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An interactive multiobjective fuzzy inventory problem with two resource constraints is presented
in this paper. The cost parameters and index parameters, the storage space, the budgetary cost, and
the objective and constraint goals are imprecise in nature. These parameters and objective goals
are quantified by linear/nonlinear membership functions. A compromise solution is obtained by
geometric programmingmethod. If the decision maker is not satisfied with this result, he/she may
try to update the current solution to his/her satisfactory solution. In this way we implement man-
machine interactive procedure to solve the problem through geometric programming method.

1. Introduction

In formulating an inventory problem, various parameters involve in the objective functions
and constraints which are assigned by the decision maker (DM) from past experiences. But
in real world situation, it is observed that the possible values of the parameters are often
imprecise and ambiguous to the DM. In different situations, different circumstances, it takes
different values. So, it is difficult to assign the precise values of the parameters. With this
observation, it would be certainly more appropriate to interpret the DM’s understanding of
the parameters as fuzzy numerical data which can be represented by fuzzy numbers. In the
conventional approaches the objective goals are taken as deterministic. The objective goals,
however, may not be exactly known. The target may vary to some extent, which is then
represented by the tolerance value. Due to inexactness of the objective goals, the objective
functions may be characterized by different types of membership functions.

In a multiobjective nonlinear programming (MONLP) problem DM plays an impor-
tant role to achieve his/her optimum goal. He/she has every right to choose or rechoose
the suitable set of membership functions for different objective functions. He/she decides
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the types of fuzzy parameters and also free to assign the reference values of each objective
functions/membership functions for the desired optimal solutions. In this way an interactive
procedure can be established with the DM. Sakawa and Yano [1, 2] proposed a new technique
to solve such type of problems.

Zadeh [3] first introduced the concept of fuzzy set theory. Later on, Bellman and Zadeh
[4] used the fuzzy set theory to the decision-making problem. Fuzzy set theory now hasmade
an entry into the inventory control systems. Park [5] examined the EOQ formula in the fuzzy
set theoretic perspective associating the fuzziness with the cost data. Roy andMaiti [6] solved
a single objective fuzzy EOQmodel using GP technique. Ishibuchi and Tanaka [7] developed
a concept for optimization of multiobjective-programming problem with interval objective
function.

Such type of nonlinear programming (NLP) problem can be solved by geometric
programming (GP) problem. It has a very popular and effective use to solve many real-
life decision-making problem. Duffin et al. [8] first developed the idea on GP method.
Kotchenberger [9] was the first to use it in an inventory problem. Later on, Worral and Hall
[10] analysed a multi-item inventory problem with several constraints. Abou-El-Ata et al.
[11] and Jung and Klein [12] developed single item inventory problems and solved by
GP method. Mandal et al. [13] used GP technique in multi-item inventory problem and
compared with the nonlinear programming (NLP) problem. Recently, inventory problems
in fuzzy environment were formulated and solved by GP technique by Liu [14] and
Sadjadi et al. [15].

In this paper, we formulate a multiobjective inventory problem. The manufacturer
wants to minimize the total average cost which includes the production cost, set up cost and
holding cost. He/she also wants to minimize the number of orders to supply the finished
goods to different shops/wholesalers. The problem is formulated under total budgetary cost
and total storage space capacity restrictions. The parameters involve in themodel are taken as
different types of fuzzy numbers. The fuzzy numbers are described by linear/nonlinear types
of membership functions which will be selected by the DM. Interactive min-max procedure is
followed up by two different ways. First, we solve a multiobjective interactive programming
with crisp goal by GP method. Next, we proceed with fuzzy goal through GP method. The
DMmay update the solution until his/her satisfaction.

2. Definitions and Basic Concepts

2.1. Fuzzy Number and Its Membership Function

A fuzzy number ˜A is a fuzzy set of the real line ˜Awhose membership function μ
˜A(x) has the

following characteristics with ∞ < a1 ≤ a2 ≤ a3 < ∞:

μ
˜A(x) =
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⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

μL
˜A
(x), for a1 ≤ x ≤ a2,

1, for x = a2,

μR
˜A
(x), for a2 ≤ x ≤ a3,

0, for otherwise,

(2.1)

where μL
˜A
(x) : [a1, a2] → [0, 1] is continuous and strictly increasing; μR

˜A
(x) : [a2, a3] → [0, 1]

is continuous and strictly decreasing.
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The general shape of a fuzzy number following the above definition is known as
triangular-shaped fuzzy number (TiFN) (Buckley and Eslami [16]).

2.2. α-Level Set

The α-level of a fuzzy number ˜A is defined as a crisp set Aα = [x : μ
˜A(x) ≥ α, x ∈ X],

where α ∈ [0, 1]. Aα is a nonempty bounded closed interval contained in X and it can
be denoted by Aα = [AL

α, AR
α ]. AL

α and AR
α are the lower and upper bounds of the closed

interval, respectively.

2.3. Multiobjective Nonlinear Programming (MONLP)

The MONLP problem is represented as the following vector minimization problem (Sakawa
[17]):

Min f(x;C) =
(

f1(x;C1), f2(x;C2), . . . , fm(x;Cm)
)T
, (2.2)

subject to x ∈ X(A,B) = {x ∈ Rn | gj(x;Aj) ≤ Bj, j = 1, 2, . . . , k}, where m(≥ 2) objective
functions fr : Rn → R and x ∈ Rn.

Note. When m = 1 problem (2.2) reduces to a single objective nonlinear programming
problem.

In general, the parameters in objectives and constraints are considered as crisp
numbers. But there is some ambiguity to express the parameters precisely. So, it will be more
realistic, if the parameters are considered as fuzzy numbers. The multiobjective nonlinear
programming with fuzzy parameters (MONLP-FP) is described as

Min f
(

x; ˜C
)

=
(

f1
(

x; ˜C1

)

, f2
(

x; ˜C2

)

, . . . , fm
(

x; ˜Cm

))T
, (2.3)

subject to x ∈ X( ˜A, ˜B) = {x ∈ Rn | gj(x, ˜Aj) ≤ ˜Bj, j = 1, 2, . . . , k}, where ˜Cr =
( ˜Cr1, ˜Cr2, . . . , ˜Crpr ), ˜Aj = ( ˜Aj1, ˜Aj2, . . . , ˜Ajqj ) and ˜Bj represent, respectively, fuzzy parameters
involved in the objective functions fr(x, ˜Cr) (r = 1, 2, . . . , m) and the constraint functions
gj(x, ˜Aj) (j = 1, 2, . . . , k). These fuzzy parameters, which reflect the expert’s ambiguous
understanding of the nature of the parameters in the problem formulation process are
assumed to be characterized as fuzzy numbers.

We now assume that ˜Crt, ˜Ajs, and ˜Bj in theMONLP-FP (2.3) are fuzzy numbers whose
membership functions are μ

˜Crt
(crt), μ ˜Ajs

(ajs), and μ
˜Bj
(bj) (r = 1, 2, . . . , m; t = 1, 2, . . . , pr ; j =

1, 2, . . . , k; s = 1, 2, . . . , qj), respectively.
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Table 1: α-level interval of coefficient parameters.

Br μL
˜M
(x) Br μR

˜M
(x) (˜Mα) = [˜ML

α, ˜M
R
α ]

L: 1 − (M2 − x)/(M2 −M1) L: 1 − (x −M2)/(M3 −M2) [M1 + α(M2 −M1),M3 − α(M3 −M2)]

L: 1 − (M2 − x)/(M2 −M1) P: 1 − ((x −M2)/(M3 −M2))
2
[M1+α(M2−M1), M2+

√
1 − α(M3−M2)]

L: 1 − (M2 − x)/(M2 −M1) E: α2(1 − e−β2((M3−x)/(M3−M2))) [M1 + α(M2 −M1), M3 + ((M3 −
M2)/β2) log(1 − α/α2)]

P: 1 − ((M2 − x)/(M2 −M1))
2 L: 1 − (x −M2)/(M3 −M2) [M2−

√
1 − α(M2−M1),M3−α(M3−M2)]

P: 1 − ((M2 − x)/(M2 −M1))
2 P: 1 − ((x −M2)/(M3 −M2))

2 [M2 −
√
1 − α(M2 −M1), M2 +√
1 − α(M3 −M2)]

P: 1 − ((M2 − x)/(M2 −M1))
2 E: α2(1 − e−β2((M3−x)/(M3−M2))) [M2 −

√
1 − α(M2 −M1),M3 + ((M3 −

M2)/β2) log(1 − α/α2)]

E: α1(1 − e−β1((x−M1)/((M2−M1))) L: 1 − (x −M2)/(M3 −M2) [M1 − ((M2 −M1)/β1) log(1 −
α/α1),M3 − α(M3 −M2)]

E: α1(1 − e−β1((x−M1)/(M2−M1)) ) P: 1 − ((x −M2)/(M3 −M2))
2 [M1 − ((M2 −M1)/β1) log(1 −

α/α1),M2 +
√
1 − α(M3 −M2)]

E: α1(1 − e−β1((x−M1)/(M2−M1))) E: α2(1 − e−β2((M3−x)/(M3−M2))) [M1−((M2−M1)/β1) log(1−α/α1),M3+
((M3 −M2)/β2) log(1 − α/α2)]

L, P, and E stand for linear, parabolic, and exponential membership functions, respectively, α1, α2 > 1; β1, β2 > 0; 0 < α <
1.

The α-level set of the fuzzy numbers ˜Crt, (r = 1, 2, . . . , m; t = 1, 2, . . . , pr) and ˜Ajs, (j =
1, 2, . . . , k; s = 1, 2, . . . , qj) are defined as the ordinary set ( ˜A, ˜B, ˜C)α for which the degree of
their membership functions exceeds the level α:

(

˜A, ˜B, ˜C
)

α
=
{

(a, b, c) | μ
˜Art
(art) ≥ α, r = 1, 2, . . . , m; t = 1, 2, . . . , pr ;

μ
˜Bj

(

bj
) ≥ α, j = 1, 2, . . . , k;

μ
˜Cjs

(

cjs
) ≥ α, j = 1, 2, . . . , k, s = 1, 2, . . . , qj

}

.

(2.4)

The α-level sets have the following property:

α1 ≤ α2 ⇔
(

˜A, ˜B, ˜C
)

α1
⊇
(

˜A, ˜B, ˜C
)

α2
. (2.5)

( ˜A, ˜B, ˜C)α are the nonempty bounded closed intervals contained in X and it can be defined

as ( ˜A, ˜B, ˜C)α = [( ˜A, ˜B, ˜C)
L

α, ( ˜A, ˜B, ˜C)
R

α ], where ( ˜A, ˜B, ˜C)
L

α and ( ˜A, ˜B, ˜C)
R

α are the lower and
upper bounds of ( ˜A, ˜B, ˜C)α and can be obtained from the left branch and right branch of the
membership functions μ

˜Ajs
(ajs), μ ˜Bj

(bj), and μ
˜Crt
(crt).

˜Ajs, ˜Crt are TiFNs with different types of left and right branch of the membership
functions. They may be of linear, parabolic, exponential, and so forth, type membership
functions (Table 1).
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The constraint goals (Bj), j = 1, 2, . . . , k may be more realistic if it can be taken a TiFN
with only right membership functions called right TiFN such as ˜Br1

j = (Bj1, Bj1, Bj2). The
corresponding membership function is

μ
˜Bj
(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, for x ≤ Bj1,

μR
Bj
(x), for Bj1 ≤ x ≤ Bj2,

0, for x ≥ Bj2.

(2.6)

The right branch μR
Bj
(x) is monotone decreasing continuous function in x ∈

[Bj1, Bj2] which may be linear, parabolic, or exponential type membership functions. The
corresponding α-level interval is

L: [Bj1, Bj2 − α(Bj2 − Bj1)],

P: [Bj1, Bj1 +
√
1 − α(Bj2 − Bj1)],

E: [Bj1, Bj2 + ((Bj2 − Bj1)/β2) log(1 − (α/α2)].

Now suppose that the DM decides that the degree of all of the membership functions
of the fuzzy numbers involved in the MONLP-FP should be greater than or equal to some
value of α. Then for such a degree α, the α-MONLP-FP can be interpreted as the following
crisp multiobjective linear programming problem which depends on the coefficient vector
(a, b, c) ∈ (A,B,C)α:

Min
(

f1(x, c1), f2(x, c2), . . . , fm(x, cm)
)T
,

subject to x ∈ X(a, b) =
{

x ∈ Rn | gj
(

x, aj

) ≤ bj , j = 1, 2, . . . , k; x ≥ 0
}

.
(2.7)

Observe that there exists an infinite number of such problem (2.7) depending on the
coefficient vector (a, b, c) ∈ ( ˜A, ˜B, ˜C)α, and the values of (a, b, c) are arbitrary for any
(a, b, c) ∈ ( ˜A, ˜B, ˜C)α in the sense that the degree of all of the membership functions in the
problem (2.7) exceeds the level α ∈ [0, 1]. However, if possible, it would be desirable for the
DM to choose (a, b, c) ∈ (A,B,C)α in the problem (2.7) to minimize the objective functions
under the constraints. From such a point of view, for a certain degree α, it seems to be quite
natural to have the α-MONLP-FP as the following MONLP problem (2.7):

Min
(

f1(x, c1), f2(x, c2), . . . , fm(x, cm)
)T
,

subject to x ∈ X(a, b) =
{

x ∈ Rn | gj
(

x, aj

) ≤ bj , j = 1, 2, . . . , k;x ≥ 0
}

,

(a, b, c) ∈
(

˜A, ˜B, ˜C
)

α
.

(2.8)
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On the basis of the α-level sets of the fuzzy numbers, we can introduce the concept of
an Pareto optimal solution to the α-MONLP.

3. Interactive Min-Max Method

3.1. Interactive Nonlinear Programming with Fuzzy Parameter

To obtain the optimal solution, the DM is asked to specify the degree α of the α-level set
and the reference levels of achievement of the objective functions. For the DM’s degree α

and reference levels fr, r = 1, 2, . . . , m the corresponding optimal solution, which is, in the
min-max sense, nearest to the requirement (or better than that of the reference levels) are
attainable, is obtained by solving the following min-max problem:

Min max
r=1,2,...,m

(

fr(x, cr) − fr

)

,

subject to (a, b, c) ∈ (A,B,C)α, x ∈ X(a, b),

(3.1)

or equivalently

Min v,

subject to fr(x, cr) − fr ≤ v, r = 1, 2, . . . , m,

(a, b, c) ∈ (A,B,C)α, x ∈ X(a, b).

(3.2)

3.2. Interactive Fuzzy Nonlinear Programming with Fuzzy Goals

Considering the imprecise nature of the DM’s judgements, it is quite natural to assume that
the DM may have imprecise (or fuzzy) goals for each of the objective functions in the α-
MONLP. In a minimization problem, a fuzzy goal stated by the DM may have to achieve
“substantially less than or equal to some value specified.” This type of statement can be
quantified by eliciting a corresponding membership function.

In order to elicit a membership function μr(fr(x, cr)) from the DM for each of the
objective functions fr(x, cr) in the α-MONLP, we first calculate the individual minimum fmin

r

and maximum fmax
r of each objective function fr(x, cr) under the given constraints for α = 0

and α = 1. By taking into account the calculated individual minimum and maximum of each
objective function for α = 0 and α = 1 together with the rate of increase of membership
satisfaction, the DMmay be able to determine a subjective membership function μr(fr(x, cr))
which is a strictly monotone decreasing function with respect to fr(x, cr). For example, two
nonlinear membership functions are shown below.
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3.2.1. Parabolic Membership Function (Type 1)

For each of the objective functions, the corresponding quadratic membership functions are

μfr

(

fr(x, cr)
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1 for fr(x, cr) < f1
r ,

mr(x, cr) = 1 −
(

fr(x, cr) − f1
r

pr

)2

, for f1
r ≤ fr(x, cr) ≤ f0

r ,

0 for fr(x, cr) > f0
r ,

for r = 1, 2, . . . , m,

(3.3)

where f1
r and f0

r are to be chosen such that fmin
r ≤ f1

r ≤ f0
r ≤ fmax

r and pr(= f0
r − f1

r ) is the
tolerance of the r-th objective function fr(x, cr).

3.2.2. Exponential Membership Function (Type 2)

For each objective function, the corresponding exponential membership function is as
follows:

μfr

(

fr(x, cr)
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 for fr(x, cr) < f1
r ,

mr(x, cr) = αr

[

1 − e−βr((fr(x,cr)−f1
r )/pr)

]

, for f1
r ≤ fr(x, cr) ≤ f0

r ,

0 for fr(x, cr) > f0
r ,

for r = 1, 2, . . . , m,

(3.4)

The constants αr > 1, βr > 0 can be determined by asking the DM to specify the three
points f1

r , f0.5
r , and f0

r such that fmin
r ≤ f1

r ≤ f0
r ≤ fmax

r and pr(= f0
r − f1

r ) are the tolerance of
the r-th objective function fr(x, cr).

In a minimization problem, DM has a target goal f1
r (x, cr)with a flexibility pr . Having

determined the membership functions for each of the objective functions, to generate a
candidate for the satisficing solution which is also Pareto optimal, the DM is asked to specify
the degree α of the α-level set and the reference levels of achievement of the membership
functions called the reference membership values. Observe that the idea of the reference
membership values (e.g., Sakawa and Yano [1, 2]) can be viewed as an obvious extension of
the idea of the reference point. For the DM’s degree α and the reference membership values
μr, (r = 1, 2, . . . , m) the following min-max problem is solved to generate the Pareto optimal
solution, which is, in the min-max sense, nearest to the requirement or better than that if the
reference membership values are attainable

Min max
r=1,2,...,m

(

μr − μr

(

fr(x, cr)
))

,

subject to (a, b, c) ∈ (A,B,C)α, x ∈ X(a, b),
(3.5)
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which is equivalent to

Min ν,

subject to μr − μr

(

fr(x, cr)
) ≤ ν, r = 1, 2, . . . , m,

(a, b, c) ∈ (A,B,C)α, x ∈ X(a, b).

(3.6)

The DM will select the membership functions for the corresponding objective
functions from Type 1 and Type 2 membership functions. Then the above primal function
can be solved by GP method as it has been expressed in signomial form and obtain optimal
solution of ν says ν∗:

Now the DM selects his most important objective function from among the objective
functions fj(xj), (j = 1, 2, . . . , m). If it is the j-th objective, the following posynomial
programming problem is solved by GP for ν = ν∗:

Min fj
(

x, cj
)

,

subject to fr(x, cr) ≤ m−1
r

(

μr − ν
)

, r, j = 1, 2, . . . , m
(

r /= j
)

,

(a, b, c) ∈ (A,B,C)α, x ∈ X(a, b),

(3.7)

The problem is now solved by GP method and optimal solution is then examined by
following Pareto optimality test by Wendell and Lee [18].

Pareto Optimality Test

Let x∗ be the optimal decision vector which is obtained from (3.7),
solve the problem

Min V =
m
∑

pt
r=1

fr(x, cr),

subject to fr(x, cr) ≤ f∗
r (x

∗, cr), ∀r = 1, 2, . . . , m,

(a, b, c) ∈ (A,B,C)α, x ∈ X(a, b).

(3.8)

4. Interactive Min-Max Method in Inventory Problem

The following notations and assumptions are used in developing a multiobjective multi-item
inventory model.

Notations

For the i(= 1, 2, . . . , n)th item,

Di = demand per unit item,

Qi = order quantity (decision variable), (Q ≡ (Q1, Q2, . . . , Qn)
T ),
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C0i = unit cost of production (decision variable), (C0 ≡ (C01, C02, . . . , C0n)
T ),

c1i = inventory carrying cost per item,

c3i = set up cost per cycle,

wi = storage area per each item,

C = total budgetary cost,

W = total available storage area,

TC(C0, Q) = total average inventory cost function,

NO(C0, Q) = total number of order function,

SS(Q) = storage space function,

BC(C0, Q) = budgetary cost function.

Assumptions. (1) Production is instantaneous with zero lead-time,
(2) when the demand of an item increases then the total purchasing cost spread all

over the items and hence the demand of an item is inversely proportional to unit cost of
production, that is,Di = aiC

−bi
0i since the purchasing cost and the demand of an item are non-

negative. We also require that the scaling constant ai > 0, and index parameter bi < 1 as C0i

and Di are inversely related to each other.

4.1. Problem Formulation

A wholesaling organisation purchase and stocks some commodities in his/her godown.
He/she then supplies that commodities to some retailers. In such environment, the
wholesaler always tries to minimize the total average cost which includes the purchasing
cost, set-up and cost, and holding cost. His/her aim is also to minimize the total numbers of
order supply to the retailer.

For the i(= 1, 2, . . . , n)th item, the inventory costs over the time cycle Ti = Qi/Di is
purchasing cost = C0iQi, set-upcost = c3i, holding cost = c1i(Qi/2)Ti.

Total average inventory cost TC(C0, Q) = average purchasing cost + average set-up
cost + average holding cost

=
n

∑

pt
i=1

[C0iQi + c3i + c1i(Qi/2)Ti]
Ti

=
n

∑

pt
i=1

[

aiC
1−bi
0i +

aic3iC
−bi
0i

Qi
+
c1iQi

2

]

.

(4.1)

Total number of orders NO(C0, Q) = sum of orders of all items

=
n

∑

pt
i=1

Di

Qi
=

n
∑

pt
i=1

aiC
−bi
0i

Qi
. (4.2)
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Total budgetary cost BC(C0, Q) = sum of purchasing cost of all items

=
n

∑

pt
i=1

C0iQi. (4.3)

Total storage space SS(Q) = sum of storage space of all items

=
n

∑

pt
i=1

wiQi. (4.4)

In formulating the inventory models, the effect of constraints like total budgetary cost
and total storage space cannot be unlimited, they must have restrictions.

Crisp Model

Under these circumstances the multiobjective inventory problem is then written as

Min TC(C0, Q) =
n

∑

pt
i=1

[

aiC
1−bi
0i +

aic3iC
−bi
0i

Qi
+
c1iQi

2

]

,

Min NO(C0, Q) =
n

∑

pt
i=1

aiC
−bi
0i

Qi
,

subject to BC(C0, Q) ≤ C,

SS(Q) ≤ W,

and boundary conditions Cl
0i ≤ C0i ≤ Cu

0i, Ql
i ≤ Qi ≤ Qu

i ,

i = 1, 2, . . . , n.

(4.5)

Fuzzy Model

In reality, the inventory costs such as carrying cost (c1i), set-up cost (c3i), the index parameter
(bi), storage area per item wi, total budgetary cost (C), and total available storage area
(W) are not exactly known previously. They may fluctuate within some range and can be
expressed as a fuzzy number

Min ˜TC(C0, Q) =
n

∑

pt
i=1

⎡

⎣aiC
1−˜bi
0i +

aic̃3iC
−˜bi
0i

Qi
+
c̃1iQi

2

⎤

⎦,

Min ˜NO(C0, Q) =
n

∑

pt
i=1

aiC
−˜bi
0i

Qi
,
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subject to ˜BC(C0, Q) =
n

∑

pt
i=1

C0iQi ≤ ˜C,

˜SS(Q) =
n

∑

pt
i=1

w̃iQi ≤ ˜W,

and boundary conditions Cl
0i ≤ C0i ≤ Cu

0i, Ql
i ≤ Qi ≤ Qu

i ,

i = 1, 2, . . . , n,

(4.6)

where c̃1i = (c11i, c12i, c13i), c̃3i = (c31i, c32i, c33i), ˜bi = (b1i, b2i, b3i), ˜Cr1 = (C1, C1, C2),
w̃i = (w1i, w2i, w3i), ˜Wr1 = (W1, W1, W2).

The α-level interval of these fuzzy numbers are represented by
(c̃1i)α = [cL1iα, c

R
1iα], (c̃3i)α = [cL3iα, c

R
3iα], (˜bi)α = [bLiα, bRiα], ( ˜C

r1)α = [CL
α, C

R
α ],(w̃i)α =

[wL
iα, w

R
iα], and (˜Wr1)α = [WL

α , W
R
α ].

For any given α ∈ [0, 1], the problem (4.6) is then reduced to

Min TCL
α(C0, Q) =

n
∑

pt
i=1

⎡

⎣aiC
1−bRiα
0i +

aic
L
3iαC

−bRiα
0i

Qi
+
cL1iαQi

2

⎤

⎦,

Min NOL
α(C0, Q) =

n
∑

pt
i=1

aiC
−bRiα
0i

Qi
,

subject to
n

∑

pt
i=1

C0iQi ≤ Cr1R
α ,

n
∑

pt
i=1

wL
iαQi ≤ Wr1R

α ,

Cl
0i ≤ C0i ≤ Cu

0i, Ql
i ≤ Qi ≤ Qu

i , (for i = 1, 2, . . . , n).

(4.7)

4.2. Interactive Geometric Programming (IGP) Technique with
Fuzzy Parameters

Following Section 3, the problem (3.2) can be written as

Min v,

subject to TCL
α(C0, Q) − TC ≤ v,

NOL
α(C0, Q) −NO ≤ v,

n
∑

pt
i=1

C0iQi ≤ Cr1R
α ,
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n
∑

pt
i=1

wL
iαQi ≤ Wr1R

α ,

Cl
0i ≤ C0i ≤ Cu

0i, Ql
i ≤ Qi ≤ Qu

i , i = 1, 2, . . . , n,

v > 0.

(4.8)

where TC and NO are the reference values of TCL
α(C0, Q) and NOL

α(C0, Q), respectively.
For any given α ∈ [0, 1], the problem (4.8) is equivalent to the standard form of primal

GP problem

Min v,

subject to
1

TC

⎡

⎣

n
∑

pt
i=1

⎛

⎝aiC
1−bRiα
0i +

aic
L
3iαC

−bRiα
0i

Qi
+
cL1iαQi

2

⎞

⎠ − v

⎤

⎦ ≤ 1,

1

NO

⎡

⎣

n
∑

pt
i=1

aiC
−bRiα
0i

Qi
− v

⎤

⎦ ≤ 1,

1

Cr1R
α

n
∑

pt
i=1

C0iQi ≤ 1,

1

Wr1R
α

n
∑

pt
i=1

wL
iαQi ≤ 1,

Cl
0i ≤ C0i ≤ Cu

0i, Ql
i ≤ Qi ≤ Qu

i , (for i = 1, 2, . . . , n),

v > 0.

(4.9)

Problem (4.9) is a constrained signomial problem with 6n+ 3− (2n+ 1) = 4n+ 2 degree
of difficulty. Following Kuester and Mize [19], the problem is solved to obtain the Pareto-
optimal solutions for different choices of α and membership functions of fuzzy parameters
by DM.

4.3. Interactive Fuzzy Geometric Programming (IFGP) Technique with
Fuzzy Parameters and Fuzzy Goals

After determining the different linear/nonlinear membership functions for each of the
objective functions proposed by Bellman and Zadeh [4] and following Zimmermann [20]
the given problem can be formulated as

Min ν,

subject to μTC − μTC

(

TCL
α(C0, Q)

)

≤ ν,
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μNO − μNO

(

NOL
α(C0, Q)

)

≤ ν,

n
∑

pt
i=1

C0iQi ≤ Cr1R
α ,

n
∑

pt
i=1

wL
iαQi ≤ Wr1R

α ,

Cl
0i ≤ C0i ≤ Cu

0i, Ql
i ≤ Qi ≤ Qu

i , ν > 0.

(4.10)

For any given α ∈ [0, 1] the problem (4.10) is equivalent to the standard form of primal GP
problem

Min ν,

subject to
1
ν
μTC − 1

ν
μTC

(

TCL
α(C0, Q)

)

≤ 1,

1
ν
μNO − 1

ν
μNO

(

NOL
α(C0, Q)

)

≤ 1,

1

Cr1R
α

n
∑

pt
i=1

C0iQi ≤ 1,

1

Wr1R
α

n
∑

pt
i=1

wL
iαQi ≤ 1,

Cl
0i ≤ C0i ≤ Cu

0i, Ql
i ≤ Qi ≤ Qu

i , ν > 0.

(4.11)

Primal GP (4.11) may be solved by Fortran 77 with software code (Kuester and Mize
[19]). Following (3.7) and (3.8), we get the Pareto optimal solution.

5. Numerical Example

A contractor undertakes to supply two types of goods to different distributors. The minimum
storage space requirement for the goods are 600m2. He can also arrange up to 640m2 storage
space for the goods if necessary. The contractor invests $220 for his business with a maximum
limit up to $250. From the past experience it was found that the holding cost of item-I is near
about $1.5 but never less than $1.2 and above $2 (i.e., c̃11 ≡ $(1.2, 1.5, 2)). Similarly, holding
cost of item-II is c̃12 ≡ $(1.5, 1.8, 2.3). The set-up cost and the index parameter of purchasing
cost of each item are c̃31 ≡ $(100, 115, 130), c̃32 ≡ $(130, 145, 160); ˜b1 ≡ (0.2, 0.3, 0.45) and
˜b2 ≡ (0.5, 0.65, 0.9), respectively. The storage spaces of each item arew1 ≡ (1.4, 1.8, 2.2)m2 and
w2 ≡ (2.6, 3, 3.5)m2, respectively. It is also recorded from past that the scaling constant of the
purchasing cost of each item are 1000(= a1) and 1120(= a2), respectively.

The contractor wants to find the purchasing cost and inventory level of each item so
as to minimize the total average cost and total number of order supply to the distributors.

The boundary level of purchasing cost and inventory level are given in Table 2.
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Table 2: Boundary level of decision variables (C0, Q).

i
C0i ($) Qi

Lower limit Upper limit Lower limit Upper limit
1 0.2 1.5 80 250
2 0.6 2.5 80 180

INPUT THE VALUE OF α

= 0.7

DO YOU WANT LIST OF MEMBERSHIP FUNCTIONS FOR FUZZY PARAME-
TERS?

= YES

(1) LINEAR (L) (2) PARABOLIC (P) (3) EXPONENTIAL (E)

INPUT THE LIST OF MEMBERSHIP FUNCTIONS FOR LEFT BRANCH AND
RIGHT BRANCH OF THE FUZZY PARAMETERS:

(LEFT AND RIGHT BRANCH OF FUZZY PARAMETERS)
BRANCH c11 c12 c31 c32 b1 b2 w1 w2 C W
LEFT P E E P L L L E P E
RIGHT P P L E P L E E L P

INPUT THE VALUES OF (α1, β1) FOR c12, c31, w2,W

c12 c31 w2 W
(α1, β1) (1.4, 0.6) (1.2, 1.6) (2.2, 1.2) (1.3, 0.6)

INPUT THE VALUES OF (α2, β2) FOR c32, w1, w2

c32 w1 w2

(α2, β2) (1.5, 0.2) (1.9, 0.7) (2.4, 1.3)

Solution with IGP

CALCULATION OF MAXIMUM AND MINIMUM VALUES OF OBJECTIVE
FUNCTIONS

(INDIVIDUAL MINIMUM AND MAXIMUM)
OBJECTIVE FUNCTIONS MINIMUM MAXIMUM
TC($) 3861.849 6316.976
NO 15.17298 43.39745

CHOICE THE REFERENCE VALUE OF TC

= 3860

CHOICE THE REFERENCE VALUE OFNO

= 13

CALCULATION OF OPTIMAL SOLUTION
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i C∗
0i($) Q∗

i TC∗($) NO∗ v∗

1 0.2436070 208.4311 3862.605 15.60456 2.604558
2 1.788949 99.62540

ARE YOU SATISFIED WITH THE CURRENT OPTIMAL SOLUTION (OTHER-
WISE RECHOICE THE VALUE α OR MEMBERSHIP FUNCTIONS OF FUZZY
PARAMETERS)?

= YES SATISFIED.

Solution with IFGP

DO YOU WANT LIST OF MEMBERSHIP FUNCTIONS?

= YES

LIST OF MEMBERSHIP FUNCTIONS

(1) PARABOLIC (2) EXPONENTIAL

INPUT MEMBERSHIP FUNCTION TYPE FOR 1ST OBJECTIVE:

= 2

INPUT TWO POINTS TC1, TC0

= 3861.849, 6316.976

INPUT MEMBERSHIP FUNCTION TYPE FOR 2ND OBJECTIVE:

= 1

INPUT TWO POINTS NO1, NO0

= 15.17298, 43.39745

INPUT μTC μNO

= 0.99, 0.988

ν-MAX CALCULATION:

OPTIMAL VALUE OF ν = 0.004781238

CHOICE MOST IMPORTANT OBJECTIVE FUNCTION TC(C0, Q), NO(C0, Q)

= TC(C0, Q)

MINIMIZE TC(C0, Q)

i C∗
0i($) Q∗

i TC∗($) NO∗

1 0.2350434 205.9959 3861.849 15.71666
2 1.785726 101.1253

PARETO OPTIMALITY TEST

i C∗
0i($) Q∗

i TC∗($) NO∗

1 0.2351641 206.0291 3861.849 15.71500
2 1.7857650 101.1048

ARE YOU SATISFIED WITH THE CURRENT PARETO OPTIMAL SOLUTION
(OTHERWISE RECHOICE THE VALUE OF α OR THE MEMBERSHIP FUNC-
TIONS OF FUZZY PARAMETERS OR OBJECTIVE FUNCTIONS AND PROCEED
AS BEFORE)?

= YES SATISFIED.
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6. Conclusion

In a real-life problem, it is not always possible to achieve the optimum goal set by a DM.
Depending upon the constraints and unavoidable, unthinkable and compelling conditions
prevailed at that particular time, a DM has to comprise and to be satisfied with a near
optimum (Pareto-optimal) solution for the decision. This phenomenon is more prevalent
when there is more than one objective goal for a DM. But, the usual mathematical pro-
gramming methods in both crisp and fuzzy environments evaluate only one best possible so-
lution against a problem. Moreover, GP method is the most appropriate method applied to
engineering design problems. Nowadays, it is also applied to solve the inventory control
problems.

In this paper, for the first time GP methods in an imprecise environment have been
used to obtain a Pareto-optimal solution for most suitable choice of the DM. In this connec-
tion, we introduce here a man-machine interaction for the DM. This may be easily applied
to other inventory models with dynamic demand, quantity discount, and so forth. The
method can be easily expanded to stochastic, fuzzy-stochastic environments of inventory
models.
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