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During the last four decades Data Envelopment Analysis (DEA) has attracted considerable
attention in the OR community. Using DEA, the efficiency frontier is constructed based on
assumptions concerning the production possibility set rather than a priori defining a functional
relationship between inputs and outputs. In this contribution, we propose an algorithm to visualize
the efficiency surface in a 3D diagram and to extract isoquants from the efficient hull based on
different RTS assumptions which might be particularly helpful for presentation purposes. In doing
so, we extend the existing literature which has concentrated on the visualization of production
frontiers in 2D diagrams to the visualization of efficient rather than fully efficient hulls in 3D
diagrams. Displaying a fully efficient hull, however, does not reflect all properties of the production
possibility set as weakly efficient frontier segments are missing.

1. Introduction

Starting with the pioneering work of Farrell and the subsequent publications on nonpara-
metric efficiency measurement (see [1–4]), a considerable number of applied efficiency
measurement studies using nonparametric techniques has been found in the scientific
literature [5].

Nonparametric efficiency measurement approaches rely on assumptions concerning
the production possibility set (PPS) rather than specifying a functional relationship between
inputs and outputs to derive a production frontier, thereby offering a new way to efficiency
studies and comparisons. Basically, the idea behind nonparametric efficiency measurement
is to derive an unknown production frontier based on the analysis of observable input and
output data of different decision making units (DMUs). In particular, using nonparametric
approaches, the production frontier is constructed as an envelope to the PPS.

The basics of nonparametric efficiency measurement are often illustrated using
diagrams to visualize the derivation of the PPS and the resulting production frontier. Many
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of these figures are based on the illustration of the production frontier for the single input
single output case which, thus, reflects the maximum and thus efficient quantity of the
single output that can be produced using a particular quantity of the single input. Extensions
cover the visualization of the production possibility frontier for the two inputs single output
and the two outputs single input case, respectively. These diagrams represent the efficient
combination of two inputs to produce a particular quantity of a single output and the efficient
combination of two outputs that can be produced given a particular quantity of a single input.
Illustrations of production frontiers in 3D diagrams have been restricted to the portrayal of
fully efficient hulls so far [6].

The purpose of this paper is, thus, to provide an algorithm which can be used to
display the efficient hull of a set of DMUs in a 3D diagram, comprising fully as well as weakly
efficient frontier segments. With the increasing use of DEA techniques, the visualization of
the production surface in the two inputs one output case and the two outputs one input
case, respectively, might be useful for presentation purposes. Particularly, the derivation of
isoquants directly from the production surface using illustrative data sets is considered to be
valuable regarding the discussion of results stemming from differing returns to scale (RTS)
assumptions. The purpose of the paper, however, is not to minimize computer speed in
producing production surfaces in 3D diagrams but to provide an algorithm which can be
used to identify the respective production surface inclusive of the isoquants without using
LP methods. In doing so, we consider both variable as well as constant RTS assumptions. For
illustration purposes, approaches to derive isoquants for different input and output levels in
combination with different RTS assumptions from the so-constructed production surface are
presented.

Accordingly, the paper is structured as follows. First, we provide a brief introduction
into nonparametric efficiency measurement and its underlying assumptions. Next, we
present the algorithms suitable to visualize the efficient hull under constant returns to scale
(CRS) and variable returns to scale (VRS) for the case of two inputs and one output. Finally,
an algorithm to extract isoquants from the efficient hull for different output levels and
different RTS assumptions is presented. All algorithms provided in this contribution have
been implemented in Matlab. Some concluding remarks are given in the final section.

2. Nonparametric Efficiency Measurement and
Frontier Visualization in 2D Diagrams

Nonparametric efficiency measurement is based on the analysis of observable input and
output data of different DMUs. These input output correspondences constitute the PPS. To
obtain an estimate of the unknown production frontier, particular assumptions concerning
the PPS are made.

Consider a multiple input multiple output setting where DMU j uses the input vector
xj ∈ R

m
+ to produce the output vector yj ∈ R

s
+. The set of feasible input output activities (x, y)

is called P with the following properties (for a comprehensive discussion see, e.g., [7, page
42]).

(1) All observed activities belong to P , that is, (xj , yj) ∈ P, for all j = 1, . . . , n DMUs.

(2) If activity (x, y) belongs to P , activity (tx, ty) with t > 0 belongs to P , through this
property we assume CRS, that is, we obtain PCRS.
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(3) If activity (x, y) belongs to P , then the activities (x′, y′), (x, y′), and (x′, y), with
x′ ≥ x and y ≥ y′, belong to P as well.

(4) P is the smallest closed and bounded set which meets the above assumptions.

Using matrix notation X = (xj) ∈ R
m×n
+ and Y = (yj) ∈ R

s×n
+ , PCRS can be defined as

follows:

PCRS =
{(

x, y
) | x ≥ Xλ, y ≤ Yλ, λ ∈ R

n
+, λ ≥ 0

}
. (2.1)

A VRS technology requires the additional constraint eλ = 1, with e being a row vector with
all elements equaling unity resulting in the following definition of PVRS:

PVRS =
{(

x, y
) | x ≥ Xλ, y ≤ Yλ, λ ∈ R

n
+, λ ≥ 0, eλ = 1

}
. (2.2)

There are also other possibilities of constructing a PPS, such as the nonconvex sets stemming
from the free disposal hull approach proposed by [8] or themultiplicative approach proposed
by [9]. These approaches are, however, beyond the scope of this contribution.

Given the respective PPS, the technical efficiency of a DMU j (j = 1, . . . , n) can then be
assessed by measuring the distance to the frontier. Among the variety of metrics, the oriented
equiproportionate are the most frequently used. Assuming CRS, the input-oriented technical
efficiency θ of DMU 0 can be evaluated by solving the following linear program:

min
θ,λ

θ

s.t. θx0 −Xλ ≥ 0

Yλ ≥ y0

λ ≥ 0.

(2.3)

Assuming VRS, it is necessary to add the constraint eλ = 1.
Given the optimal solution to (2.3), it is possible to distinguish between inefficient,

weakly efficient and fully efficient DMUs. Inefficiency occurs in case θ∗ < 1, which means that
the DMU under evaluation can reduce its input level proportionately while still guaranteeing
the given output level. Weak (or radial) efficiency is indicated if θ∗ = 1, but some of the slack
vectors, that is, input excesses s− ∈ R

m, with s− = θ∗x0 − Xλ, and output shortfalls s+ ∈ R
s,

with s+ = Yλ − y0, are positive. Full (Pareto-Koopmans (see [10, 11])) efficiency of DMU 0
prevails if

( −x0
y0

) ≥ ( −xk
yk

)
, for all k = 1, . . . , n, that is, no element of the first vector is smaller

than the respective element of the second vector and at least one element of the first vector
is larger than the respective element of the second vector. Full efficiency therefore requires
weak efficiency, while the reverse is not necessarily true.
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Table 1: Data for the single input single output case.

A B C D E F G H I J K L M N O
x1 9,50 3,75 3,75 5,75 8,25 8,00 11,50 14,50 12,00 6,67 6,25 9,25 8,00 12,50 4,25
y 9,25 2,00 4,50 7,00 8,75 4,00 6,00 9,50 9,50 8,00 2,50 7,50 3,00 8,50 2,50

Table 2: Data for the two inputs single output case.

A B C D E F G H I J K L M N O
x1 9,50 3,75 3,75 5,75 8,25 8,00 11,50 14,50 12,00 6,67 6,25 9,25 8,00 12,50 4,25
x2 2,50 0,20 2,50 3,00 3,00 0,08 2,50 2,00 4,00 5,00 0,05 1,25 0,50 0,75 0,10
y 9,25 2,00 4,50 7,00 8,75 4,00 6,00 9,50 9,50 8,00 2,50 7,50 3,00 8,50 2,50

Computationally, the difference between weak and full efficiency is obtained in a two-
step procedure. First we solve (2.3) to obtain θ∗. Second, using the optimal solution θ∗ from
(2.3), we solve the following LP:

max
s−,s+,λ

es− + es+

s.t. s− = θ∗x0 −Xλ
s+ = Yλ − y0

λ ≥ 0; s− ≥ 0; s+ ≥ 0.

(2.4)

In doing so, we obtain the optimal solution (s−∗, s+∗) which indicates full efficiency if θ∗ = 1
and s−∗ = 0 ∧ s+∗ = 0.

According to the above definitions of inefficient, weakly and fully efficient DMUs, we
can therefore identify three different areas of the PPS: inefficient DMUs lie inside the PPS,
weakly and fully efficient DMUs are located on the frontier. To differentiate between weakly
and fully efficient DMUs, it is necessary to further distinguish between weakly and fully
efficient frontier segments. On fully efficient frontier segments, it is not possible to improve
any input or output without worsening some other input or output, while, onweakly efficient
frontier segments, it is possible to improve an input or output without worsening other input
or output.

It is common to visualize the PPS and the resulting frontier, especially the differences
between the two frontier segments, in 2D diagrams. We start accordingly with a VRS frontier
based on the observation of 15 DMUs that use one input (x1) to produce a single output (y).
Data are summarised in Table 1.

The resulting frontier in the input output space is the envelope to the smallest convex
set containing the activities of all 15 DMUs (see Figure 1). DMUs B, C, D, J, E, A, I, and H are
located on the frontier and are therefore at least weakly efficient. The remaining DMUs inside
the PPS are inefficient. Among the DMUs on the frontier, C, D, J, E, A, and I are fully efficient
as they have θ∗ = 1, s−∗ = 0, and s+∗ = 0. The other two efficient DMUs on the frontier, B
and H, however, are obviously dominated by DMUs C and I, respectively, as B uses the same
input quantity to produce less output than C and H uses more input to produce the same
level of output than I, that is, B shows positive output slack and H has positive input slack.

Adding a second input x2 (see Table 2), it is possible to illustrate the difference
between proportionate and nonproportionate input changes by computing the single factor
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Figure 1: Single input single output case, VRS.
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Figure 2: Two inputs single output case, CRS.

productivities x1/y and x2/y and depicting the implicitly derived PCRS in the input input
space (see Figure 2).

The fully efficient DMUs are now D, A, L, N, O, and F. Among the inefficient DMUs,
we find DMU G which obviously has to reduce its inputs proportionately to be located on
the frontier. DMU K, however, is now revealed as being weakly efficient, that is, DMU K
has no possibility of proportionately reducing its inputs without reducing the output. DMU
K, however, uses the same level of input x2 as DMU F to produce one unit of output y but
employs a larger quantity of input x1 compared to DMU F. For DMU K, a nonproportionate
reduction in input x1 is necessary to produce fully efficient, that is, DMU K shows positive
input slack for input x1, (s−∗1 > 0). In contrast to DMUK, the DMUs C, and J, lie slightly inside
PCRS. Projecting the DMUsC and J onto the frontier using the input-oriented approach reveals
both the necessary proportionate reduction in inputs x1 and x2 as well as a nonproportionate
reduction in input x2 as these DMUs are projected onto a weakly efficient segment of the
frontier.
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Figure 3: Fully efficient hull.

Obviously, in the case of two inputs and one output, most illustrations fall back
on isoquants to explain and visualize how nonparametric efficiency measurement works.
Dividing input x1 and x2 by the respective output quantity y, however, we implicitly
assume CRS and derive an isoquant which does not reflect the prior VRS assumption.
An exemption is provided by [12] who illustrate isoquants based on different RTS and
disposability assumptions. Overall, isoquants assuming VRS are rarely found as they cannot
be constructed as straightforward as under CRS.

Nevertheless, there has been little attempt to visualize the idea behind nonparametric
efficiency measurement using production surfaces in 3D diagrams as illustrations of
production surfaces in 3D diagrams are hardly found in the literature. If at all, these
production surfaces have been restricted to the presentation of fully efficient hulls, similar
to those provided in [6], and reproduced in Figure 3 using the data provided in Table 2. Our
attempt, however, is to provide an algorithm which can be used to visualize the production
surface as an efficient hull (as indicated in Figure 4) with all the properties in (2.1) being
visualized. Based on the derivation of the production surface in a 3D diagram, we also
propose an algorithm suitable to derive the isoquant under CRS and VRS directly from the
efficient hull.

3. Nonparametric Efficiency Measurement and
Frontier Visualization in 3D Diagrams

Visualizing the idea behind nonparametric efficiency measurement in 3D diagrams with a
fully efficient hull as in Figure 3 does not reflect all properties of the PPS as introduced
in (2.1). References [13–15], however, provided algorithms to identify the so-called strong
defining hyperplanes as well as weak defining hyperplanes for the general case of m inputs
and s outputs with strong defining hyperplanes corresponding to fully efficient hyperplanes
and weak defining hyperplanes corresponding to weakly efficient hyperplanes according to the
terminology used in this contribution. Even though the [13–15] algorithms cover the general
case, as far as we know, it has not yet been used to visualize the efficient hull in 3D diagrams.
The [13–15] algorithms require the solution to (2.3). The algorithm provided in [16], however,
presumes solving (2.3) as well.
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Figure 4: Efficient hull.

The main idea of our first algorithm is to display the efficient hull in a 3D diagram
for a set of DMUs that produce a single output with two inputs with the PPS satisfying all
properties in (2.1). For the time being, we consider VRS only.

Accordingly, we proceed as follows. First, we show that the fully efficient hull for a
set of DMUs is part of the convex hull of the same set. To derive the convex hull, we fall
back on the well known Quickhull algorithm (see [17]) rather than solving (2.3) as Quickhull
is computationally efficient in producing a convex hull in 3D diagrams. In a second step,
we construct the weakly efficient hull falling back, among others, to Quickhull. Finally, we
combine the fully and weakly efficient hull to obtain what we call the efficient hull.

3.1. General Remarks

Definition 3.1 (Convex hull). The convex hull S for a set of points Z in a vector space over R

is the minimal convex set containing Z, that is,

S(Z) =

{
k∑

i=1

αizi | zi ∈ Z, αi ∈ R, αi ≥ 0,
k∑

i=1

αi = 1

}

. (3.1)

Definition 3.2 (Hyperplane). HyperplaneH in R
n is a set of the form {z | pz = k}, where p is a

nonzero vector in R
n and k is a scalar. p is usually called normal or gradient toH. H divides

R
n into two halfspaces,H+ andH−.H+ andH− are two sets of points of the form {z | pz ≥ k}

and {z | pz ≤ k}, with H = H+ ∩H−. This definition has been provided in [18].

Based on the above definitions, we can state the following.

Theorem 3.3. A fully efficient DMU according to (2.3) is an element of S.

Proof. Without loss of generality, we assume that DMU l is fully efficient and not part of S.
Consequently, there are two cases.

(a) DMU l is outside S.

(b) DMU l is inside S.
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Ad (a): If DMU l is outside S, we have a contradiction to the definition of a convex
hull as the minimum convex set containing all DMUs.

Ad (b): If DMU l is inside S, there is a hyperplane of S supported by m + s DMUs.
Let DMU f be a convex combination of the m + s DMUs (the so-called virtual DMU) on
that hyperplane of S with yl ≤ yf ∧ xl ≥ xf and the inequality sign be strict in at least one
component. In this case, DMU f dominates DMU l which is a contradiction to the fact that
DMU l is fully efficient.

Definition 3.4 (Fully efficient hull). The fully efficient hull is part of the convex hull. The
hyperplanes that constitute the fully efficient hull are called fully efficient hyperplanes Hf .
Fully efficient hyperplanes support at leastm+s fully efficient DMUs according to (2.3), with
negative normal vector components regarding the output vector and positive normal vector
components regarding the input vector (see [13]).

Definition 3.5 (Weakly efficient hull). The hyperplanes that constitute the weakly efficient hull
are called weakly efficient hyperplanes Hw. Weakly efficient hyperplanes support at least
m + s − 1 fully efficient DMUs and at least one weakly efficient DMU according to (2.3). The
normal vector components concerning the output vector are nonnegative, and the normal
vector components concerning the input vector are nonpositive with at least one component
of the input or output vector being equal to zero.

Definition 3.6 (Efficient hull). The efficient hull is the combination of the fully and weakly
efficient hull.

3.2. Algorithm 1: Producing the Efficient Hull in a 3D Diagram

Based on the definitions in Section 3.1, we now proceed to the description of algorithm 1 VRS
which can be used to produce the efficient hull for n DMUs using m = 2 inputs to produce
s = 1 output in a 3D diagram, still assuming VRS.

Step 1. Compute the convex hull with Quickhull. Identify all triangles (Quickhull uses
triangles to produce the convex hull in 3D) with normal vector components x1 < 0 ∧ x2 <

0 ∧ y > 0, and delete all other triangles.

Step 2. Each triangle consists of three vectors. Project the remaining triangles to the x1x2-
plane with y = 0, and delete all vectors which exist two times (inside the 2D hull).

Step 3. Assign the remaining vectors to one of the following groups according to the
subsequent procedure.

Start with the minimum output DMU, and go clockwise up to the first vector with normal
vector components x1 ≥ 0 ∧ x2 > 0; return to the minimum output DMU; go anticlockwise
up to the first vector with normal vector components x1 > 0 ∧ x2 ≥ 0. Concerning the vectors
within this range, proceed as follows.

(a) Vectors with normal vector components x1 < 0 ∧ x2 < 0 are projected to the x1x2-
plane with y = 0.
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(b) Vectors with normal vector components x1 ≥ 0 ∧ x2 < 0 are projected to the x2y-
plane with x1 = max(DMUj(x1)), j = 1, . . . , n, first, followed by the projection to
the x1x2-plane with y = 0.

(c) Vectors with normal vector components x1 < 0 ∧ x2 ≥ 0 are projected to the x1y-
plane with x2 = max(DMUj(x2)), j = 1, . . . , n, first, followed by the projection to
the x1x2-plane with y = 0.

Step 4. Go to the maximum output DMU, and go clockwise up to the first vector which
has already been assigned to one of the groups 3(a), 3(b), or 3(c) in Step 3. Return to the
maximum output DMU, and go anticlockwise up to the first vector which has already been
assigned to one of the groups 3(a), 3(b), or 3(c) in Step 3. Concerning the vectors within this
range, proceed as follows

(a) clockwise direction: project the vectors between the maximum output DMU and
the first vector which has already been assigned to one of the above groups 3(a),
3(b), or 3(c) to the x2y-plane with x1 = max(DMUj(x1)), j = 1, . . . , n;

(b) anticlockwise direction: project the vectors between the maximum output DMU
and the first vector which has already been assigned to one of the above groups
3(a), 3(b), or 3(c) to the x1y-plane with x2 = max(DMUj(x2)), j = 1, . . . , n.

Step 5. Produce the efficient hull in a 3D diagram.

To visualize algorithm 1 VRS, we display some intermediate results graphically. Using
Quickhull, the convex hull assuming VRS for the set of 15 DMUs is displayed in Figure 5.
Next, the triangles with normal vector components that do not meet the conditions x1 <
0 ∧ x2 < 0 ∧ y > 0 are deleted. The resulting part is displayed in Figure 6. According to
Step 2, the remaining triangles are projected onto the x1x2-plane with y = 0 as presented in
Figure 7. The vectors inside the 2D hull have already been deleted. Theminimum (maximum)
output DMU is indicated by the solid (dotted) arrow in Figure 7. In accordance with Step 3,
we start with the minimum output DMU and go clockwise along the B and A vectors up
to the first D vector which has normal vector components x1 ≥ 0 ∧ x2 > 0. Then, we return
to the minimum output DMU, and go anticlockwise along the C vectors up to the first D
vector with the normal vector components x1 > 0 ∧ x2 ≥ 0. The vectors within this range
comprise the A vectors with normal vector components x1 < 0 ∧ x2 ≥ 0 which are thus
projected to the x1y-plane with x2 = max(DMUj(x2)), j = 1, . . . , n, first, followed by the
projection to the x1x2-plane with y = 0, the two B vectors with normal vector components
x1 < 0 ∧ x2 < 0 which are projected to the x1x2-plane with y = 0, and, finally, the three C
vectors with normal vector components x1 ≥ 0 ∧ x2 < 0 which are projected to the x2y-plane
with x1 = max(DMUj(x1)), j = 1, . . . , n, followed by a projection to the x1x2-plane with y = 0.
Following Step 4, we now proceed to the maximum output DMU and go clockwise up to the
first vector which has already been assigned to one of the groups 3(a), 3(b), or 3(c). As can be
seen from Figure 7, this range is empty so that we remain at the maximum output DMU, that
is, the projection to the x2y-plane with x1 = max(DMUj(x1)), j = 1, . . . , n is not necessary in
this case. Then, we return to the maximum output DMU and go anticlockwise, in this case
along the four D vectors up to the A vector. Within this range, the D vectors are projected
onto the x1y-plane with x2 = max(DMUj(x2)), j = 1, . . . , n. Figure 8 visualizes the resulting
efficient hull, using the same letters as in Figure 7 to facilitate comparisons between the hull
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Figure 5: Convex hull, VRS.
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Figure 6: Fully efficient hull, VRS.

in the 2D diagram and the hull in the 3D diagram. In Step 5, the efficient hull is produced and
displayed in Figure 9.

To take CRS into consideration, we add the origin to the set of DMUs before we
proceed with the following Algorithm 1 CRS.

Step 1. Find the maximum x1x2-vector, defined as the vector with the components x1 =
max(DMUj(x1)), j = 1, . . . , n, and x2 = max(DMUj(x2)), j = 1, . . . , n, and compute the
unity normal vector for each DMU vector and for the maximum x1x2-vector. Step 1 is for
illustration purposes only, that is, to obtain a production surface which envelopes all DMUs.

Step 2. Compare the unity normal vector of each DMU vector with the unity normal vector
of the maximum x1x2-vector, and proceed as follows.

(a) If the unity normal vector component x1 of the DMU vector is smaller than
the unity normal vector component x1 of the maximum x1x2-vector, then scale
the respective DMU vector up to the plane parallel to the x1y-plane with x2 =
max(DMUj(x2)), j = 1, . . . , n.
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(b) If the unity normal vector component x1 of the DMU vector is larger than the
unity normal vector component x1 of the maximum x1x2-vector, then scale the
respective DMU vector up to the plane parallel to the x2y-plane with x1 =
max(DMUj(x1)), j = 1, . . . , n.

Step 3. Compute the convex hull with Quickhull for these vectors. Identify all triangles with
normal vector components x1 ≤ 0 ∧ x2 ≤ 0 ∧ y ≥ 0, and delete all other triangles.

Step 4. Project the remaining triangles to the x1x2-plane with y = 0, save the y-values in a
separate list, and delete all vectors

(a) inside the 2D hull and

(b) with normal vector components x1 > 0 ∧ x2 > 0.
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Step 5. Divide the remaining two vectors according to the type of the normal vector into the
x2-vector, adjacent to the x2-axis (i.e., with normal vector components x1 < 0 ∧ x2 > 0), and
the x1-vector, adjacent to the x1-axis (i.e., with normal vector components x1 > 0 ∧ x2 < 0).

Step 6. Add two new triangles by joining
(a) the origin (0,0,0), the point (0, x2 = max(DMUj(x2)), j = 1, . . . , n, 0), and the x2-

vector, inclusive the respective y-value saved according to Step 3;
(b) the origin (0,0,0), the point (x1 = max(DMUj(x1)), j = 1, . . . , n, 0, 0), and the x1-

vector, inclusive the respective y-value saved according to Step 3.

Step 7. Produce the efficient hull in a 3D diagram.

Figure 10 illustrates the result of Step 3. As we can see, each DMU vector is scaled up
to the maximum of x1 and x2, respectively, depending on whether the unity normal vector
component x1 of the respective DMU vector is smaller or larger than the unity normal vector
component x1 of the maximum x1x2-vector. The triangles with normal vector components
x1 ≤ 0 ∧ x2 ≤ 0 ∧ y ≥ 0 have already been deleted. In addition, Figure 10 reveals that the
so-derived part of the efficient hull consists of six different segments, including one weakly
efficient segment displayed as the triangle labeled B. This result is consistent with the CRS
isoquant portrayed in Figure 2 which consists of five fully efficient isoquant segments. In
Figure 11, we provide the results concerning the projection of the remaining triangles to the
x1x2-plane with y = 0 and the deletion of the vectors inside the 2D hull and with normal
vector components x1 > 0 ∧ x2 > 0. According to Step 5, we can identify the A vector as the
x2-vector as it is adjacent to the x2-axis and the B vector as the x1-vector as it is adjacent to the
x1-axis. According to Step 6, we now add two new triangles, one by joining the origin (0,0,0),
(0, x2 = max(DMUj(x2)), j = 1, . . . , n, 0) and the x2-vector as defined in Step 6(a) and the
other by joining the origin (0,0,0), (x1 = max(DMUj(x1)), j = 1, . . . , n, 0, 0) and the x1-vector
as defined in Step 6(b). The weakly efficient hull is indicated by the A and the two B triangles
in Figure 12. The resulting efficient hull is finally reproduced in Figure 13.

3.3. Algorithm 2: Producing Isoquants in a 2D Diagram

After having constructed the efficient hull for a set of DMUs using Algorithms 1 VRS and
1 CRS, respectively, we now proceed to the illustration of the extraction of the resulting
isoquants for different output levels under different RTS assumptions. In doing so, we
proceed as follows according to Algorithm 2.

Step 1. Define L as the level of the isoquant to be displayed.

Step 2. Cut off the efficient hull as obtained from Algorithm 1 VRS and/or 1 CRS at level L
by identifying all intersecting triangles of the efficient hull. Intersecting triangles are triangles
where

(a) at least one vertex satisfies y > Lwith the other two vertices satisfying y ≤ L or

(b) at least one vertex satisfies y < Lwith the other two vertices satisfying y ≥ L.

Step 3. For each intersecting triangle, compute the two intersection points at level L.

Step 4. Display the isoquant(s) in a 2D diagram.
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Following Algorithm 2, we now display four different isoquants, one for the output
level y = 1 under VRS and CRS (see Figure 14) as well as for the output level y = 2, 5
assuming VRS and CRS (see Figure 15). As can be seen from Figure 14, the CRS isoquant in
the interval [2, 5; 0, 5] seems smooth rather than piecewise linear in contrast to the isoquant
portrayed in Figure 2. For that reason, we enlarge that particular interval for the CRS isoquant
to facilitate comparisons. As can be seen in Figure 16, the relevant isoquant consists of seven
piecewise linear segments in correspondence with the isoquant displayed in Figure 2.

The algorithms introduced above can also be used to visualize the derivation of output
isoquants given the two outputs one input case as illustrated in Figure 17.

4. Concluding Remarks

Deriving a production frontier based on assumptions concerning the production possibility
set rather than a priori specifying a functional relationship between inputs and outputs to
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perform efficiency comparisons among different DMUs has attracted considerable attention
during the last decades. Most of the ideas inherent in nonparametric efficiency measurement,
as well as the results of nonparametric efficiency measurement, have been explained
using different types of curves, mostly restricted to illustrations in 2D diagrams. In this
contribution, we present algorithms which can be used to determine and visualize a
production frontier in the form of an efficient hull in a 3D diagram in the case where multiple
DMUs use two inputs to produce a single output. The algorithms introduced can easily be
adjusted to the two outputs single input case. In deriving efficient production surfaces for
the case of CRS as well as VRS, we fall back on the Quickhull algorithm rather than solving
a DEA model. Additionally, based on the so-constructed hulls, we introduce an algorithm to
directly derive isoquants for particular output (input) levels and CRS and VRS as well. The
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next steps could be the implementation of the above algorithms in available DEA software
programs and the optimization of computer speed in producing efficient production surfaces
and isoquants.
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