 0.958/0.900 0.878/0.480

τ-OGK 0.998/1.000 0.977/0.940 0.828/0.540

PCA-L1 0.979/0.960 0.940/0.880 0.810/0.340

n = 200

L1OR 0.932/0.800 0.857/0.760 0.509/0.140

L2OR 0.917/0.820 0.805/0.580 0.608/0.160

ppOR-mad 0.975/0.960 0.970/0.920 0.942/0.780

ppOR-qn 0.978/0.980 0.959/0.860 0.893/0.560

τ-OGK 0.997/1.000 0.954/0.920 0.834/0.600

PCA-L1 0.926/0.860 0.922/0.820 0.785/0.340

n = 10, 25, 50, 100, 200; data are generated for 100 datasets for each value of n. The rlaplace()
function in the R package rmutil [32] is used to sample from the Laplace distribution. An
example dataset with 200 observations and the fitted L1OR model is given in Figure 3(c).

Figure 4 depicts the standard error of the absolute value of the slope as a function of
sample size. As sample size increases, the standard error rapidly approaches zero, indicating
that the procedure is consistent. For large sample sizes, L1OR should provide good estimates.

4. An Environmental Example

The pH and alkalinity of the water in which the fish live are known to impact their overall
health. Alkalinity is a measure of the ability of a solution to neutralize acids. Researchers
expect pH and alkalinity be highly correlated. However, the relationship of the two variables
is difficult to estimate in many datasets due to low variation in pH across streams and due
to the presence of outliers. The dataset for this example is a subset of values collected across
the state of Ohio resulting in 312 observations. Various subsets of this dataset have been
considered previously by Norton [17], Lipkovich et al. [18], Noble et al. [19], and Boone et al.
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Figure 4: Plot of the standard error of the absolute value of the slope in a bivariate experiment as a function
of sample size (n).
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Figure 5: Scatter plot of pH versus alkalinity with models from L1OR, L2OR, and ppOR-mad; ppOR-qn,
τ-OGK, and PCA-L1.

[20]with varying degrees of success at estimating the relationship between pH and alkalinity.
For the purposes of this work both pH and alkalinity have been normalized. Note that in this
data both pH and alkalinity have measurement error, and hence an orthogonal regression
method should be used. The same computational settings as in the simulation studies are
used for this analysis.

Figure 5 shows the scatter plot of pH versus alkalinity. There appears to be a linear
relationship between alkalinity and pH. Also notice the vertical and leverage outliers present
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Table 3: Summary of regression models for alkalinity on pH using L1OR, L2OR, ppOR-mad, ppOR-qn,
τ-OGK, and PCA-L1.

Method Estimate Standard error∗ T value P value
L1OR −0.87760 0.05993 −14.64350 .00000
L2OR −0.97168 0.42857 −2.26728 .02555
ppOR-mad −1.28919 0.74707 −1.72567 .08753
ppOR-qn −0.93906 0.20355 −4.61344 .00001
τ-OGK −0.83845 0.10632 −7.88578 .00000
PCA-L1 −0.74421 0.11951 −6.22713 .00000

in the data. The Pearson correlation coefficient for the relationship between pH and alkalinity
is r = 0.3366 which is biased down due to the outliers in the data. Furthermore, since
the correlation is biased down, extracting a pH-alkalinity component and using that as a
predictor would not be prudent. Hence, a regression method is needed that is insensitive to
outliers/influential points. With the exception of ppOR-mad, the outlier-insensitive methods
all demonstrate resistance to the outliers in the measurements of pH when compared to the
outlier-sensitive L2OR. The method based on PCA-L1 produces a model that appears to be
least affected by outliers, followed by the τ-OGK estimator and then L1OR.

Table 3 shows the summary of regression models for each method. Here the standard
errors are bootstrap standard errors based on 100 bootstrap samples. The bootstrap standard
errors vary widely across the methods, with L1OR having the most stable estimates, as
evidenced by smaller standard errors, followed by τ-OGK and PCA-L1. With the exception
of ppOR-mad, the P values indicate that the relationship between pH and alkalinity is
statistically significant. Notice that the P value for the relationship is statistically significant
using L1OR, τ-OGK, and PCA-L1 with a P value of less than .00001. The L1OR, τ-OGK, and
PCA-L1 estimators appear to be the best choice for this data, with PCA-L1 producing the best
estimate and L1OR providing the most stable estimate.

An expansion of this problem is to consider how alkalinity, pH, and habitat measure
qualitative habitat evaluation index (QHEI) impact the index of biotic integrity (IBI). QHEI
measures the quality of the habitat in which the fish reside [21]. QHEI is determined from the
following six measures: stream substrate, in stream cover, channel morphology, riparian and
bank condition, pool and riffle quality, and gradient. Here higher values correspond to better
habitat quality, and lower values correspond to poorer habitat quality. IBI measures the health
of the fish community. Lower values of IBI correspond only to tolerant species present, low
community organization, and high proportion of fish with physical anomalies. High values
correspond to highly organized fish communities, many intolerant species present, and high
diversity among species [22]. The data consist of 312 observations from the same sites.

Orthogonal regression models are fit to the data with IBI as the response and QHEI,
pH, and alkalinity as predictors. The method presented by Croux and Haesbroeck [10]
(hereafter CH) is used instead of τ-OGK because of the increased number of variables.
The CH method is a robust PCA based on finding eigenvalues of a robust estimate of the
covariance matrix.

Table 4 shows the coefficients, bootstrap standard errors, t value, and P values for
the regressions using each method. Notice that the L1OR estimates for the coefficients for
pH and alkalinity are the most stable, as indicated by lower standard errors. The standard
errors for the QHEI coefficient estimates are the smallest for each method. The estimate for
the QHEI coefficient by CH has the lowest standard error and is the largest positive estimate
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Table 4: Summary of regression models for IBI on QHEI, pH, and alkalinity (ALK) using L1OR, L2OR,
ppOR-mad, ppOR-qn, CH, and PCA-L1.

Method Variable Estimate Standard error∗ T value P value

L1OR
QHEI −0.67248 5.58039 −0.12051 .90433
pH 0.70695 9.31363 0.07591 .93965
ALK −1.26714 5.60148 −0.22622 .82150

L2OR
QHEI 0.17841 5.79662 0.03078 .97551
pH −11.25396 86.54848 −0.13003 .89681
ALK 3.97315 64.00076 0.06208 .95062

ppOR-mad
QHEI 0.07038 5.57955 0.01261 .98996
pH 4.31182 68.31064 0.06312 .94980
ALK −4.36975 41.89404 −0.10430 .91714

ppOR-qn
QHEI −1.88655 4.41714 −0.42710 .67024
pH 21.51640 83.28626 0.25834 .79668
ALK −13.92729 60.63738 −0.22968 .81881

CH
QHEI 0.33704 3.75244 0.08982 .92861
pH 21.25614 53.26711 0.39905 .69072
ALK −21.16159 67.57228 −0.31317 .75481

PCA-L1

QHEI −0.97810 9.09927 −0.10749 .91462
pH −3.61571 107.89751 −0.03351 .97333
ALK 3.33549 79.46839 0.04197 .96661

∗Standard errors are bootstrap standard errors based on 100 bootstrap samples.

which seems to agree best with biological expectations. The better the habitat the fish have
to live in, the better the health of the fish community. For all methods except for L2OR and
PCA-L1, the coefficients indicate a positive correlation between IBI and pH and a negative
correlation between IBI and alkalinity. While none of the variables in any of the regressions
are statistically significant, this dataset provides an example of how the regression coefficients
from orthogonal regression with outliers may be suspect.

5. Computation Time

The solution method proposed for L1OR is more computationally intensive than the other
methods used for comparison in this paper. The alternative methods solve all of the instances
used here in less than a few seconds. In this section, we evaluate the computational
performance of our implementation of L1OR.

Tables 5–8 contain data on the computational performance of L1OR in each of the
experiments conducted. In each table, the first column(s) indicates the configuration of the
data: for Table 5 the contamination level C and contamination magnitude m; for Table 6 the
sample size n, contamination level ε, and whether the data has outliers; for Table 7 the sample
size n; for Table 8 the number of variables d. The second column % Optimal indicates the
percentage of instances solved to optimality, meaning that all MIP subproblems solved to
optimality and the RLT branch and bound tree are fully explored. The third column Avg.
MIPs Solved contains the average number of MIPs solved for each configuration. The fourth
column Avg. MIPs Suboptimal contains the average number of MIPs that were not solved to
optimality within the 120 CPU second time limit. The fifth column Avg. Time-to-Term. (s)
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Table 5: Computational performance of L1OR implementation for simulation with vertical outliers.

Avg. MIPs Avg. MIPs Avg. time Avg. time
C m % Optimal solved suboptimal to Term. (s) to Best Soln. (s)
0 0 7.0 193.2 1.2 289.4 235.2
10 1 6.0 217.9 1.0 282.2 242.7
10 10 6.0 187.0 0.9 279.1 255.5
10 50 14.0 117.9 0.5 199.0 186.4
25 1 9.0 236.4 0.9 287.1 226.2
25 10 1.0 105.7 1.2 231.3 223.0
25 50 24.0 154.1 0.2 163.1 149.4

Table 6: Computational performance of L1OR implementation for simulation with clustered leverage
outliers.

Avg. MIPs Avg. MIPs Avg. time Avg. time
n ε Contamination % Optimal Solved Suboptimal to Term. (s) to Best Soln. (s)
25 0.05 N 100.00 112.5 0.0 5.7 5.1
25 0.05 Y 100.00 116.4 0.0 7.3 6.5
25 0.1 N 100.00 110.8 0.0 6.1 5.3
25 0.1 Y 100.00 114.8 0.0 8.2 7.6
25 0.25 N 100.00 140.6 0.0 7.8 6.7
25 0.25 Y 100.00 104.1 0.0 10.3 9.9
50 0.05 N 90.00 115.8 0.1 55.4 52.2
50 0.05 Y 82.00 111.2 0.2 82.7 80.8
50 0.1 N 94.00 127.3 0.1 53.0 49.8
50 0.1 Y 76.00 113.5 0.3 102.4 100.1
50 0.25 N 86.00 115.1 0.2 62.8 60.7
50 0.25 Y 44.00 125.9 0.8 186.3 184.1
100 0.05 N 10.00 119.5 2.4 445.3 434.5
100 0.05 Y 6.00 124.5 3.1 548.3 541.4
100 0.1 N 16.00 106.1 2.1 389.0 378.0
100 0.1 Y 4.00 112.7 4.2 697.2 671.8
100 0.25 N 6.00 118.7 2.6 465.8 452.3
100 0.25 Y 0.00 114.4 5.9 911.2 886.6
200 0.05 N 0.00 96.9 7.2 1243.3 1154.3
200 0.05 Y 0.00 99.1 9.1 1459.7 1398.4
200 0.1 N 0.00 93.4 7.3 1201.8 1150.1
200 0.1 Y 0.00 102.2 10.8 1662.2 1617.2
200 0.25 N 0.00 108.4 7.3 1249.9 1206.4
200 0.25 Y 0.00 102.3 11.8 1743.9 1704.6

contains the average of the lesser of the CPU seconds before the RLT branch and bound tree
is explored and 7200 seconds. The last column Avg. Time to Best Soln. (s) contains the average
time to find the best feasible solution.

With the exception of the bootstrap samples for the environmental data with d = 4
(Table 8), the RLT branch-and-bound tree is explored in every instance. However, for many of
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Table 7: Computational performance of L1OR implementation for consistency experiment.

Avg. MIPs Avg. MIPs Avg. time Avg. time
n % Optimal solved suboptimal to term. (s) to best soln. (s)
10 100.00 134.1 0.0 1.7 1.3
25 100.00 131.9 0.0 9.2 7.9
50 89.00 127.8 0.1 54.8 51.6
100 1.00 115.7 1.6 358.2 346.8
200 0.00 105.1 7.7 1481.8 1418.5

Table 8: Computational performance of L1OR implementation for bootstrap simulations.

Avg. MIPs Avg. MIPs Avg. time Avg. time
d % Optimal solved suboptimal to term. (s) to best soln. (s)
2 0.00 105.1 3.2 1099.3 1020.5
4 0.00 69.5 57.5 7257.9 5511.9

these instances, at least one of the MIP subproblems is not solved to optimality. The solution
taken in these instances is therefore not “provably” optimal. All instances with n ≤ 25
are solved to optimality. As n is increased to 50 and larger, fewer instances are solved to
optimality. For n ≤ 100, the number of MIP subproblems that are not solved to optimality
is less than 5% of the subproblems solved in those instances on average. For n = 200 in the
simulation for clustered leverage outliers and the consistency experiment, about 10% of the
MIPs are not solved to optimality. For the bootstrap simulation with d = 4, more than half of
the MIPs were not solved to optimality.

In the simulation with vertical outliers (Table 5), more instances are solved to
optimality when the outlier contamination is larger. In contrast, in the simulation with
clustered leverage outliers (Table 6), fewer instances with contamination are solved to
optimality, than the companion datasets without contamination. Also, the number of
instances solved to optimality seems to decrease as the contamination level increases.

In the simulation with vertical outliers (Table 5), at least one MIP is not solved to
optimality in most instances. Except in the case of extreme outlier contamination, L1OR
performed competitively when compared to robust methods. Also, the standard error for the
slope in the consistency experiment (Table 7), the percentage of instances solved to optimality
decreases dramatically as n increases, but the standard error for the estimates continues to
decrease. For these instances then, the time limit for the MIP subproblems does not appear to
hamper the ability to find good solutions.

Only one experiment, the bootstrap simulation with d = 4, used data with more than
2 variables. The degradation in computational performance is more dramatic in the shift
from d = 2 to d = 4 in the bootstrap simulation than the degradation observed when n
is increased in the bivariate experiments. This phenomenon is likely due to the increase in
nonlinear constraints needed to produce the RLT relaxation.

6. Discussion

This work introduces a new L1 orthogonal regression technique that is designed to be
resistant to outliers. We develop amethod for deriving globally optimal solutions for problem
instances. Via simulation, the method shows promise for being resistant to outliers. An
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application to an environmental example further demonstrates that the method produces
results which are more resistant to outliers than traditional orthogonal regression and
competes with other robust methods. Hence, this method gives data analysts that deal
with errors-in-variables data contaminated with outliers a resistant alternative to orthogonal
regression.

The computational studies presented here indicate that different robust or outlier-
resistant methods are suitable in different situations, and there is no clearly superior method.
The pcaPP-madmethod is among the best performers in the presence of vertical and clustered
leverage outliers in simulated data but has perhaps the poorest estimate in the real-world
example that contains both types of outliers. PCA-L1 is among the poorest performers in the
presence of vertical and clustered leverage outliers in simulated data but produces some of
the best estimates in the real-world analysis. The inconsistency of the results for PCA-L1 may
be due to the dependence of the method on having a good starting point for finding a good
local optimal solution. The L1OR method presented here performs best with respect to the
other methods in the presence of moderate contamination by vertical outliers but suffers in
cases of extreme contamination.

Traditional orthogonal regression (L2OR) can be formulated as a special case of PCA.
The approach presented in this work for formulation and optimization can potentially be
adapted to develop an outlier-resistant method for PCA. An outlier-resistant PCA algorithm
would be useful for data analysts that work with contaminated data. Another possible
extension is for an outlier-resistant factor analysis procedure for analyzing categorical data.
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