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Deterministic Economic Order Quantity (EOQ) models have been studied intensively in the
literature, where the demand process is described by an ordinary differential equation, and the
objective is to obtain an EOQ, which minimizes the total cost per unit time. The total cost per unit
time consists of a “discrete” part, the setup cost, which is incurred at the time of ordering, and a
“continuous” part, the holding cost, which is continuously accumulated over time. Quite formally,
such deterministic EOQ models can be viewed as fluid approximations to the corresponding
stochastic EOQ models, where the demand process is taken as a stochastic jump process. Suppose
now an EOQ is obtained from a deterministic model. The question is how well does this quantity
work in the corresponding stochastic model. In the present paper we justify a translation of EOQs
obtained from deterministic models, under which the resulting order quantities are asymptotically
optimal for the stochastic models, by showing that the difference between the performance
measures and the optimal values converges to zero with respect to a scaling parameter. Moreover,
we provide an estimate for the rate of convergence. The same issue regarding specific Economic
Production Quantity (EPQ) models is studied, too.

1. Introduction

Consider an inventory item which is demanded. So the inventory level gradually decreases
and is backed up by ordering new inventories from time to time. There are two costs to
consider: a positive inventory level results in a holding cost, and every order induces a setup
cost. The objective is to determine an order quantity that minimizes the total cost per unit time
(tcu). Such aminimizer is known as an Economic Order Quantity (EOQ), and themodel itself
is known as an EOQ model.
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Arguably the simplest EOQ model (sometimes referred to as the classic EOQ model)
is based on the following assumptions: (i) the instantaneous holding cost rate is constant;
(ii) the setup cost is constant; (iii) the demand comes in a deterministic and continuous
process at a constant rate; (iv) no backlogging is allowed so that at inventory level zero all
the arrived demand is rejected; (v) the inventory item is homogeneous and nonperishable
so that only the demand reduces the inventory level; (vi) the inventory level is reviewed
continuously so that it can be described by an ordinary differential equation; (vii) the
replenishment takes place instantaneously after ordering. A rigorous description of the
classic EOQ model is shortly given in Section 2.1. Amongst the efforts of generalizing the
classic EOQ model, a great deal have been made on relaxing assumption (iii). For instance,
the EOQ model considered in [1] (see also the references therein) assumes the demand
rate to be inventory level dependent, despite the dependence is of a specific form. This is
a response to: “At times, the presence of inventory has a motivational effect on the people
around it. It is a common belief that large piles of goods displayed in a supermarket
will lead the customer to buy more [2].” Generalizations regarding other assumptions
include allowing backlogging and periodic reviews in [3], accounting for perishable goods in
[4–7], and so on. A comprehensive review of the literature on EOQ models is available in
[8]. Note that the aforementioned works mainly focus on EOQ models where the demand
process is deterministic. Quite formally these deterministic models can be viewed as the fluid
approximations to the corresponding stochastic EOQ models, where the demand comes in
a stochastic jump process. (For this reason, in what follows we call the deterministic models
also fluid models, and EOQs derived from fluid models are referred to as fluid EOQs.)

Suppose now that a fluid EOQ is obtained and the corresponding stochastic EOQ
model is appropriately formulated. Then the issue of interest is how to translate the fluid EOQ
into an order quantity for the stochastic model, where the expected total cost per unit time
(TCU) is (nearly) minimal. The fluid approximation would be justified if such a translation
is obtained. The formal justification of the fluid approximations to various jump Markov
optimization models with local transitions has been addressed by numerous authors, see
[9–12], all of which focus on queueing networks. In greater detail the optimization problems
considered in [9, 12] are with a discounted criterion over an infinite horizon, the one in [11]
is with an expected total cost criterion over a fixed finite time horizon, while the performance
measure for the queueing network in [10] is the expected total cost up to the first moment
the system gets empty. Here we emphasize that in fluid (resp., stochastic) EOQ models the
performance measures are tcus (resp., TCUs), which are long run averages. All of those
works compare the optimal value for the fluid model with the performance measure for the
(scaled) stochastic model under the translated policy and show that the difference converges
to zero as the scaling parameter increases to infinity. However, none of them reveal the rate
of convergence, which measures the accuracy of the fluid approximations and the efficiency
of the underlying translations. Consequently the more recent development on this topic aims
at obtaining the rate of convergence, see [13–15]. In particular, in [14] the author proposes
a translation of the fluid EOQ and shows that it results in an asymptotically fluid optimal
(AFO) and asymptotically optimal (AO) order quantity for the corresponding stochastic
model. (The accurate definitions of “AFO” and “AO” are postponed to Sections 2 and 3.)
However, fairly strong conditions on the system parameters are assumed there, restricting
the applicability of the obtained results.

Therefore, the main contribution of this paper is to provide a refinement of the
results obtained in [14] by relaxing the conditions assumed therein, and thus enlarging the
applicability to cover a broader class of EOQmodels. In greater detail, by taking the stochastic
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model as a continuous-time Markov chain, we justify the translation of fluid EOQ proposed
in [14] and obtain its efficiency in the form of a rate of convergence. The Markov property
of our stochastic model is a result of assuming exponentially distributed interarrival times
in the demand process, which is standard in the current literature on inventory systems,
see [7, 16–19]. In our models, the demand and holding cost rates are of a rather general
inventory-level dependence, and thus with broad applicabilities. In particular, our results are
applicable to the important case of discontinuous demand and holding cost rates (compared
to that globally Lipschitz continuous rates are assumed in [14]), see more discussions on this
in Section 4. Moreover, in this paper results similar to those for EOQ models are derived for
Economic Production Quantity (EPQ)models, too.

The rest of this paper is organized as follows. In Sections 2 and 3 we formulate EOQ
and EPQ models and state the main results. In Section 4 some comments are given on the
issues of possible applicabilities of the obtained results and thus illustrate the contribution
of this paper. We finish this paper with conclusions. The proofs of the main statements are
postponed to the appendix.

2. Economic Order Quantity Models

In what follows, the trivial case of an order quantity taking zero is excluded from
consideration, and the context should always make it clear when [·] stands for the function
taking the largest integer part of its argument.

2.1. Description of Mathematical Models

(a) Fluid Model

Suppose some order quantity y > 0 is fixed. Then let {x(t), t ≥ 0} be the inventory level
process subject to the dynamics dx/dt = −μ(x) when 0 < x(t) ≤ y and x(torder + 0) = y,
where x(t) reaches state zero at torder. Here, μ(x) > 0 is the demand rate, and the impulsive
jump of x(t) at torder reflects the instantaneous replenishment assumption. Let tcycle be the
time duration between two consecutive jumps of the inventory level process, g(x) the
instantaneous holding cost rate, and K > 0 the setup cost, incurred immediately whenever
an order is made. We are interested in minimizing the long run average cost given by

tcu
(
y
)

� lim
T →∞

1
T

{∫T

0
g(x(t))dt +K

[
T

tcycle

]}

. (2.1)

Let us call y∗ the EOQ for the fluid model, so that tcu(y∗) = infy>0 tcu(y). In particular, if
μ(x) = μ > 0 and g(x) = hx (i.e., the demand rate and the holding cost rate per unit of
inventory are constants μ > 0, h > 0), then we have the so called classic EOQ model.

(b) (Scaled) Stochastic Model

In the corresponding stochastic model, the inventory item is measured in small units, so that
a scaling parameter n = 1, 2, . . . is present to indicate the units. The intuitive meaning of this
scaling parameter is explained in Remark 2.1 below. In greater detail, fixing some integer
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order quantity nY > 0, the inventory level process {nXt, t ≥ 0} is modelled as a continuous-
time Markov chain with the state space {0, 1, 2, . . . , n

Y} and the transition rates {nAi,j}
nY
i,j=0

given by

nA0,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nκ, if j = n
Y ,

−nκ, if j = 0,

0, otherwise,

(2.2)

and in the case of i ∈ {1, 2, 3, . . . , n
Y}

nAi,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nμ

(
i

n

)
, if j = i − 1,

−nμ
(

i

n

)
, if j = i,

0, otherwise,

(2.3)

where nμ(i/n) is the instantaneous demand rate and nκ is the parameter of the exponentially
distributed lead time between the ordering and the corresponding replenishment. In other
words, the time between two consecutive demand arrivals is exponentially distributed with
mean 1/nμ(i/n)when the current inventory level is i, and new inventories are ordered when
the inventory level hits zero.

Remark 2.1. The scaled stochastic model can be linked to the fluidmodel by taking nY � [ny],
where y > 0 is the order quantity for the fluid model (Here [ny] > 0 for big enugh n. So below
we assume that [ny] > 0, that is, we consider large enough n.). The above-described scaling
is often referred to as a fluid scaling, and its intuitive meaning can be understood as follows.
Clearly, when n = 1, the stochastic model is a corresponding version of the fluidmodel. As we
increase n, the demand comes in smaller units, and inventories are measuredmore accurately.
Take μ(i/n) � M as an example. Suppose that n = 1 corresponds to the unit of (kg) so that
on average 1 · μ(i/1) = M (kg) units of demand come per time unit. In the case of n = 1000,
the unit will be (g): on average nμ(i/n) = 1000M (g) units of demand come per time unit.
Meanwhile, the cost rate is not amplified by multiplying n because it costs the same to hold
either 1000M (g) or M (kg) of inventories.

We are interested in minimizing the performance measure given by

n TCU(nY ) � lim
T →∞

1
T
EnY

[∫∞

0

{
g

(nXt

n

)
+Knμ

(
1
n

)
I{nXt = 1}

}
dt

]
, (2.4)

whereEnY denotes the expectation operator with the initial inventory level (immediately after
the replenishment) nX0 = n

Y . Let us call nY ∗ the EOQ for the (scaled) stochastic model, so
that n TCU(nY ∗) = infnY=1,2,... nTCU(nY ).

We say that order quantity [ny] for the stochastic model is AFO if

lim
n→∞

∣∣n TCU
([
ny
]) − tcu

(
y∗)∣∣ = 0 (2.5)
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and AO if

lim
n→∞

∣
∣n TCU

([
ny
]) − nTCU(nY ∗)

∣
∣ = 0. (2.6)

In what follows, the EOQs for both fluid and stochastic models are assumed to be unique,
and the similar assumption applies to the EPQ models.

2.2. Main Results

Condition 1. (a) There exist constants d1 ≥ 0, k1 > 0 and δ > 0 such that δ ≤ μ(x) ≤ k1 and
|g(x)| ≤ d1; here functions μ(·) and g(·) are measurable and both defined on [0,∞).

(b) There exist finite intervals (0, x1), (x1, x2), . . .with limj→∞ xj = ∞ such that on each
of them g(x) and μ(x) are Lipschitz continuous with a common Lipschitz constant dg and dμ,
respectively.

Note that Condition 1 implies that for any fixed y > 0, there exist L (possibly y-
dependent) finite intervals (0, x1), (x1, x2), . . . , (xL, 3[y+1]) such that on each interval 1/μ(x)
and g(x)/μ(x) are Lipschitz continuous with Lipschitz constants dμ/δ

2 and (d1dμ+k1dg)/δ2,
respectively. For simplicity, we define d2 � max{dμ/δ

2, (d1dμ + k1dg)/δ2}.

Proposition 2.2. Under Condition 1, for any fixed order quantity in the fluid model y > 0

∣∣n TCU
([
ny
]) − tcu

(
y
)∣∣

≤ (1 + d1)k2
1κ

δ
([
ny
]
κ + k1

)

{
k1d23

[
y + 1

]

δ
+
(
1 +

k1
δ

)
3d1L

δ
+max

{
g(0)
κ

,
1
κ

}}

.
(2.7)

In particular, Proposition 2.2 implies that limn→∞|n TCU([ny∗]) − tcu(y∗)| = 0, that is, [ny∗]
is AFO.

The same calculations as in [14, page 406] result in the next lemma.

Lemma 2.3. Suppose that Condition 1 is satisfied and g(x) ≥ 0, then

y∗ ≥ δ2K

k1d1
, (2.8)

and nY ∗ satisfies nY ∗/n ≥ δ2K/k1d1 − δ/nκ. In particular, limn→∞(
n
Y

∗/n) > 0.

Corollary 2.4. Under Condition 1, if limn→∞(
n
Y

∗/n) > 0 (see Lemma 2.3), then one has
limn→∞|nY ∗/n − [ny∗]/n| = 0, and limn→∞|n TCU([ny∗]) − nTCU(nY ∗)| = 0, that is, [ny∗]
is AO.

Corollary 2.5. Under Condition 1, suppose in addition that L is y-independent and g(x) ≥ 0 on
[0,∞). Then the following statements hold.
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(a) For any y ≥ δ2K/k1d1 − δ/nκ (see (2.8)) and any large enough n ≥ N, where N is
a positive integer number satisfying N > (2 + δ/κ)k1d1/δ

2K,

∣
∣n TCU

([
ny
]) − tcu

(
y
)∣∣

≤ 3(1 + d1)k3
1d2

δ2

1
n{1 − κk1d1/(nκδ2K − δk1d1)}

+
(1 + d1)k2

1

nδ{δ2K/k1d1 − δ/nκ − 1/n}

×
{
3k1d2

δ
+
(
1 +

k1
δ

)
3d1L

δ
+max

{
g(0)
κ

,
1
κ

}}
� E(n).

(2.9)

Here the y-independent E(n) goes to zero as fast as 1/n in the sense of E(n) = O(1/n), whose
meaning is that limn→∞(E(n)/(1/n)) = C with some (nonnegative) constant C.

(b) For any large enough n ≥ N,

∣∣n TCU(nY ∗) − nTCU
([
ny∗])∣∣ ≤ 2E(n) = O

(
1
n

)
. (2.10)

Here we recall that nY ∗ and y∗ are the EOQ for the (scaled) stochastic model and fluid model,
respectively.

Corollary 2.5 refines Corollary 2.4 for certain cases by providing an estimate for the
rate of convergence.

Fix some order quantity for the fluid model y and scaling parameter n, and let
nΠ(i), i = 0, 1, . . . , [ny] be the stationary distribution of the inventory process {nXt, t ≥ 0}
andπ(x) the invariant density in the fluidmodel of the underlying dynamics of x(t). Then the
following proposition shows that the fluid model can also be used to provide approximations
to stationary distributions of the inventory level process in the (scaled) stochastic model.

Proposition 2.6. Suppose that Condition 1 is satisfied and some order quantity for the fluid model
y > 0 is fixed. Then one has

|nΠ(0) − π(0)| ≤ k1

k1 + κ
[
ny
] (2.11)

and for i = 1, 2, . . . , [ny]

∣∣∣∣∣
nΠ(i) −

∫ i/n

(i−1)/n
π(x)dx

∣∣∣∣∣
≤ 2yk2

1κ/δ
2+
(
k2
1κ/nδ

)(
3k1d2

(
y + 1

)
/δ+(1 + k1/δ)3d1L/δ+1/κ

)

([
ny
]
+ 1
)
y

.

(2.12)

2.3. A Comparison with Section 4 of [14]

The fluid approximations of the EOQ models are also briefly considered in [14, Section 4].
Therefore, we mention the main difference of this paper from that one in this subsection.

Firstly, the present paper is based on a weaker condition. Indeed, instead of
Condition 1, the following stronger condition is assumed in [14].
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Condition 2. (a) Condition 1(a) holds.
(b) Functions g(·) and μ(·) are globally Lipschitz continuous.

The global Lipschitz property is essential to the corresponding proof in [14].
Secondly, the approach in [14] is based on the explicit expression of n TCU(nY )

obtained by solving the associated Poisson equations. Instead of doing that, the present
paper employs the recent results of [15]. One advantage of this approach lies in the weaker
condition required (only piecewise Lipschitz continuity is needed). Another advantage is
that it allows one to study EPQ models, because the Poisson equations for EPQ models are
much more difficult to solve compared to those for EOQ models. That is why EPQ models
are not considered in [14].

3. Economic Production Quantity Models

In EOQ models the inventory is backed up at once by ordering new inventory items from
external suppliers. In this section we consider the situation where the inventory is gradually
backed up by producing new items. In greater detail, the inventory level decreases gradually
to meet the demand, and when it hits zero, the production is switched on and new inventory
items are being produced to back up the inventory. The production is switched off as soon
as the inventory is backed up to a predetermined level. Here we have to account for the cost
incurred from switching on the production as well as from holding the inventory items. The
aim is to obtain an Economic Inventory Backup Level (EIBL) that minimizes TCU, and the
resulting model is called an EPQ model. Similar to the previous section, below we justify the
fluid approximations to stochastic EPQ models, whose rigorous description is shortly given.

3.1. Description of Mathematical Models

(a) Fluid Model

Suppose that we fix some real inventory backup level y > 0, meaning that the production is
always on until the inventory reaches the level y. Let {x(t), t ≥ 0} represent the inventory
level process in the fluid model with state space [0, y], and instantaneous demand and
production rates μ(x) > 0 and λ(x) > 0, respectively. Then the inventory level process is
subject to the dynamics

dx

dt
=

⎧
⎨

⎩

−μ(x) (
production-off phase

)
,

λ(x) − μ(x)
(
production-on phase

)
,

(3.1)

where the production-off phase and production-on phase, superseding each other, are
triggered by x(t) = y and x(t) = 0, respectively. In words, without any delay, once the
inventory level reaches zero, production is switched on till it reaches the inventory backup
level y. Let g(x) be the holding cost rate,K > 0 the setup cost incurred with switching on the
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production, and tcycle the time duration between two consecutive production switching-offs.
So

tcu
(
y
)

� lim
T →∞

1
T

{∫T

0
g(x(t))dt +K

[
T

tcycle

]}

. (3.2)

Let us denote by y∗ the EIBL for the fluid model, so that tcu(y∗) = infy>0 tcu(y).

(b) (Scaled) Stochastic Model

Suppose that we fix some inventory backup level positive integer nY , meaning that the
production is always on until the inventory reaches level nY . Let {nXt, t ≥ 0} represent the
inventory level process. We model it as a continuous-time Markov chain with the state space
{(nY, off), (nY − 1, off), . . . , (0, off), (0, on), . . . , (nY − 1, on)}, where (i, off) indicates that the
inventory level is i and the production is off and the denotation of (i, on) can be understood
in the same way. Its transition rates are given by

nA(0, off),(0, on) = nκ, nA(0, off),(0, off) = −nκ,
nA(0, on),(1, on) = nλ(0), nA(0, on),(0, on) = −nλ(0),

nA(nY−1, on),(nY, off) = nλ

(nY − 1
n

)
, nA(nY−1, on),(nY−2, on) = nμ

(nY − 1
n

)
,

nA(nY−1, on),(nY−1, on) = −nλ
(nY − 1

n

)
− nμ

(nY − 1
n

)
,

(3.3)

for all i = 1, . . . ,n Y :

nA(i, off),(j, off) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nμ

(
i

n

)
, if j = i − 1,

−nμ
(

i

n

)
, if j = i,

(3.4)

and finally for all i = 1, . . . , n
Y −2:

nA(i, on),(j, on) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

nμ

(
i

n

)
, if j = i − 1;

nλ

(
i

n

)
, if j = i + 1;

−nμ
(

i

n

)
− nλ

(
i

n

)
, if j = i,

(3.5)

where nλ(i/n) and nμ(i/n) stand for the instantaneous production and demand rates, nκ
is the parameter of the exponentially distributed lead time between the switching and the
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actual production-on, and we have ignored all the cases when the transition rates take zero.
So we have

n TCU(nY ) � lim
T →∞

1
T
EnY

[∫T

0

{
g

(nXt

n

)
+Knμ

(
1
n

)
I{nXt = 1}

}
dt

]

, (3.6)

with the holding cost g(i/n) and setup cost K > 0. Let us denote by nY ∗ the EIBL for the
(scaled) stochastic model, so that n TCU(nY ∗) = infnY=1,2,... nTCU(nY ).

The concept of AFO and AO inventory backup level [ny] can be understood in the
same manner as introduced at the end of Section 2.1.

3.2. Main Results

Condition 3. (a) There exist some constants d1 ≥ 0, k1 > 0, δ > 0, δμλ > 0, η̃ > 1 and measurable
functions μ(x), λ(x), and g(x) defined on [0,∞) such that δ ≤ μ(x) ≤ μ(x) + δμλ ≤ λ(x) ≤ k1,
λ(x) + μ(x) ≤ k1, |g(x)| ≤ d1, and infx>0 (λ(x)/μ(x)) = η̃.

(b) There exist finite intervals (0, x1), (x1, x2), . . .with limj→∞ xj = ∞ such that on each
of them λ(x), μ(x), and g(x) are Lipschitz continuous with Lipschitz constants dλ, dμ, and dg,
respectively.

Note that Condition 3 implies that for any fixed y > 0, there exists an integer L
(possibly y-dependent) and L + 1 intervals (0, x1), (x1, x2), . . . , (xL, 3[y + 1]) such that on
each interval 1/μ(x), g(x)/μ(x), and 1/(λ(x)−μ(x)) are Lipschitz continuous with Lipschitz
constant dμ/δ

2, (k1dg+d1dμ)/δ2, and (dλ+dμ)/δ2
μλ, respectively, and at the same time on each

of these intervals belonging to (0, y), functions (with respect to x) g(y−x)/(λ(y−x)−μ(y−x))
and 1/(λ(y−x)−μ(y−x)) are Lipschitz continuous with Lipschitz constants (k1dg +d1dμ)/δ2

and (dλ + dμ)/δ2
μλ
, respectively. Let us now denote the common Lipschitz constant by

d2 � max{dμ/δ
2, (k1dg + d1dμ)/δ2, (dλ + dμ)/δ2

μλ
}.

Proposition 3.1. Under Condition 3, for any fixed (fluid) inventory backup level y > 0,

∣∣n TCU
([
ny
]) − tcu

(
y
)∣∣ ≤ 2δκk1(1 + d1)

δ

{
B1 + B2nη̃

−2n[y+1] +max
{
g(0)/2κ, 1/2κ

}

2
[
ny
]
κ + k1

}

, (3.7)

where one puts δ � max{δ, δμκ} and δ � min{δ, δμκ} and the n-independent terms B1, B2 are given
by (A.2) in the appendix.

As in the case of EOQ models, we observe from Proposition 3.1 that [ny∗] is AFO.

Corollary 3.2. Under Condition 3, the following statements hold.



10 Advances in Operations Research

(a) If g(x) ≥ 0, then limn→∞(
nY ∗ /n) > 0.

(b) If limn→∞(
nY ∗ /n) > 0, then limn→∞|nY ∗/n−[ny∗]/n| = 0 and limn→∞| nTCU([ny∗])

− nTCU(nY ∗)| = 0, that is, [ny∗] is AO.

(c) If L is y-independent and g(x) ≥ 0, then the following two substatements hold.

(c1) For y ≥ Kδ2/4k1d1 and big enough n so that n > max{4k1d1/Kδ2, k1/2κ − 1},

∣
∣n TCU

([
ny
]) − tcu

(
y
)∣∣

≤ 2δκk1(1 + d1)
δ

⎧
⎨

⎩
B̂1 + B̂2nη̃

−2n(Kδ2/4k1d1+1) +max
{
g(0)/2κ, 1/2κ

}

2
(
n
(
Kδ2/4k1d1

)
− 1
)
κ + k1

⎫
⎬

⎭

� F(n) = O

(
1
n

)
.

(3.8)

Here F(n) is y-independent, and

B̂1 =
k1d2

(
η̃ + 1

)
3
(
Kδ2/4k1d1 + 1

)

δ
(
η̃ − 1

) +

(

1 +
k1η̃

δ
(
η̃ − 1

)

)
3d1L

(
η̃ + 1

)

δ
(
η̃ − 1

) ,

B̂2 =

⎛

⎜
⎝1 +

6k1
(
Kδ2/4k1d1 + 1

)
η̃

δ
(
η̃ − 1

)

⎞

⎟
⎠

d1η̃
2(η̃ + 1

)

δ
(
η̃ − 1

)2 .

(3.9)

One has (c2) |n TCU(nY ∗) − nTCU([ny∗])| ≤ 2F(n) = O(1/n).

4. Example and Comments

In this section we firstly verify our results by considering a specific EPQ model, where tcu(·)
and n TCU(·) can be analytically computed. Then we comment on the applications of our
results.

Example 4.1. As for EOQ models, one may refer to [14] for an example. Hence we study the
following classic setting for the (scaled) stochastic EPQmodel: assume constant demand and
production rates μ(x) � D > 0 and λ(x) � R > 0, linear holding cost g(x) = hx with
a constant h > 0, constant setup costK > 0, and finally no lead time between “switching” and
“actual production-on,” corresponding to if we take κ → ∞. Therefore, if we consider the
underlying continuous time Markov chain {nXt, t ≥ 0}, state (0, off) will be excluded. The
transition rates are modified accordingly. Clearly, Condition 3 is satisfied with this classic
setting. The following lemma gives the explicit formula for n TCU(Z), where for simplicity
we have put Z instead of nY for the inventory backup level.
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Proposition 4.2. For the stochastic EPQ model described above,

n TCU(Z)

=

{

RhZ2(D − R)2 + 2Kn2D(R −D)3 + ZhR(3D − R)(D − R) + 2RhD2

(

1 −
(
D

R

)Z
)}

× 1

2n(R −D)
{
ZR2 −D2 +D2(D/R)Z − ZRD

} .

(4.1)

The proof of this proposition is based on solving (quite tediously) the associated
Poisson equation for n TCU(Z) and is omitted here.

The corresponding deterministic EPQ model can be solved easily, and we have

tcu
(
y
)
=

KD(R −D)
yR

+
hy

2
. (4.2)

Clearly, if we put Z = [ny] in the expression for n TCU(Z), where y is the inventory
backup level for the fluid model, then one can easily see that

lim
n→∞

n TCU
([
ny
])

=
KD(R −D)

yR
+
hy

2
= tcu

(
y
)
,

∣∣tcu
(
y
) − nTCU

([
ny
])∣∣ = O

(
1
n

)
,

(4.3)

which agree with Proposition 3.1. For the means of illustration, we put K = 5, h = 1, D = 5,
R = 10. Then the graphs of tcu(·) and n TCU(·) are plotted in Figure 1. Note that when n = 100,
the curves of tcu(y) and n TCU([ny]) nearly coincide.

Secondly, if n increases, then by inspecting the numerator (especially the first two
terms) and the denominator of the expression for n TCU(Z), we see that ifZ does not increase
as fast as n, n TCU(Z) will blow up to ∞ (it can be easily checked that the expression
ZR2 − D2 + D2(D/R)Z − ZRD > 0). Therefore, the condition of limn→∞(

nY ∗ /n) > 0 in
Corollary 3.2 is satisfied.

Comments

Let us comment on the applicability issues of our main results (Propositions 2.2 and 3.1). We
mainly focus on EOQ models, as absolutely similar comments can be made on EPQ models
in the same manner.

Although we assume the ordering point to be always zero, our results are still applica-
ble when it is set to be some fixed positive level, because Lemma A.1 holds if we put another
absorbing state instead of zero. In particular, if one allows the state taking negative values,
by putting some negative state absorbing, our results also impound the case of backlogging.
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Figure 1: The dotted line (resp., dashed line, solid line) corresponds to 1 TCU([y]) (resp., 5 TCU([5y]),
tcu(y)).

This flexibility regarding the ordering point together with the fact that g(·) is unrestricted in
signs enriches the applications of our results, in that although we require μ to be separated
from zero, when profit rather than solely operational cost is counted, the ordering point is
most likely positive, meaning in cases of μ(x) = αxβ, α > 0, 0 < β < 1 as in [20] and
μ(x) = αx−β, α > 0, β ≥ 1 as in [1], μ will be essentially separated from zero, validating our
results.

The state-dependence given in Conditions 1 and 3 is fairly general. In particular,
that functions λ(x), μ(x) and g(x) being bounded is not restrictive, because once some
EOQ for the fluid model y > 0 is fixed, to validate Propositions 2.2 and 3.1, they are
only required to be bounded on bounded intervals. Note that in addition to the demand
rate, some authors such as those of [5, 6] also include a state-dependent deteriorating
rate, to indicate that the underlying goods are perishable. Our results are also applicable
to such cases: one only needs explain μ(·) as the total reduction rate of the inventory
level.

Finally, Propositions 2.2 and 3.1 are significant extensions of the relevant results in [14],
where the author only focuses on EOQmodels and requires global Lipschitz continuity of μ(·)
and g(·). However, from the modelling point of view, the case of discontinuous functions
is interesting and important as demonstrated by [1, 3, 5, 21, 22], where [1] considers a
piecewise constant function μ(·) and the others consider discontinuous μ(·) taking either
a constant value or according to μ(x) = αxβ, α > 0, 0 < β < 1. The results in [14]
are derived based on the closed form of the solution to a Poisson equation satisfied by
n TCU(·), which is tremendously difficult to get explicitly in the case of (stochastic) EPQ
models.



Advances in Operations Research 13

5. Conclusions

To sum up, in this work we formally justified a general class of inventory level-dependent
deterministic EOQ and EPQ models, regarded as the fluid approximations to their stochastic
versions, by showing a translation of the fluid EOQ (EIBL) to provide an order quantity
(inventory backup level) asymptotically achieving some optimality for the stochastic model.
The efficiency of the translation was obtained, as distinguished from the majority of the
works on fluid approximations. The class of inventory models are quite broad so that to
various extent, the obtained results are directly applicable to the existing works such as
[1, 5, 6, 8, 20–22]. The present work is a significant extension of the relevant results in
[14].

Appendix

To aid our proof, firstly, let us consider the following one-dimensional birth-and-death
process {nZt, t ≥ 0}with state space {0, 1, . . .} and birth and death rates nα(i/n) and nβ(i/n),
respectively, where nonnegative measurable functions α and β are defined on [0,∞) and i
indicates the current state of the process. In addition, α(0) = β(0) = 0, where the equality
holds only at 0, meaning that state zero is absorbing. Let Ei denote the expectation of any
underlying functional of the process with the initial state nZ0 = i. Let a real measurable
function γ(·) defined on [0,∞) be fixed with γ(0) = 0. Now we are in the position to state
the following condition.

Condition 1. (a) There exist constants η̃ > 1, δ > 0, d1 > 0, and k1 < ∞ such that
infz>0( β(z)/α(z)) > η̃, β(z) ≥ δ, α(z) + β(z) ≤ k1, |γ(z)| ≤ d1. Here if α(z) ≡ 0, then η̃

can be arbitrary.
(b ) There exist finite intervals (z0 � 0, z1), (z1, z2), . . .with limj→∞ zj = ∞ such that on

each of them, γ(z)/(β(z) − α(z)) is a Lipschitz continuous function with a common Lipschitz
constant d2.

Note that Condition 1(b) implies that for any fixed y > 0 there exists an integer L

(possibly ẑ-dependent) and L + 1 finite intervals (0, z1), (z1, z2), . . . , (zL, 3[y + 1]) such that
on each interval, function γ(·)/(β − α) is Lipschitz continuous with a common Lipschitz
constant d2.

The following lemma is a slightly stronger version of [15, Theorem 2] and will play an
important role in our proof.

Lemma A.1. Suppose that Condition 1 is satisfied. Then for each y > 0

sup
0≤i≤n[y+1]

∣∣∣∣Ei

[∫∞

0
γ

(nZs

n

)
ds

]
−
∫∞

0
γ(z(s))ds

∣∣∣∣ ≤
B1

n
+ B2η̃

−2n[y+1], (A.1)

where regarding the second integral the underlying dynamics is given by dz/ds = α(z) − β(z),
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z(0) = i/n and B1 and B2 are given by

B1 =
k1d2

(
η̃ + 1

)
3
[
y + 1

]

δ
(
η̃ − 1

) +

(

1 +
k1η̃

δ
(
η̃ − 1

)

)
3d1L

(
η̃ + 1

)

δ
(
η̃ − 1

) ,

B2 =

(

1 +
6k1
[
y + 1

]
η̃

δ
(
η̃ − 1

)

)
d1η̃

2(η̃ + 1
)

δ
(
η̃ − 1

)2 .

(A.2)

Proof. It can be easily checked in the proof of [14, Theorem 2] that our Condition 1, weaker
than the original conditions imposed therein, is sufficient for the statement. See also [23].

Proofs of Proposition 2.2, Corollaries 2.4 and 2.5, and Proposition 2.6

For both the fluid model and (scaled) stochastic model let us call the time duration between
two consecutive replenishments a cycle and denote them by tcycle and nTcycle, respectively.
Here for simplicity, we do not explicitly indicate the y-dependence (resp., nY -dependence)
of tcycle (resp., nTcycle). Clearly {nXt, t ≥ 0} is a regenerative process [24, page 425] in that it
probabilistically repeats itself from one cycle to the next. It then follows from [25, Theorem
1.1, Proposition 131] (see also [24, Proposition 7.3]) that as far as the long-run average
n TCU([ny]) is concerned, it suffices to consider the inventory level process and the cost
incurred with it over only one cycle. For simplicity, we always consider the cycle starting
at time t = 0 with the initial position nX0 = [ny]. Let us denote by nTC and tc the total cost
incurred over the cycle in the stochastic and fluid model, respectively. Then the following
lemma indicates that the difference between E[ny][nTcycle] and tcycle and the one between
E[ny][nTC] and tc cannot be too big.

Lemma A.2. Under Condition 1 the following two inequalities hold with nonnegative B1 and B2

given by (A.2):
(a) |E[ny][nTcycle] − tcycle| ≤ B1/n + B2η̃

−n[y+1] + 1/nκ;
(b) |E[ny][nTC] − tc| ≤ B1/n + B2η̃

−n[y+1] + g(0)/nκ.

Proof. (a) Let us denote by nTabsorbing the time duration from the starting point t = 0 up to the
point when nXt firstly reaches state zero. Obviously we have

E[ny]
[nTabsorbing

]
= E[ny]

[∫∞

0
I{nXt > 0}dt

]
. (A.3)

Then E[ny][nTcycle] = E[ny][
nTabsorbing] + 1/nκ, where the second term on the right hand

side is the expected lead time. Now observe firstly that Condition 1 is a specific version of
Condition 1: one can take η̃ > 1 to be arbitrary, and put functions (Here it does no matter
to put μ(0) = 0.) α(x) ≡ 0, β(x) = μ(x) and I{x > 0} = g(x) = γ(x); and secondly that
the inventory level process from t = 0 up to nTabsorbing is a pure death process. Therefore,
one can refer to Lemma A.1 for |E[ny][nTcycle] − tcycle| ≤ |E[ny][nTabsorbing] − tcycle| + 1/nκ ≤
B1/n + B2η̃

−n[y+1] + 1/nκ.
(b) Let us denote by nTCabsorbing the cost incurred during the interval [0,n Tabsorbing], so

that E[ny][nTC] = E[ny][nTCabsorbing] + g(0)/nκ, where the second term on the right hand side
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corresponds to the cost incurred over the lead time. In the same way as in part (a), comparing
E[ny][nTCabsorbing] with tc first, and then adding g(0)/nκ results in the statement. Remember
that the setup cost cancels out.

Proof of Proposition 2.2. Under Condition 1 we have

∣
∣n TCU

([
ny
]) − tcu

(
y
)∣∣ =

∣
∣∣
∣
∣
E[ny][nTC]

E[ny]
[
nTcycle

] − tc
tcycle

∣
∣∣
∣
∣
=

∣
∣∣
∣
∣
E[ny][nTC]tcycle − tcE[ny]

[
nTcycle

]

E[ny]
[
nTcycle

]
tcycle

∣
∣∣
∣
∣

=

∣
∣
∣
∣
∣
E[ny][nTC]tcycle − tc tcycle + tc tcycle − tcE[ny]

[
nTcycle

]

E[ny]
[
nTcycle

]
tcycle

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
tcycle

{
E[ny][nTC] − tc

}
+ tc
{
tcycle − E[ny]

[
nTcycle

]}

E[ny]
[
nTcycle

]
tcycle

∣
∣
∣
∣
∣

≤ tcycle
∣∣E[ny][nTC] − tc

∣∣ + tc
∣∣tcycle − E[ny]

[
nTcycle

]∣∣

E[ny]
[
nTcycle

]
tcycle

≤
(
y/δ+d1y/δ

)

(
y/k1

)([
ny
]
/nk1 + 1/nκ

)
{
B1

n
+ B2η̃

−2n[y+1]+max
{

1
nκ

,
g(0)
nκ

}}

=
(1 + d1)nk2

1κ

δ
([
ny
]
κ + k1

)
{
B1

n
+ B2η̃

−2n[y+1] +max
{

1
nκ

,
g(0)
nκ

}}
,

(A.4)

where the last inequality follows from the facts that y/k1 ≤ tcycle ≤ y/δ, tc ≤ d1y/δ,
E[ny][nTcycle] ≥ [ny]/nk1 + 1/nκ and Lemma A.2.

Now let us easily observe that (η̃+1)/(η̃−1) and η̃/(η̃−1) both decreasewith η̃ ∈ (1,∞).
It follows that B1/n, B2η̃

−2n[y+1], and thus the above-derived expression all decrease with η̃,
where we recall that η̃ can be an arbitrary number on the interval (1,∞), see Condition 1. This
implies that

∣∣n TCU
([
ny
]) − tcu

(
y
)∣∣

≤ lim
η̃→∞

(1 + d1)k2
1nκ

δ
([
ny
]
κ + k1

)
{
B1

n
+ B2η̃

−2n[y+1] +max
{

1
nκ

,
g(0)
nκ

}}

=
(1 + d1)k2

1κ

δ
([
ny
]
κ + k1

)

{
k1d23

[
y + 1

]

δ
+
(
1 +

k1
δ

)
3d1L

δ
+max

{
g(0)
κ

,
1
κ

}}

.

(A.5)

Proof of Corollary 2.4. For any fixed n, let us denote nY ∗ = nŷ(n). We do the proof in two parts.

Part 1. We consider the case of a convergent sequence ŷ(n). Suppose now that as n → ∞,
ŷ(n) does not go to y∗ but limn→∞ ŷ(n) = ỹ > 0; here we allow ỹ to be from the extended real
line. In particular, for big enough n, ŷ(n) is separated from zero. According to Proposition 2.2,
we have n TCU(nŷ(n)) → tcu(ŷ(n)). But we also have tcu(ŷ(n)) → tcu(ỹ), since



16 Advances in Operations Research

tcu(y) = (
∫y
0 (g(x)/μ(x)dx)+K)/

∫y
0 (dx/μ(x)) is continuous in y. This gives n TCU(nŷ(n)) →

tcu(ỹ) > tcu(y∗). However, it follows from Proposition 2.2 that n TCU([ny∗]) → tcu(y∗). This
indicates that at least for big enough n, n TCU([ny∗]) < nTCU(nŷ(n)) = nTCU(nY ∗), which is
a desired contradiction. Hence limn→∞ŷ(n) = y∗, and consequently, limn→∞|n TCU([ny∗]) −
nTCU(nY ∗)| = 0, as required.

Part 2. Now consider the case of a divergent sequence ŷ(n). One only needs consider
the following two situations: either it has a bounded subsequence, which by Bolzano-
Weierstrass theorem further has a convergent subsequence; or it does not have a bounded
subsequence, which means that it has a subsequence blowing up to ∞. However, by taking
the corresponding subsequences, we find that both situations have been essentially covered
in Part 1. Part 2 is thus proved.

Proof of Corollary 2.5. (a) Under the conditions of the statement we have

RHS of (2.7)

≤ (1 + d1)k2
1

δ
[
ny
]

{
k1d2

(
3y + 3

)

δ
+
(
1 +

k1
δ

)
3d1L

δ
+max

{
g(0)
κ

,
1
κ

}}

=
(1 + d1)k3

13d2y

δ2
[
ny
] +

(1 + d1)k2
1

δ
[
ny
]
{
3k1d2

δ
+
(
1 +

k1
δ

)
3d1L

δ
+max

{
g(0)
κ

,
1
κ

}}

≤ 3(1 + d1)k3
1d2

δ2

y

ny − 1
+
(1 + d1)k2

1

δ
(
ny − 1

)
{
3k1d2

δ
+
(
1 +

k1
δ

)
3d1L

δ
+max

{
g(0)
κ

,
1
κ

}}

(
Recall,here ny − 1 > 0

)

≤ 3(1 + d1)k3
1d2

δ2

1
n{1 − κk1d1/(nκδ2K − δk1d1)}

+
(1 + d1)k2

1

nδ{δ2K/k1d1 − δ/nκ − 1/n}

×
{
3k1d2

δ
+
(
1 +

k1
δ

)
3d1L

δ
+max

{
g(0)
κ

,
1
κ

}}
.

(A.6)

(Here we use the fact that y/(ny − 1) decreases with y and y ≥ δ2K/k1d1 − δ/nκ.) (a) is
now clear.

(b) According to Lemma 2.3, y∗ ≥ δ2K/k1d1, and nY ∗ satisfies nY ∗/n ≥ δ2K/k1d1 −
δ/nκ. Therefore, according to part (a), for n ≥ N we have

n TCU
([
ny∗]) ≤ tcu

(
y∗) + E(n) ≤ tcu

(nY ∗

n

)
+ E(n) ≤ nTCU(nY ∗) + 2E(n) (A.7)
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in one direction and

n TCU
([
ny∗]) ≥ nTCU(nY ∗) ≥ tcu

(nY ∗

n

)
− E(n) ≥ tcu

(
y∗) − 2E(n) (A.8)

in the other direction. Combining both directions results in the statement.

Proof of Proposition 2.6. Now nΠ(i) and π(x) can be easily computed as done in [14]. So we
have

Π(0) =
1/nκ

∑[ny]
j=1

(
1/nμ

(
j/n
)
+ 1/nκ

) , Π(i) =
1/nμ(i/n)

∑[ny]
j=1

(
1/nμ

(
j/n
)
+ 1/nκ

) ,

i = 1, 2, . . . ,
[
ny
]
;

π(0) = 0; π(x) =
1

μ(x)tcycle
, 0 < x ≤ [ny].

(A.9)

Here we put π(0) = 0 for convenience. Then |nΠ(0) − π(0)| ≤ 1/nκ(1/nκ + [ny]/nk1) ≤
k1/(k1 + κ[ny]), and

∣∣∣∣∣
nΠ(i) −

∫ i/n

(i−1)/n
π(x)dx

∣∣∣∣∣

=

∣∣∣∣∣∣

1/nμ(i/n)
E[ny]

[
nTcycle

] −
∫ i/n
(i−1)/n

(
1/μ(x)

)
dx

tcycle

∣∣∣∣∣∣

=

∣∣∣∣∣
1

nμ(i/n)
tcycle −

∫ i/n

(i−1)/n

1
μ(x)

dx tcycle +
∫ i/n

(i−1)/n

1
μ(x)

dx tcycle

−
∫ i/n

(i−1)/n

1
μ(x)

dxE[ny]
[nTcycle

]
∣∣∣∣∣

1
E[ny][

nTcycle]tcycle

≤
tcycle

∣∣∣1/nμ(i/n)−
∫ i/n
(i−1)/n

(
dx/μ(x)

)∣∣∣+
∫ i/n
(i−1)/n

(
dx/μ(x)

)∣∣E[ny]
[
nTcycle

] − tcycle
∣∣

E[ny][nTcycletcycle]

≤ 2y/nδ2 + (1/nδ)
(
B1/n + B2η̃

−n2[y+1] + 1/nκ
)

([
ny
]
/nk1 + 1/nκ

)
y/k1

.

(A.10)



18 Advances in Operations Research

(Here we recall (a) of Lemma A.2.) Recall that in the above derived expression, η̃ can be any
number from (1,∞). After passing to the limit η̃ → ∞, we eventually end up with

∣
∣
∣
∣
∣
nΠ(i) −

∫ i/n

(i−1)/n
π(x)dx

∣
∣
∣
∣
∣

≤ 2yk2
1κ/δ

2 +
(
k2
1κ/nδ

)(
3k1d2

(
y + 1

)
/δ + (1 + k1/δ)(3d1L/δ) + 1/κ

)

([
ny
]
+ 1
)
y

,

(A.11)

as required.

Proofs of Proposition 3.1 and Corollary 3.2

Let us call a cycle the time duration between two consecutive moments when the inventory
is fully backed up. Arguing similarly as for EOQ models, it suffices to consider the inventory
level process {nXt, t ≥ 0} and the cost incurred over one complete cycle, for which we put
the starting time of t = 0. Let us denote by tcycle, nTcycle and tc, nTC the duration of a cycle
and the cost incurred over a cycle in the fluid and scaled stochastic model, respectively.
Notice additionally that a cycle is always constituted to by two phases corresponding to the
on and off of the production. This raises another set of denotations: let ton, nTon (toff, nToff),
and tcon,nTCon (tcoff, nTCoff) be the total cost incurred during the production-on (off) phases
in the fluid and (scaled) stochastic model, respectively. We agree on that in both fluid
and (scaled) stochastic model the setup cost is accounted for in tcoff and nTCoff. Then
obviously we have tcycle = ton + toff, E[nTcycle] = E[nTon] + E[nToff] and tc = tcon + tcoff,
E[nTC] = E[nTCon] + E[nTCoff]. Here and below, for convenience we omit the subscript of
the expectation operator.

Lemma A.3. Under Condition 3 the following inequalities hold:
(a) |E[nTCon] − tcon| ≤ B1/n + B2η̃

−2n[y+1], |E[nTon] − ton| ≤ B1/n + B2η̃
−2n[y+1];

(b) with nonnegative B1 and B2 given by (A.2),

|E[nTCoff] − tcoff| ≤ B1

n
+ B2η̃

−2n[y+1] +
g(0)
nκ

,

|E[nToff] − toff| ≤ B1

n
+ B2η̃

−2n[y+1] +
1
nκ

.

(A.12)

Proof. (a) Let us concentrate on the inventory level process over the production-on phase.
In the fluid model, it appears convenient to reflect the trajectory {x(t), t ∈ (ton, tcycle)}
(corresponding to the solid curve in Figure 2) about the horizontal t-axis first, and then shift
the resulting trajectory (corresponding to the curve of crosses in Figure 2) upwards by y units,
and finally further shift the resulting trajectory to the left by shifting the time by toff units to
the right to get {onx̂(t), t ∈ [0, ton]} (corresponding to the curve of solid boxes in Figure 2).
Note now, for {onx̂(t), t ∈ [0, ton]} with onx̂(0) = y the roles of production and demand
have switched over: each produced unit reduces onx̂ by one unit, and each demanded unit
increases onx̂ by one unit. More precisely, let us define the following functions:
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Figure 2: The illustrative graph of onx̂(t).

onμ̂
(
y
)
= λ(0), onμ̂(0) = 0, onμ̂(x) = λ

(
y − x

)
, x ∈ (0, y),

onλ̂
(
y
)
= μ(0) = 0, onλ̂(0) = 0, onλ̂ = μ

(
y − x

)
, x ∈ (0, y),

onĝ
(
y
)
= g(0), onĝ(0) = 0, onĝ(x) = g

(
y − x

)
, x ∈ (0, y).

(A.13)

Then the dynamics of onx̂(0) = y with donx̂(t)/dt|onx̂(t)=x = onλ̂(x)− onμ̂(x) for x ∈ (0, y] is of

our interest, because we can write tcon =
∫∞
0 g(onx̂(t))dt.

Absolutely similar arguments are applicable to the (scaled) stochastic model.
Consequently, we can consider the inventory level process during a production-on phase

as a birth-and-death process { n

onX̂t, t ≥ 0} with initial condition
n

onX̂0 = [ny], state space

{0, 1, . . .}, birth and death rates given by nα(i/n) � nonλ̂(i/n) and nβ(i/n) Δ= nonμ̂(i/n)
when the current state is i, and the cost rate given by γ(i/n) � onĝ(i/n). By recognizing

E[ny][
∫∞
0 onĝ(

n

onX̂t)dt] = E[ nTCon] and that Condition 3 is a specific version of Condition 1,
we can refer to Lemma A.1 for | nE[ nTCon] − tcon| ≤ B1/n + B2η̃

−2n[y+1]. Arguing similarly as
above (see also the proof of Lemma A.2), we have | nE[ nTon] − ton| ≤ B1/n +B2η̃

−2n[y+1]. (a) is
now clear.

(b) The production-off phase has already been covered when analyzing EOQ models.
Therefore, one can directly refer to Lemma A.2 for the statement.
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Proof of Proposition 3.1. Lemma A.3 implies that

|E[nTC] − tc| ≤ |E[nTCon] − tcon| + |E[nTCoff] − tcoff|

≤ 2
n

(
B1 + B2nη̃

−2n[y+1] +
g(0)
2κ

) (A.14)

and similarly |E[nTcycle] − tcycle| ≤ (2/n)(B1 + B2nη̃
−2n[y+1] + 1/2κ). Then according to (A.4)

and the facts of E[nTcycle] ≥ 2[ny]/nk1 + 1/nκ, 2y/δ ≥ tcycle ≥ 2y/δ and tc ≤ 2yd1/δ (recall

δ
Δ= max{δ, δμλ} and δ

Δ= min{δ, δμλ}), we have

∣
∣n TCU

([
ny
]) − tcu

(
y
)∣∣ ≤

(
2y/δ

)
(2/n)

{
B1 + B2nη̃

−2n[y+1] +max
{
g(0)/2κ, 1/2κ

}}
(1 + d1)

(
2
[
ny
]
/nk1 + 1/nκ

)(
2y/δ

)

=
2δκk1(1 + d1)

δ

{
B1 + B2nη̃

−2n[y+1] +max
{
g(0)/2κ, 1/2κ

}

2
[
ny
]
κ + k1

}

.

(A.15)

Proof of Corollary 3.2. (a) Suppose that the statement does not hold. That is, for some subse-
quence {nj, j = 1, 2, . . .} with nj → ∞ as j → ∞, njY ∗ = o(nj) in that limj→∞(

nj Y ∗ /nj) = 0.
Under nj Y ∗ we have

E
[nj Tcycle

]

=

{
1

njκ
+

nj Y ∗∑

i=1

1
njμ
(
i/nj

)

}

+
nj Y ∗−1∑

i=0

{
1

njλ
(
i/nj

)+
i−1∑

k=0

μ
(
i/nj

)
μ
(
(i − 1)/nj

) · · ·μ((i − k)/nj

)

njλ
(
i/nj

)
λ
(
(i − 1)/nj

) · · ·λ((i − k − 1)/nj

)

}

,

(A.16)

where by [26, Theorem 1, page 175] the term inside the first curry bracket corresponds to
E[nj Toff] and the second (last) sum corresponds to E[nj Ton]. Here we agree on that when
i = 0, the term in the second curry bracket reduces to 1/njλ(0). This gives

nj TCU(nj Y ∗)

=
E[njTC]

{
1/njκ +

∑nj Y ∗
i=1
(
1/njμ

(
i/nj

))}
+
∑nj Y ∗−1

i=0
{
1/njλ

(
i/nj

)
+A}

≥ K
{
1/njκ +

∑nj Y ∗
i=1 1/njμ

(
i/nj

)}
+
∑nj Y ∗−1

i=0
{
1/njλ

(
i/nj

)
+A}

,

(A.17)

where A =
∑i−1

k=0(μ(i/nj)μ((i − 1)/nj) · · ·μ((i − k)/nj)/njλ(i/nj)λ((i − 1)/nj) · · ·λ((i − k −
1)/nj)), where the last inequality follows from the fact g(x) ≥ 0. Clearly, the right hand side
expression of the above inequality goes to infinity as nj → ∞, because λ(x) and μ(x) are



Advances in Operations Research 21

both bounded and separated from zero, and nj Y ∗ = o(nj) by supposition. On the other hand,
obviously there exists some y∗ > 0 with tcu(y∗) < ∞, which according to Proposition 3.1 leads
to that at least for big enough nj , [njy∗] outperforms nj Y ∗, which is a desired contradiction.
Part (a) is thus proved.

(b) The proof of this part coincides with the one of Corollary 2.4, and is thus omitted.
(c1) Let us notice first of all that under the conditions of the statement, we have that

the expression (B̃1 + B̃2nη̃
−2n(y+1) + max{g(0)/2κ, 1/2κ})/(2(ny − 1)κ + k1) is positive and

decreases with y. Here B̃1 and B̃2 come from replacing [y + 1] by y + 1 in B1 and B2. Indeed,
as for the positivity part, one only needs to see the denominator 2(ny − 1)κ + k1 > 0 if
n is subject to the given condition. The decreasing (with respect to y) part follows from
d[(y+1)/(2κ(ny−1)+k1)]/dy = (k2−2κ−2κn)/[2κ(ny−1)+k1]2 < 0 whenever n > k1/2κ−1.
Remember that B̃1 and B̃2 are both y-dependent, and L is y-independent.

Now let us prove (c1) of the corollary. Observe that under the conditions of the
statement, Proposition 3.1 implies that

∣∣E
[n TCU

([
ny
])] − tcu

(
y
)∣∣

≤ 2δκk1(1 + d1)
δ

{
B̃1 + B̃2nη̃

−2n(y+1) +max
{
g(0)/2κ, 1/2κ

}

2
(
ny − 1

)
κ + k1

}

.

(A.18)

For y ≥ Kδ2/4k1d1, one can bound from the above the right hand side expression in (A.18)
by substituting y = Kδ2/4k1d1 in it, which leads to (c1).

(c2) Let us notice that y∗ ≥ Kδ2/4k1d1, and for big enough n, nY ∗/n ≥ Kδ2/4k1d1.
Indeed, due to (b), to justify the second inequality, we only need verify y∗ ≥ Kδ2/4k1d1,
which is done as follows. For the fluid model, clearly we have

tcu
(
y
)
=

∫y
0

(
g(x)/μ(x)

)
dx +

∫y
0

(
g(x)/

(
λ(x) − μ(x)

))
+K

∫y
0

(
dx/μ(x)

)
+
∫y
0

(
dx/
(
λ(x) − μ(x)

)) , (A.19)

where the numerator corresponds to tc and the denominator corresponds to tcycle, and

d tcu
dy

=

(
g
(
y
)
/μ
(
y
)
+ g
(
y
)
/
(
λ
(
y
) − μ

(
y
)))(∫y

0

(
dx/μ(x)

)
+
∫y
0

(
dx/
(
λ(x) − μ(x)

)))

(∫y
0

(
dx/μ(x)

)
+
∫y
0

(
dx/
(
λ(x) − μ(x)

)))2

−
(∫y

0

(
g(x)/μ(x)

)
dx +

∫y
0

(
g(x)/

(
λ(x) − μ(x)

))
+K
)(
1/μ
(
y
)
+ 1/

(
λ
(
y
) − μ

(
y
)))

(∫y
0

(
dx/μ(x)

)
+
∫y
0

(
dx/
(
λ(x) − μ(x)

)))2 ,

(A.20)

which is negative if (g(y)/μ(y)+g(y)/(λ(y)−μ(y)))(
∫y
0 (dx/μ(x))+

∫y
0 (dx/(λ(x)−μ(x)))) <

K/μ(t). But the latter inequality holds if y < Kδ2/4k1d1, because g(y)/μ(y) + g(y)/(λ(y) −
μ(y)) ≤ 2d1/δ and

∫y
0 (dx/μ(x)) +

∫y
0 (dx/(λ(x) − μ(x))) ≤ 2y/δ. This means y∗ ≥ Kδ2/4k1d1.

Now with the help of (c1) and Proposition 3.1, (c2) can be proved in the same way as
for (b) of Corollary 2.5.
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