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Based on alternative reduced games, several dynamic approaches are proposed to show how the
three extended Shapley values can be reached dynamically from arbitrary efficient payoff vectors
on multichoice games.

1. Introduction

A multichoice transferable-utility (TU) game, introduced by Hsiao and Raghavan [1], is a
generalization of a standard coalition TU game. In a standard coalition TU game, each player
is either fully involved or not involved at all in participation with some other agents, while
in a multichoice TU game, each player is allowed to participate with many finite different
activity levels. Solutions on multichoice TU games could be applied in many fields such
as economics, political sciences, management, and so forth. Van den Nouweland et al. [2]
referred to several applications of multichoice TU games, such as a large building project with
a deadline and a penalty for every day if this deadline is overtime. The date of completion
depends on the effort of how all of the people focused on the project: the harder they exert
themselves, the sooner the project will be completed. This situation gives rise to a multichoice
TU game. The worth of a coalition resulted from the players working in certain levels to a
project is defined as the penalty for their delay of the project completion with the same efforts.
Another application appears in a large company with many divisions, where the profit-
making depends on their performance. This situation also gives rise to a multichoice TU
game. The players are the divisions, and the worth of a coalition resulted from the divisions
functioning in certain levels is the corresponding profit produced by the company.

Here we apply three solutions for multichoice TU games due to Hsiao and Raghavan
[1], Derks and Peters [3], and Peters and Zank [4], respectively. Two main results are as
follows.
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(1) A solution concept can be given axiomatic justification. Oppositely, dynamic processes
can be described that lead the players to that solution, starting from an arbitrary
efficient payoff vector (the foundation of a dynamic theory was laid by Stearns [5].
Related dynamic results may be found in, for example, Billera [6], Maschler and
Owen [7], etc.). In Section 3, we firstly define several alternative reductions on
multichoice TU games. Further, we adopt these reductions and some axioms
introduced byHsiao and Raghavan [1], Hwang and Liao [8–10], and Klijn et al. [11]
to show how the three extended Shapley values can be reached dynamically from
arbitrary efficient payoff vectors. In the proofs of Theorems 3.2 and 3.4, we will
point out how these axioms would be used in the dynamic approaches.

(2) There are two important factors, the players and their activity levels, for multichoice
games. Inspired byHart andMas-Colell [12], Hwang and Liao [8–10] proposed two
types of reductions by only reducing the number of the players. In Section 4, we
propose two types of player-action reduced games by reducing both the number of
the players and the activity levels. Based on the potential, Hart and Mas-Colell [12]
showed that the Shapley value [13] satisfies consistency. Different from Hart and
Mas-Colell [12], we show that the three extended Shapley values satisfy related
properties of player-action consistency by applying alternative method.

2. Preliminaries

Let U be the universe of players and N ⊆ U be a set of players. Suppose each player i has
mi ∈ N levels at which he can actively participate. Letm = (mi)i∈N be the vector that describes
the number of activity levels for each player, at which he can actively participate. For
i ∈ U, we set Mi = {0, 1, . . . , mi} as the action space of player i, where the action 0 means
not participating, and Mi

+ = Mi \ {0}. For N ⊆ U, N/= ∅, let MN =
∏

i∈NM
i be the product

set of the action spaces for players N andMN
+ =

∏
i∈NM

i
+. Denote the zero vector in R

N by
0N .

A multichoice TU game is a triple (N,m, v), where N is a nonempty and finite set of
players, m is the vector that describes the number of activity levels for each player, and v :
MN → R is a characteristic function which assigns to each action vector α = (αi)i∈N ∈ MN

the worth that the players can jointly obtain when each player i plays at activity level αi ∈Mi

with v(0N) = 0. If no confusion can arise, a game (N,m, v) will sometimes be denoted by its
characteristic function v. Given a multichoice game (N,m, v) and α ∈MN , we write (N,α, v)
for the multichoice TU subgame obtained by restricting v to {β ∈ MN | βi ≤ αi ∀ i ∈ N} only.
Denote the class of all multichoice TU games byMC.

Given (N,m, v) ∈MC, let LN,m = {(i, ki) | i ∈N, ki ∈Mi
+}. A solution onMC is a map

ψ assigning to each (N,m, v) ∈MC an element

ψ(N,m, v) =
(
ψi,ki(N,m, v)

)
(i,ki)∈LN,m ∈ R

LN,m

. (2.1)

Here ψi,ki(N,m, v) is the power index or the value of the player i when he takes action ki to
play game v. For convenience, given (N,m, v) ∈ MC and a solution ψ on MC, we define
ψi,0(N,m, v) = 0 for all i ∈N.
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To state the three extended Shapley values, somemore notations will be needed. Given
S ⊆N, let |S| be the number of elements in S and let eS(N) be the binary vector in R

N whose
component eSi (N) satisfies

eSi (N) =

⎧
⎨

⎩

1 if i ∈ S,

0 otherwise.
(2.2)

Note that if no confusion can arise eSi (N)will be denoted by eSi .
Given (N,m, v) ∈ MC and α ∈ MN , we define S(α) = {k ∈ N | αk /= 0} and ‖α‖ =

∑
i∈N αi. Let α, β ∈ R

N , we say β ≤ α if βi ≤ αi for all i ∈N.
The analogue of unanimity games for multichoice games are minimal effort games

(N,m, uαN), where α ∈MN , α/= 0N , defined by for all β ∈MN ,

uαN
(
β
)
=

⎧
⎨

⎩

1 if β ≥ α;
0 otherwise.

(2.3)

It is known that for (N,m, v) ∈ MC it holds that v =
∑

α∈MN\{0N} a
α(v)uαN , where aα(v) =

∑
S⊆S(α)(−1)|S|v(α − eS).

Here we apply three extensions of the Shapley value for multichoice games due to
Hsiao and Raghavan [1], Derks and Peters [3], and Peters and Zank [4].

Definition 2.1. (i) (Hsiao and Raghavan, [1]).

The H&R Shapley value Λ is the solution onMC which associates with each (N,m, v) ∈ MC
and each player i ∈ N and each ki ∈ M+

i the value (Hsiao and Raghavan [1] provided an
alternative formula of the H&R Shapley value. Hwang and Liao [9] defined the H&R Shapley
value in terms of the dividends)

Λi,ki(N,m, v) =
∑

α∈MN

αi≤ki

aα(v)
|S(α)| . (2.4)

Note that the so-called dividend aα(v) is divided equally among the necessary players.

(ii) (Derks and Peters, [3]).

The D&P Shapley value Θ is the solution onMC which associates with each (N,m, v) ∈ MC
and each player i ∈N and each ki ∈M+

i the value

Θi,ki(N,m, v) =
∑

α∈MN

αi≥ki

aα(v)
‖α‖ . (2.5)

Note that the so-called dividend aα(v) is divided equally among the necessary levels.
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(iii) (Peters and Zank, [4]).

The P&Z Shapley value Γ is the solution on MC which associates with each (N,m, v) ∈ MC
and each player i ∈ N and each ki ∈ M+

i the value (Peters and Zank [4] defined the P&Z
Shapley value by fixing its values on minimal effort games and imposing linearity. Hwang
and Liao [8] defined the P&Z Shapley value based on the dividends)

Γi,ki(N,m, v) =
∑

α∈MN

αi=ki

aα(v)
|S(α)| . (2.6)

Clearly, the P&Z Shapley value is a subdivision of the H&R Shapley value. For all (N,m, v) ∈
MC and for all (i,ki) ∈ LN,m,

Λi,ki(N,m, v) =
∑

α∈MN

αi≤ki

aα(v)
|S(α)| =

ki∑

ti=1

∑

α∈MN

αi=ti

aα(v)
|S(α)| =

ki∑

ti=1

Γi,ti(N,m, v). (2.7)

3. Axioms and Dynamic Approaches

In this section, we propose dynamic processes to illustrate that the three extended Shapley
values can be reached by players who start from an arbitrary efficient solution.

In order to provide several dynamic approaches, some more definitions will be
needed. Let ψ be a solution onMC. ψ satisfies the following.

(i) 1-efficiency (1EFF) if for each (N,m, v) ∈MC,
∑

i∈S(m) ψi,mi(N,m, v) = v(m).

(ii) 2-efficiency (2EFF) if for each (N,m, v) ∈MC,
∑

i∈S(m)
∑mi

ki=1
ψi,ki(N,m, v) = v(m).

The following axioms are analogues of the balanced contributions property due to
Myerson [14]. The solution ψ satisfies the following.

(i) 1-strong balanced contributions (1SBC) if for each (N,m, v) ∈ MC and (i, ki), (j, kj) ∈
LN,m, i /= j,

ψi,ki
(
N,

(
mN\{j}, kj

)
, v

) − ψi,ki
(
N,

(
mN\{j}, 0

)
, v

)

= ψj,kj
(
N,

(
mN\{i}, ki

)
, v

) − ψj,kj
(
N,

(
mN\{i}, 0

)
, v

)
.

(3.1)

(ii) 2-strong balanced contributions (2SBC) if for each (N,m, v) ∈ MC and (i, ki), (j, kj) ∈
LN,m, i /= j,

ψi,ki(N,m, v) − ψi,ki
(
N,

(
mN\{j}, kj − 1

)
, v

)

= ψj,kj (N,m, v) − ψj,kj
(
N,

(
mN\{i}, ki − 1

)
, v

)
.

(3.2)
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(iii) 3-strong balanced contributions (3SBC) if for each (N,m, v) ∈ MC and (i, ki), (j, kj) ∈
LN,m, i /= j,

ψi,ki
(
N,

(
mN\{j}, kj

)
, v

) − ψi,ki
(
N,

(
mN\{j}, kj − 1

)
, v

)

= ψj,kj
(
N,

(
mN\{i}, ki

)
, v

) − ψj,kj
(
N,

(
mN\{i}, ki − 1

)
, v

)
.

(3.3)

The following axiomwas introduced byHwang and Liao ([9]). The solution ψ satisfies
the following.

(i) Independence of individual expansions (IIE) if for each (N,m, v) ∈ MC and each
(i, ki) ∈ LN,m, j /=mi,

ψi,ki
(
N,

(
mN\{i}, ki

)
, v

)
= ψi,ki

(
N,

(
mN\{i}, ki + 1

)
, v

)
= · · · = ψi,ki(N,m, v). (3.4)

In the framework of multichoice games, IIE asserts that whenever a player gets avail-
able higher activity level, the payoff for all original levels should not be changed under
condition that other players are fixed.

The following axiom was introduced by Klijn et al. [11]. The solution ψ satisfies the
following.

(i) Equal loss (EL) if for each (N,m, v) ∈MC and each (i, ki) ∈ LN,m, ki /=mi,

ψi,ki(N,m, v) − ψi,ki
(
N,m − e{i}, v

)
= ψi,mi(N,m, v). (3.5)

Klijn et al. [11] provided an interpretation of the equal loss property as follows. EL is
also inspired by the balanced contributions property of Myerson [14]. In the framework of
multichoice games, EL says that whenever a player gets available higher activity level the
payoff for all original levels changes with an amount equal to the payoff for the highest level
in the new situation. Note that EL is a vacuous property for standard coalition TU games.

Some considerable weakenings of the previous axioms are as follows.Weak 1-efficiency
(1WEFF) simply says that for all (N,m, v) ∈ MC with |S(m)| = 1, ψ satisfies 1EFF. Weak 2-
efficiency (2WEFF) simply says that for all (N,m, v) ∈ MC with |S(m)| = 1, ψ satisfies 2EFF.
1-upper balanced contributions (1UBC) only requires that 1SBC holds if ki = mi and kj = mj .
2-upper balanced contributions (2UBC) only requires that 2SBC or 3SBC holds if ki = mi and
kj = mj . Weak independence of individual expansions (WIIE) simply says that for all (N,m, v) ∈
MC with |S(m)| = 1, ψ satisfies IIE. Weak equal loss (WEL) simply says that for all (N,m, v) ∈
MC with |S(m)| = 1, ψ satisfies EL.

Subsequently, we recall the reduced games and related consistency properties intro-
duced by Hwang and Liao [8–10]. Let (N,m, v) ∈MC, S ⊆N \ {∅} and ψ be a solution.

(i) The 1-reduced game (S,mS, v
ψ

1,S)with respect to ψ and S is defined as, for all α ∈MS,

v
ψ

1,S(α) = v
(
α,mN\S

) −
∑

i∈N\S
ψi,mi

(
N,

(
α,mN\S

)
, v

)
. (3.6)
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(ii) The 2-reduced game (S,mS, v
ψ

2,S)with respect to ψ and S is defined as, for all α ∈MS,

v
ψ

2,S(α) = v
(
α,mN\S

) −
∑

i∈N\S

mi∑

ki=1

ψi,ki
(
N,

(
α,mN\S

)
, v

)
. (3.7)

(iii) ψ onMC satisfies 1-consistency (1CON) if for all (N,m, v) ∈ MC, for all S ⊆ N and
for all (i, ki) ∈ LS,mS , ψi,ki(N,m, v) = ψi,ki(S,mS, v

ψ

1,S).

(iv) ψ onMC satisfies 2-consistency (2CON) if for all (N,m, v) ∈ MC, for all S ⊆ N and
for all (i, ki) ∈ LS,mS , ψi,ki(N,m, v) = ψi,ki(S,mS, v

ψ

2,S).

Remark 3.1. Hwang and Liao [8–10] characterized the solutions Λ, Γ, and Θ by means of
1CON and 2CON as follows.

(i) The solution Λ is the only solution satisfying 1WEFF (1EFF), WIIE (IIE), 1UBC
(1SBC), and 1CON.

(ii) The solution Θ is the only solution satisfying 2WEFF (2EFF), WEL (EL), 2UBC
(2SBC), and 2CON.

(iii) The solution Γ is the only solution satisfying 2WEFF (2EFF), WIIE (IIE), 2UBC
(3SBC), and 2CON.

Next, we will find dynamic processes that lead the players to solutions, starting from
arbitrary efficient payoff vectors.

Let (N,m, v) ∈MC. A payoff vector of (N,m, v) is a vector (xi,ki)(i,ki)∈LN,m ∈ R
LN,m

where
xi,ki denotes the payoff to player i corresponding to his activity level ki for all (i, ki) ∈ LN,m.
A payoff vector x of (N,m, v) is 1-efficient (1EFF) if

∑
i∈N xi,mi = v(m). x is 2-efficient (2EFF)

if
∑

i∈N
∑

ki∈M+
i
xi,ki = v(m). Moreover, the sets of 1-preimputations and 2-preimputations of

(N,m, v) are denoted by

X1(N,m, v) =
{
x ∈ R

LN,m | x is 1EFF in (N,m, v)
}
,

X2(N,m, v) =
{
x ∈ R

LN,m | x is 2EFF in (N,m, v)
}
.

(3.8)

In order to exhibit such processes, let us define two alternative reduced games as
follows. Let (N,m, v) ∈MC, S ⊆N, and let ψ be a solution and x a payoff vector.

(i) The (1, ψ)-reduced game (S,mS, v
x,ψ

1,S ) with respect to S, x, and ψ is defined as, for all
α ∈MS,

v
x,ψ

1,S (α) =

⎧
⎪⎨

⎪⎩

v(m) −
∑

i∈N\S
xi,mi , α = mS,

v
ψ

1,S(α), otherwise.
(3.9)
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(ii) The (2, ψ)-reduced game (S,mS, v
x,ψ

2,S ) with respect to S, x, and ψ is defined as, for all
α ∈MS,

v
x,ψ

2,S (α) =

⎧
⎪⎨

⎪⎩

v(m) −
∑

i∈N\S

∑

ki∈M+

xi,ki , α = mS,

v
ψ

2,S(α), otherwise.
(3.10)

Let (N,m, v) ∈ MC, N ≥ 3 and (i, ki) ∈ LN,m. Inspired by Maschler and Owen [7],
we define fi,ki : X

1(N,m, v) → R, gi,ki : X
2(N,m, v) → R, hi,ki : X

2(N,m, v) → R to be as
follows:

(i) fi,ki(x) = xi,ki + t ·
∑

j∈N\{i}(Λi,ki({i, j}, m{i,j}, v
x,Λ
1,{i,j}) − xi,ki),

(ii) gi,ki(x) = xi,ki + t ·
∑

j∈N\{i}(Θi,ki({i, j}, m{i,j}, v
x,Θ
2,{i,j}) − xi,ki),

(iii) hi,ki(x) = xi,ki + t ·
∑

j∈N\{i}(Γi,ki({i, j}, m{i,j}, v
x,Γ
2,{i,j}) − xi,ki),

where t is a fixed positive number, which reflects the assumption that player i does not ask
for adequate correction (when t = 1) but only (usually) a fraction of it. It is easy to check
that (fi,ki(x))(i,ki)∈LN,m ∈ X1(N,m, v) if x ∈ X1(N,m, v), (gi,ki(x))(i,ki)∈LN,m ∈ X2(N,m, v), and
(hi,ki(x))(i,ki)∈LN,m ∈ X2(N,m, v) if x ∈ X2(N,m, v).

Inspired by Maschler and Owen [7], we define correction functions fi,ki , gi,ki , hi,ki on
multichoice games. In the following, we provided some discussions which are analogues to
the discussion of Maschler and Owen [7]. Let (N,m, v) ∈ MC and x be a 1-efficient payoff
vector. By a process of induction we assume that the players have already agreed on the
solution Λ for all p-person games, 1 < p < |N|. In particular, we assume that they agreed on
Λ for 1-person games (involving only Pareto optimality) and for 2-person games (which are
side-payment games after an appropriate change in the utility scale of one player). Now
somebody suggests that x should be the solution for an n-person game (N, m, v), thus
suggesting a solution concept Ψ, which should satisfy

Ψ
(
P,m′, u

)
=

⎧
⎨

⎩

Λ(P,m′, u), (P,m′, u) ∈MC, |P | < |N|,
x, (N,m, v) = (P,m′, u).

(3.11)

On the basis of this Ψ, the members of a coalition S = {i, j} will examine vx,Λ1,S for related 1-
consistency. If the solution turns out to be inconsistent, they will modify x “in the direction”
which is dictated by Λi,ki(S,mS, v

x,Λ
1,S ) in a manner which will be explained subsequently (see

the definition of fi,ki). These modifications, done simultaneously by all 2-person coalitions,
will lead to a new payoff vector x∗ and the process will repeat. The hope is that it will
converge and, moreover, converge to Λ(N,m, v). Similar discussions could be used to gi,ki
and hi,ki .

Theorem 3.2. Let (N,m, v) ∈MC and x ∈ X1(N,m, v). Define x0 = x, x1 = (fi,ki(x
0))(i,ki)∈LN,m ,

. . . , xq = (fi,ki(x
q−1))(i,ki)∈LN,m for all q ∈ N.
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(1) If 0 < t < 4/|N|, then for all i ∈ N and for all x ∈ X1(N,m, v), {xqi,mi
}∞q=1 converges to

Λi,mi(N,m, v).

(2) If 0 < t < 4/|N|, then for all (i, ki) ∈ LN,m and for all x ∈ X1(N, (mN\{i}, ki), v),
{xq

i,ki
}∞q=1 converges to Λi,ki(N,m, v).

Proof. Fix (N,m, v) ∈ MC and x ∈ X1(N,m, v). To prove (1), let i, j ∈ S(m) and S = {i, j}. By
1EFF and 1UBC of Λ, and definitions of vΛ

1,S and vx,Λ1,S ,

Λi,mi

(
S,mS, v

x,Λ
1,S

)
+ Λj,mj

(
S,mS, v

x,Λ
1,S

)
= xi,mi + xj,mj ,

(
by 1EFF of Λ

)
, (3.12)

Λi,mi

(
S,mS, v

x,Λ
1,S

)
−Λj,mj

(
S,mS, v

x,Λ
1,S

)

= Λi,mi

(
S,
(
mS\{j}, 0

)
, vx,Λ1,S

)
−Λj,mj

(
S,
(
mS\{i}, 0

)
, vx,Λ1,S

) (
by 1UBC of Λ

)

= Λi,mi

(
S,
(
mS\{j}, 0

)
, vΛ

1,S

)
−Λj,mj

(
S,
(
mS\{i}, 0

)
, vΛ

1,S

) (
by definition of vΛ

1,S

)

= Λi,mi

(
S,mS, v

Λ
1,S

)
−Λj,mj

(
S,mS, v

Λ
1,S

)
.

(
by 1UBC of Λ

)
.

(3.13)

Therefore,

2 ·
[
Λi,mi

(
S,mS, v

x,Λ
1,S

)
− xi,mi

]
= Λi,mi

(
S,mS, v

Λ
1,S

)
−Λj,mj

(
S,mS, v

Λ
1,S

)
− xi,mi + xj,mj . (3.14)

By definition of f , 1CON and 1EFF of Λ and (3.14),

fi,mi(x) = xi,mi +
t

2
·
⎡

⎣
∑

j∈N\{i}
Λi,mi

(
{
i, j

}
, m{i,j}, vΛ

1,{i,j}
)

−
∑

j∈N\{i}
xi,mi

−
∑

j∈N\{i}
Λj,mj

(
{
i, j

}
, m{i,j}, vΛ

1,{i,j}
)

+
∑

j∈N\{i}
xj,mj

⎤

⎦

(
by definition of fi,mi

and equation (3.14)
)

= xi,mi +
t

2
·
⎡

⎣
∑

k∈N\{i}
Λi,mi(N,m, v) − (|N| − 1)xi,mi

−
∑

j∈N\{i}
Λj,mj (N,m, v) + (v(m) − xi,mi)

⎤

⎦

(
by 1CON of Λ and 1EFF of x

)
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= xi,mi +
t

2
· [(|N| − 1)Λi,mi(N,m, v) − (|N| − 1)xi,mi

−(v(m) −Λi,mi(N,m, v)) + (v(m) − xi,mi)]
(
by 1EFF of Λ

)

= xi,mi +
|N| · t

2
· [Λi,mi(N,m, v) − xi,mi].

(3.15)

Hence, for all q ∈ N,

(

1 − |N| · t
2

)q+1[
Λi,mi(N,m, v) − xqi,mi

]
=
[
Λi,mi(N,m, v) − fi,mi(x

q)
]

=
[
Λi,mi(N,m, v) − xq+1i,mi

]
.

(3.16)

If 0 < t < 4/|N|, then −1 < (1 − (|N| · t)/2) < 1 and {xqi,mi
}∞q=1 converges to Λi,mi(N,m, v).

To prove (2), by 1 of this theorem, if 0 < t < 4/|N|, then for all (i, ki) ∈ LN,m and for all
x ∈ X1(N, (mN\{i}, ki), v), {xqi,ki}

∞
q=1 converges to Λi,ki(N, (mN\{i}, ki), v). By IIE of Λ, {xq

i,ki
}∞q=1

converges to Λi,ki(N,m, v).

Remark 3.3. Huang et al. [15] provided dynamic processes for the P&Z Shapley value as fol-
lows. Let (N,m, v) ∈ MC and y ∈ X2(N,m,v). Define y0 = y, y1 = (hi,ki(y

0))(i,ki)∈LN,m , . . . , yq

= (hi,ki(y
q−1))(i,ki)∈LN,m for all q ∈ N.

(1) If 0 < α < 4/|N|, then for all i ∈ N and for all y ∈ X2(N,m, v), {∑mi

ki=1
y
q

i,ki
}∞q=1

converges to
∑mi

ki=1
Γi,ki(N,m, v).

(2) If 0 < t < 4/|N|, then for all (i, ki) ∈ LN,m and for all y ∈ X2(N, (mN\{i}, ki), v),
{∑ki

ti=1
y
q

i,ti
}∞q=1 converges to

∑ki
ti=1

Γi,ti(N,m, v).

(3) If 0 < α < 4/|N|, then for all (i, ki) ∈ LN,m and for all payoff vectors y with yi,ki =
v(mN\{i}, ki) − v(mN\{i}, ki − 1), {yq

i,ki
}∞q=1 converges to Γi,ki(N,m, v).

In fact, the proofs of (1), (2), and (3) are similar to Theorem 3.2.

Theorem 3.4. Let (N,m, v) ∈ MC and z ∈ X2(N,m, v). Define z0 = z, z1 = (gi,ki(z
0))(i,ki)∈LN,m ,

. . . , zq = (gi,ki(z
q−1))(i,ki)∈LN,m for all q ∈ N.

(1) If 0 < α < 4/|N|, then for all i ∈N and for all z ∈ X2(N,m, v), {∑mi

ki=1
z
q

i,ki
}∞q=1 converges

to
∑mi

ki=1
Θi,ki(N,m, v).

(2) If 0 < t < 4/|N|, then for all (i, ki) ∈ LN,m and for all z ∈ X2(N, (mN\{i}, ki), v),
{∑ki

ti=1
z
q

i,ti
}∞q=1 converges to

∑ki
ti=1

Θi,ti(N,m, v).

(3) If 0 < α < 4/|N|, then for all (i, ki) ∈ LN,m and for all payoff vectors z with zi,ki =
v(mN\{i}, ki) − v(mN\{i}, ki − 1), {zq

i,ki
}∞q=1 converges to Θi,ki(N,m, v).

Proof. “EL” instead of “IIE”, the proofs of this theorem are immediate analogues Theorem 3.2
and Remark 3.3, hence we omit them.
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4. Player-Action Reduction and Related Consistency

By reducing the number of the players, Hwang and Liao [8–10] proposed 1-reduction and
2-reduction on multichoice games. Here we define two types of player-action reduced games
by reducing both the number of the players and the activity levels. Let (N,m, v) ∈ MC,
S ⊆N \ {∅}, ψ be a solution and γ ∈MN\S

+ .

(i) The 1-player-action reduced game (S,mS, v
1,ψ
S,γ )with respect to S, γ and ψ is defined as

for all α ∈MS,

v
1,ψ
S,γ (α) = v

(
α, γ

) −
∑

j∈N\S
ψj,γj

(
N,

(
α, γ

)
, v

)
. (4.1)

(ii) The 2-player-action reduced game (S,mS, v
2,ψ
S,γ )with respect to S, γ and ψ is defined as

for all α ∈MS,

v
2,ψ
S,γ (α) = v

(
α, γ

) −
∑

j∈N\S

γj∑

kj=1

ψj,kj
(
N,

(
α, γ

)
, v

)
. (4.2)

The player-action reduced games are based on the idea that, when renegotiating the
payoff distribution within S, the condition γ ∈ M

N\S
+ means that the members of N \ S

continue to cooperate with the members of S. All members in N \ S take nonzero levels
based on the participation vector γ to cooperate. Then in the player-action reduced games,
the coalition S with activity level α cooperates with all the members of N \ S with activity
level γ .

Definition 4.1. Let ψ be a solution onMC.

(i) ψ satisfies 1-player-action consistency (1PACON) if for all (N,m, v) ∈ MC, for all
S ⊆ N \ {∅}, for all (i, ki) ∈ LS,mS and for all γ ∈ M

N\S
+ , ψi,ki(N, (mS, γ), v) =

ψi,ki(S,mS, v
1,ψ
S,γ ).

(ii) ψ satisfies 2-player-action consistency (2PACON) if for all (N,m, v) ∈ MC, for all
S ⊆ N \ {∅}, for all (i, ki) ∈ LS,mS and for all γ ∈ M

N\S
+ , ψi,ki(N, (mS, γ), v) =

ψi,ki(S,mS, v
2,ψ
S,γ ).

Remark 4.2. Let (N,m, v) ∈MC, S ⊆N \{∅} and ψ be a solution. Let γ = mN\S, by definitions
of reduced games and player-action reduced games, v1,ψ

S,mN\S
= vψ1,S and v2,ψ

S,mN\S
= vψ2,S. Clearly,

if a solution satisfies 1PACON, then it also satisfies 1CON. Similarly, if a solution satisfies
2PACON, then it also satisfies 2CON.

As we knew, each (N,m, v) ∈ MC can be expressed as a linear combination of
minimal effort games and this decomposition exists uniquely. The following lemmas point
out the relations of coefficients of expressions among (N,m, v), (S,mS, v

1,Λ
S,γ ), (S,mS, v

2,Γ
S,γ), and

(S,mS, v
2,Θ
S,γ ).
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Lemma 4.3. Let (N,m, v) ∈ MC, (S,mS, v
1,Λ
S,γ ) be a 1-player-action reduced game of v with respect

to S, γ , and the solution Λ and let (S,mS, v
2,Γ
S,γ) be a 2-player-action reduced game of v with respect to

S, γ and the solution Γ. If v =
∑

α∈MN\{0N} a
α(v) · uαN , then v1,Λ

S,γ can be expressed as v1,Λ
S,γ = v2,Γ

S,γ =
∑

α∈MS\{0S} a
α(v2,Γ

S,γ) · uαS, where for all α ∈MS,

aα
(
v1,Λ
S,γ

)
= aα

(
v2,Γ
S,γ

)
=
∑

λ≤γ

|S(α)|
|S(α)| + |S(λ)| · a

(α,λ)(v). (4.3)

Proof. Let (N,m, v) ∈MC, S ⊆N with S/= ∅ and γ ∈MN\S
+ . For all α ∈MS,

v2,Γ
S,γ(α) = v

(
α, γ

) −
∑

j∈N\S

γj∑

kj=1

Γj,kj
(
N,

(
α, γ

)
, v

)
. (4.4)

By 2EFF of Γ, v2,Γ
S,γ(0S) = 0. For all α ∈MS with α/= 0S,

(4.2) =
∑

j∈S(α)

αj∑

kj=1

Γj,kj
(
N,

(
α, γ

)
, v

)

=
∑

j∈S(α)

αj∑

kj=1

∑

β≤(α,γ)
βj=kj

aβ(v)
∣
∣S

(
β
)∣
∣

=
∑

j∈S(α)

⎡

⎢
⎢
⎢
⎣

∑

β≤(α,γ)
βj=1

aβ(v)
∣
∣S

(
β
)∣
∣
+ · · · +

∑

β≤(α,γ)
βj=αj

aβ(v)
∣
∣S

(
β
)∣
∣

⎤

⎥
⎥
⎥
⎦

=
∑

j∈S(α)

⎡

⎢
⎢
⎣

∑

η≤α
ηj=1

∑

λ≤γ

a(η,λ)(v)
∣
∣S

(
η
)∣
∣ + |S(λ)| + · · · +

∑

η≤α
ηj=αj

∑

λ≤γ

a(η,λ)(v)
∣
∣S

(
η
)∣
∣ + |S(λ)|

⎤

⎥
⎥
⎦

=
∑

η≤α

∑

λ≤γ

∣
∣S

(
η
)∣
∣

∣
∣S

(
η
)∣
∣ + |S(λ)| · a

(η,λ)(v).

(4.5)

Set

aη
(
v2,Γ
S,γ

)
=
∑

λ≤γ

∣
∣S

(
η
)∣
∣

∣
∣S

(
η
)∣
∣ + |S(λ)| · a

(η,λ)(v). (4.6)
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By (4.5), for all α ∈MS,

v2,Γ
S,γ(α) =

∑

η≤α

∑

λ≤γ

∣
∣S

(
η
)∣
∣

∣
∣S

(
η
)∣
∣ + |S(λ)| · a

(η,λ)(v) =
∑

η≤α
aη

(
v2,Γ
S,γ

)
. (4.7)

Hence v2,Γ
S,γ can be expressed to be v2,Γ

S,γ =
∑

α∈MS\{0S} a
α(v1,Γ

S,γ) · uαS. By Definition 2.1 and the

definitions of v1,Λ
S,γ and v2,Γ

S,γ , for all α ∈MN ,

v2,Γ
S,γ(α) = v

(
α, γ

) −
∑

j∈N\S

γj∑

kj=1

Γj,kj
(
N,

(
α, γ

)
, v

)

= v
(
α, γ

) −
∑

j∈N\S
Λj,γj

(
N,

(
α, γ

)
, v

)

= v1,Λ
S,γ (α).

(4.8)

Hence, for each α ∈MS, v1,Λ
S,γ (α) = v

2,Γ
S,γ(α) and a

α(v1,Λ
S,γ ) = a

α(v2,Γ
S,γ).

Lemma 4.4. Let (N,m, v) ∈ MC and (S,mS, v
2,Θ
S,γ ) be a 2-player-action reduced game of v with

respect to S, γ , and the solution Θ. If v =
∑

α∈MN\{0N} a
α(v) · uαN , then v2,Θ

S,γ can be expressed to be

v2,Θ
S,γ =

∑
α∈MS\{0S} a

α(v2,Θ
S,γ ) · uαS, where for all α ∈MS,

aα
(
v2,Θ
S,γ

)
=
∑

λ≤γ

‖α‖
‖α‖ + ‖λ‖ · a(α,λ)(v). (4.9)

Proof. The proof is similar to Lemma 4.3; hence, we omit it.

By applying Lemmas 4.3 and 4.4, we show that the three extended Shapley values
satisfy related properties of player-action consistency.

Proposition 4.5. The solution Λ satisfies 1PACON. The solutions Γ and Θ satisfy 2PACON.

Proof. Let (N,m, v) ∈ MC, S ⊆ N with S/= ∅ and γ ∈ M
N\S
+ . First, we show that the solution

Λ satisfies 1PACON. By Definition 2.1 and Lemma 4.3, for all (i, ki) ∈ LS,mS ,

Λi,ki

(
S,mS, v

1,Λ
S,γ

)
=

∑

α∈MS

αi≤ki

aα
(
v1,Λ
S,γ

)

|S(α)|

=
∑

α∈MS

αi≤ki

1
|S(α)| ·

∑

λ≤γ

|S(α)|
|S(α)| + |S(λ)| · a

(α,λ)(v)
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=
∑

β≤(mS,γ)
βi≤ki

aβ(v)
∣
∣S

(
β
)∣
∣

= Λi,ki

(
N,

(
mS, γ

)
, v

)
.

(4.10)

Hence, the solution Λ satisfies 1PACON. Similarly, by Definition 2.1, Lemmas 4.3, 4.4 and
previous proof, we can show that the solutions Θ and Γ satisfy 2PACON.

Hwang and Liao [8–10] characterized the three extended Shapley values by means
of 1CON and 2CON. By Proposition 4.5 and Remarks 3.1 and 4.2, it is easy to check that
1CON and 2CON could be replaced by 1PACON and 2PACON in axiomatizations proposed
by Hwang and Liao [8–10].
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