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This paper focuses on real-time nonpreemptive multiprocessor scheduling with precedence and
strict periodicity constraints. Since this problem is NP-hard, there exist several approaches to
resolve it. In addition, because of periodicity constraints our problem stands for a decision problem
which consists in determining if, a solution exists or not. Therefore, the first criterion on which
the proposed heuristic is evaluated is its schedulability. Then, the second criterion on which
the proposed heuristic is evaluated is its execution time. Hence, we performed a schedulability
analysis which leads to a necessary and sufficient schedulability condition for determining
whether a task satisfies its precedence and periodicity constraints on a processor where others
tasks have already been scheduled. We also present two multiperiodic applications.

1. Introduction

Hard Real-Time problematic is to maintain temporal and functional achievement of systems
execution. Hard real-time scheduling has been concerned with providing guarantees for
temporal feasibility of task execution whatever the situations. A scheduling algorithm is
defined as a set of rules defining the execution of tasks at system run-time. It is provided
thanks to a schedulability analysis, which determines, whether a set of tasks with parameters
describing their temporal behavior will meet their temporal constraints if executed at run-
time according to the rules of the scheduling algorithm. The result of such a test is typically
a yes or a no answer indicating whether a solution will be found or not. These schemes and
tests demand precise assumptions about task properties, which hold for the entire system
lifetime.

In order to assist the designers, scientists at INRIA proposed a methodology
called AAA (Algorithm Architecture Adequation) and its associated system-level CAD
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software called SynDEx. They cover the whole development cycle, from the specification
of the application functions, to their implementation running in real-time on a distributed
architecture composed of processors and specific integrated circuits. AAA/SynDEx provides
a formal framework based on graphs and graph transformation. On the one hand, they
are used to specify the functions of the applications, the distributed resources in terms of
processors, and/or specific integrated circuit and communication media, the nonfunctional
requirements such as temporal criteria. On the other hand, they assist the designer in
implementing the functions onto the resources while satisfying timing requirements and,
as much as possible, minimizing the resources. This is achieved through a graphical
environment which allows the user to explore manually and/or automatically, using
optimization heuristics, the design space solutions. Exploration is mainly carried out through
real-time scheduling analysis and timing functional simulations. Their results predict the
real-time behavior of the application functions executed onto the various resources, that is,
processors, integrated circuits, and communication media. This approach conforms to the
typical hardware/software codesign process. Finally, the code that is automatically generated
as a dedicated real-time executive, or as a configuration file for a resident real-time operating
system such as Osek and RTlinux, [1, 2], details the AAA methodology and SynDEx.

In practice, periodic tasks are commonly found in applications such as avionics
and process control when accurate control requires continual sampling and processing of
data. Such applications based on automatic control and/or signal processing algorithms
are usually specified with block-diagrams. They are composed of functions producing and
consuming data, and each function can start its execution as soon as the data it consumes
are available, and the cost of a task scheduling is a constant included in its worst case
execution time (WCET). This periodicity constraint is the same as the one we find in the
Liu and Layland model [3]. A data transfer between producer and consumer tasks leads to
precedence constraints that the scheduling must satisfy. In systems we deal with, besides
periodicity and precedence constraints, some tasks must be repeated according to a strict
period. These tasks represent sensors and actuators by interacting with the environment
surrounding the system and for which no data exchanged with this environment is lost. As
data produced by the environment to the system are consumed strict periodically on the one
hand and data expected by the environment from the system with a strict periodically way
on the other hand, sensors and actuators must be executed at a strict periods [4]. In order to
satisfy the strict periodicity of these tasks, we consider that all the system tasks have a strict
period.

Strict period means that if the periodic task ti has period T(ti) then for all j ∈ N
∗,

(S(tij+1) − S(tij )) = T(ti), where tij+1 and tij are the jth and the (j + 1)th instances of the task ti,
and S(tij ) and S(tij+1) are their start times [5]. Notice that tij is the jth instance or repetition of
the periodic task ti.

The multiprocessor real-time scheduling problem with precedences constraints, but
without periodicity constraints, whatever the number of processors, has always a solution.
The distributed schedule length, corresponding to the total execution time (Makespan),
determines the solution quality. On the contrary, when periodicity constraints must be
satisfied the problemmay not have a solution. In other words, an applicationwith precedence
and periodicity constraints is either schedulable or not.

Thus, this paper discusses three mains goals:

(i) the precedence and periodicity constraints must be satisfied. This is achieved by
repeating every task according to its period onto the same processor, and receiving
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all the data a task needs before it executes. In comparison with the previous
AAA/SynDEx, additional steps are required to assign the tasks to the processors
and to add missing precedence before being distributed and scheduled;

(ii) distributed architectures involve interprocessor communications the cost of which
must be taken into account accurately, as explained in [6]. These communications
must be handled even when communicating tasks have different periods;

(iii) since the target architecture is embedded, it is necessary to minimize the total
execution time in the one hand to insure that feedback control is correct, and in
the other hand to minimize the resource allocation.

As it is mentioned previously, we are interested in nonpreemptive scheduling. This
choice is motivated by a variety of reasons including [7]:

(i) in many practical real-time scheduling problems such as I/O scheduling, prop-
erties of device hardware and software either make preemption impossible or
prohibitively expensive. The preemption cost is either not taken into account or
still not really controlled;

(ii) nonpreemptive scheduling algorithms are easier to implement than preemptive
algorithms and can exhibit dramatically lower overhead at run-time;

(iii) the overhead of preemptive algorithms is more difficult to characterize and predict
than that of nonpreemptive algorithms. Since scheduling overhead is often ignored
in scheduling models, an implementation of a nonpreemptive scheduler will be
closer to the formal model than an implementation of a preemptive scheduler.

For these reasons, designers often use nonpreemptive approaches, even though ele-
gant theoretical results on preemptive approaches do not extend easily to them [8].

1.1. Related Work

According to the multiprocessor scheduling scheme (partitioned or global), the use of these
algorithms changes:

(i) in partitioned multiprocessor scheduling, it is necessary to have a scheduling
algorithm for every processor and an allocation (distribution) algorithm is used
to allocate tasks to processors (Bin Packing) which implies heuristics utilization.
Schedulability conditions for RM and EDF in multiprocessor were given;

(ii) in global multiprocessor scheduling, there is only one scheduling algorithm for all
the processors. A task is put in a queue that is shared by all processors and, since
migration is allowed, a preempted task can return to the queue to be allocated
to another processor. Tasks are chosen in the queue according to the unique
scheduling algorithm, and executed on the processor which is idle. Schedulability
conditions for RM and EDF in multiprocessor were given in the case of preemptive
tasks.

It is well known that the Liu and Layland results, in terms of optimality and schedu-
lability condition, break down on multiprocessor systems [9]. Dhall and Liu [10] gave
examples of task sets for which global RM and EDF scheduling can fail at very low processor
utilization, essentially leaving almost one processor idle nearly all of the time. Reasoning
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from such examples is tempting to conjecture that perhaps RM and EDF are not good
or efficient scheduling policies for multiprocessor systems even if, at the moment, these
conclusions have not been formally justified [11].

In addition, these scheduling algorithms consider a unique independent tasks which
means that tasks do not exchange data, whereas these dependences are specified in our
applications by a direct graph of tasks.

In [12] tasks are preemptive but dependent except that only tasks with the same period
can communicate. AAA/SynDEx handles dependences between tasks with multiple periods
by transforming the initial graph.

1.2. Model

We deal with systems of real-time tasks with precedence and strict periodicity constraints. A
task ti (denoted in this paper as (ti : C(ti), T(ti)) is characterized by a period T(ti), a worst
case execution time C(ti)with C(ti) ≤ T(ti), and a start time S(ti).

The precedences between tasks are represented by a directed acyclic graph (DAG)
denoted G such that G = (V,E). V is the set of tasks characterized as above, and E ⊆ V × V

the set of edges which represents the precedence (dependence) constraints between tasks.
Therefore, the directed pair of tasks (ti, tj) ∈ E means that tj must be scheduled, only if ti was
already scheduled, and thus we have S(ti) + C(ti) ≤ S(tj).

We assume that periods and WCETs are multiple of a unit of time U = 1 which means
that they are integers representing, for example, some cycles of the processor clock. If a task
ti with execution time C(ti) is said to start at time unit S(ti), it starts at the beginning of time
unit S(ti) and completes before the beginning of time unit S(ti)+C(ti). Thus the time interval
where task ti is executed is [S(ti), S(ti) + C(ti)[.

2. Real-Time Nonpreemptive Scheduling with Precedence and
Strict Periodicity Constraints

In order to satisfy these constraints, the heuristic we propose is divided into three algorithms.
These algorithms are called Assignment, Unrolling, and Scheduling.

2.1. Assignment

Among the two approaches mentioned below for solving multiprocessor scheduling
problems, we chose the partitioned one. Consequently, the first algorithm of the heuristic
consists in partitioning tasks over the architecture processors. This first algorithm is called
Assignment referring that each task is assigned to a processor such that all tasks assigned to
one processor are schedulable on this processor. If a task is schedulable on several processor,
it will be assigned to every processor.

This algorithm determines if the system is schedulable when all tasks were assigned
to the processors, or not schedulable if at least one task was not assigned. The assignment
algorithm uses the outcome of the following scheduling analysis.

2.1.1. Scheduling Analysis

The schedulability analysis consists in verifying that a task could be scheduled with other
tasks already proved schedulable using the same schedulability analysis. “A schedulable
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task” means that it exists one or several time intervals on which this task can be scheduled,
that is, its period and periods of already schedulable tasks are satisfied.

The following theorem gives a necessary and sufficient condition for scheduling two
tasks.

Theorem 2.1. Two tasks (ti : C(ti), T(ti)) and (tj : C(tj), T(tj)) are schedulable if and only if

C(ti) + C
(
tj
) ≤ GCD

(
T(ti), T

(
tj
))
. (2.1)

Proof. Let g = GCD(T(ti), T(tj)) (GCD denotes the greatest common divisor). We start by
proving that (2.1) is a sufficient condition. Let us assume that ti and tj are schedulable and
that S(ti) = 0 and S(tj) = C(ti). Thus, each instance of the task ti is executed within an interval
belonging to the set of intervals I1, such that I1 = {∀k ∈ N, [kT(ti), kT(ti) + C(ti)[} and each
instance of the task tj is executed within an interval belonging to the set of intervals I2, such
that I2 = {∀k ∈ N, [kT(tj) + C(ti), kT(tj) + C(ti) + C(tj)[}.

We merge the notation g in intervals I1 and I2. I1 may be rewritten in this way: I1 =
{∀k ∈ N, [gk(T(ti)/g), gk(T(ti)/g) + C(ti)[}, and if n (n ∈ N) such that n = k(T(tj)/g), then
we obtain I1 = {∀k ∈ N, [ng, ng + C(ti)[}. Similarly, we find that (m is an integer such as
m = k(T(tj)/g)) I2 = {∀k ∈ N, [mg + C(ti), mg + C(ti) + C(tj)[}. The assumption made at the
beginning (ti and tj are schedulable) implies that no intervals belonging to I1 and I2 overlap.
We notice that the starts of the intervals of the set I1 represent multiples of g. On the other
hand, the ends of the intervals of the set I2 represent a multiple of (g +C(ti)+C(tj)). Intervals
of the sets I1 and I2 do not overlap whichmeans that if (n = m+1) thenmg+C(ti)+C(tj) ≤ ng,
which is equivalent to C(ti) + C(tj) ≤ g. This proves the sufficiency of the condition 1.

In order to prove the necessity of 1, we show that if C(ti) + C(tj) < g then tasks ti and
tj are schedulable. This is equivalent to show that if tasks ti and tj are not schedulable then
C(ti) + C(tj) ≤ g. Without any loss of generality, we assume that S(ti) = 0.

ti and tj are not schedulable means that two integers x and y exist such that

[
xT(ti), xT(ti) + C(ti)[ ∩ [S

(
tj
)
+ yT

(
tj
)
, S

(
tj
)
+ yT

(
tj
)
+ C

(
tj
)[

/= ∅; (2.2)

this is equivalent to

[
xT(ti) − yT

(
tj
)
, xT(ti) − yT

(
tj
)
+ C(ti)[ ∩ [S

(
tj
)
, S

(
tj
)
+ C

(
tj
)[

/= ∅. (2.3)

According to Bezout theorem, two integers p and q exist such that pT(ti) + qT(tj) = g.
By taking x = zp and y = −zq, z ∈ N we have

[
zg, zg + C(ti)[ ∩ [S

(
tj
)
, S

(
tj
)
+ C

(
tj
)[

/= ∅. (2.4)

This latter is true if the length of the empty intervals between the intervals [zg, zg +
C(ti)[, z ∈ N (which is equal to g −C(ti))) is less than the length of the intervals [S(tj), S(tj) +
C(tj)[(which is equal to C(tj)). That is, g − C(ti) < C(tj). This condition is equivalent to
g < C(ti) + C(tj). This concludes the proof of Theorem 2.1.
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Now we are interested in the schedulability of a set of tasks (more than two). Let us
introduce the following property for a given tasks set.

Definition 2.2. If a set of n task {∀i ∈ N, i ≤ n, (ti : C(ti), T(ti))} such that for each two tasks
(ta : C(ta), T(ta)) and (tb : C(tb), T(tb)), GCD(T(ta), T(tb)) is the same, then this set is said to
satisfy the SGCD property (SGCD for Same Greater Common Divisor).

The following theorem introduces a necessary and sufficient condition for a set of tasks
satisfying the SGCD property.

Theorem 2.3. Tasks of a set {∀i ∈ N, i ≤ n, (ti : C(ti), T(ti))}, which satisfies the SGCD property,
are schedulable if and only if

n∑

i=0

C(ti) ≤ g; (2.5)

g is the GCD of any pair of tasks from this set.

Proof. In order to prove the sufficiency, we proceed by the same way as in the proof of
Theorem 2.3. Let us assume that tasks of the set {i ∈ N

∗, i ≤ n, ti} are schedulable and that
S(t1) = 0 and S(ti) =

∑i−1
j=1 C(tj). Thus each instance of the task ti (i ∈ N

∗, i ≤ n) is executed in
an interval belonging to the intervals set Ii = {∀k ∈ N, [kT(ti) + S(ti), kT(ti) + S(ti) + C(ti)[}.
Ii may be rewritten in Ii = {∀k ∈ N, [gk(T(ti)/g) + S(ti), k(T(ti)/g) + S(ti) + C(ti)[}. If n is an
integer such that n = kT(ti)/g, then we obtain Ii = {∀k ∈ N, [ng + S(ti), ng + S(ti) + C(ti)[}.
The assumption made at the beginning (tasks ti are schedulable) implies that no intervals
belonging to the sets Ii (i ∈ N

∗, i ≤ n) do not overlap. We notice that the starts of the intervals
of the set Ii represent multiples of g. On one hand, the ends of the intervals of the set I2
represent a multiple of g. On the other hand, the ends of the intervals of the set I2 represent
a multiple of g +

∑n
i=1 C(ti). Intervals of the sets Ii do not overlap which means that for S(ti)

maximal then ng + S(ti) + C(ti) ≤ (n + 1)g + S(t1), which is equivalent to S(ti) + C(ti) ≤ g. As
max(S(ti), i ∈ N

∗) = S(tn) we deduce that
∑n

i=1 C(ti) ≤ g. This proves the sufficiency of the
condition 2.

We prove the necessity of condition 2 by showing that if
∑n

i=1 C(ti) ≤ g then tasks of
the set {∀i ∈ N

∗ and i ≤ n, ti} are schedulable. This is equivalent to show that if tasks of the
set {∀i ∈ N

∗ and i ≤ n, ti} are not schedulable, then g <
∑n

i=1 C(ti). For this we use the proof
by induction.

The Base Case

For a set of two tasks this condition was proved in Theorem 2.1.

The Inductive Step

We show that if the condition 2 is valid for the set {∀i ∈ N and i ≤ (n − 1), ti} then it is the
same for the task {∀i ∈ N and i ≤ n, ti}.
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Tasks of the set {∀i ∈ N and i ≤ n, ti} are not schedulable which means that integers
x1, x2, . . . , xn exist such that

([S(t1) + x1T(t1), S(t1) + x1T(t1) + C(t1)[

∪ · · · ∪ [S(tn−1) + xn−1T(tn−1), S(tn−1) + xn−1T(tn−1) + C(tn−1)[)

∩ [S(tn) + xnT(tn), S(tn) + xnT(tn) + C(tn)[/= ∅,
(2.6)

which is equivalent to

([S(t1) + x1T(t1), S(t1) + x1T(t1) + C(t1)[ ∩ [S(tn) + xnT(tn), S(tn) + xnT(tn) + C(tn)[)

∪ · · · ∪ ([S(tn−1) + xn−1T(tn−1), S(tn−1) + xn−1T(tn−1) + C(tn−1)[

∩[S(tn) + xnT(tn), S(tn) + xnT(tn) + C(tn)[)/= ∅.
(2.7)

We can rewrite this latter in the following way:

([S(t1) + x1T(t1) − xnT(tn), S(t1) + x1T(t1) − xnT(tn) + C(t1)[ ∩ [S(tn), S(tn) + C(tn)[)

∪ · · · ∪ ([S(tn−1) + xn−1T(tn−1) − xnT(tn), S(tn−1) + xn−1T(tn−1) − xnT(tn) + C(tn−1)[

∩[S(tn), S(tn) + C(tn)[)/= ∅.
(2.8)

In addition to, according to Bezout’s theorem, pairs of integers (pi, qi) such that
piT(ti) + qiT(tn) = g (i = 1, . . . , n − 1), with xi = lipi and xn = −liqi (li, . . . , ln ∈ N), we obtain

([
S(t1) + l1g, S(t1) + l1g + C(t1)

[ ∩ [S(tn), S(tn) + C(tn)[
)

∪ · · · ∪ ([
S(tn−1) + ln−1g, S(tn−1) + ln−1g + C(tn−1)

[ ∩ [S(tn), S(tn) + C(tn)[
)
/= ∅.

(2.9)

This may be rewritten in

([
S(t1) + l1g, S(t1) + l1g + C(t1)

[ ∪ · · · ∪ [
S(tn−1) + ln−1g, S(tn−1) + ln−1g + C(tn−1)

[)

∩ [S(tn), S(tn) + C(tn)[/= ∅.
(2.10)

This latter is true if the sum of the lengths of empty intervals between the intervals([S(t1) +
l1g, S(t1) + l1g + C(t1)[∪ · · · ∪ [S(tn−1) + ln−1g, S(tn−1) + ln−1g + C(tn−1)[) (which is equal to
(g − ∑n−1

i=1 C(ti))) is less than the length of intervals [S(tn), S(tn) + C(tn)[ (which is equal to
C(tn)),that is, (g − ∑n−1

i=1 C(ti)) < C(tn) which is equivalent to g <
∑n

i=1 C(ti). This concludes
the proof of Theorem 2.3.

Theorem 2.3 gives a schedulability condition for the tasks which satisfy the SGCD
property (introduced in Definition 2.2). Nevertheless, we need a condition for all tasks
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whatever their periods are. Unfortunately, this condition does not exist because of the
complexity of the problem [13]. As an alternative, we propose the following reasoning.

We choose to give a condition which allows to assign one task to a processor where
a set of tasks has already been assigned to. This task is called candidate task and once it is
assigned another task, among tasks which are not assigned yet, becomes the candidate task.
To be assigned to a processor, the candidate task and tasks already assigned to this processor
must be schedulable on the same processor.

First, we grouped already assigned tasks according to the SGCD property into sets
and, second, looked for a condition which takes into account the candidate and each set of
already assigned tasks.

Before going further we need to introduce the notion of “identical tasks”. Two tasks
are said to be identical if they have the same period and the same WCET even though they
do not perform the same function.

The following theorem introduce an equation allowing to compute the number of the
tasks which are identical to the candidate task and can be assigned to a processor. On this
processor, a set of tasks satisfying the SGCD property have already been assigned.

Theorem 2.4. Let (tcdt : C(tcdt), T(tcdt)) be the candidate task and {∀i ∈ N
∗ and i ≤ n, (ti : C(ti),

T(ti))} the set of already assigned tasks which satisfy the SGCD property. The number of identical
tasks to the candidate task which can be assigned to this processor is given by

Ψ(tcdt) =
T(tcdt)

GCD(g, T(tcdt))

⌊
GCD

(
g, T(tcdt)

) −∑n
i=1 C(ti)

C(tcdt)

⌋

. (2.11)

Proof. 
(GCD(g, T(tcdt)) −
∑n

i=1 C(ti))/C(tcdt)� that represents the number of identical tasks
to the candidate task can be scheduled in one interval of length g. T(tcdt)/GCD(g, T(tcdt))
represents the number of intervals of length g in one interval of length T(tcdt).

Example 2.5. Let (ta : 1, 4), (tb : 1, 12), and (tc : 1, 16) be three tasks already assigned. We look
for assigning a task (td : 1, 20). By using Theorem 2.4, we compute the number of tasks iden-
tical to td which can be assigned.

First we check that tasks ta, tb, tc, and td satisfy the SGCD property. GCD(T(ta),
T(tb)) = GCD(T(tb), T(tc)) = GCD(T(tc), T(ta)) = GCD(T(tc), T(td)) = GCD(T(tb), T(td)) =
GCD(T(ta), T(td)) = 4.

Then, C(ta) + C(tb) + C(tc) + C(td) = 4 ≤ 4 proves that the condition of Theorem 2.3 is
satisfied.

Finally, Ψ(td) = 20/4 ∗ 
(4 − 3)/1� = 5, which means that 5 tasks identical to td can be
scheduled on this processor.

Figure 1 shows the 5 intervals where 5 identical tasks to td can be scheduled (these
intervals are numbered from 1 to 5). We show also intervals where td cannot be scheduled
whereas they are empty, and for each interval the tasks (among ta, tb, and tc) cause the
nonschedulability, for example, if tb is mentioned then it means that td cannot be scheduled on
this interval because one of the instances of tb and one of the instances of td will be scheduled
on the same interval which is not allowed.
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0 2 4 6 8 10 12 14 16 18 20 22 24

ta1 tb1 tc1 1 ta2 ta3 ta4 tb2 ta5 tc2 ta6

tb tc tb tb tbtc tc tc

2 3 4 5

Figure 1: Several scheduling possibilities of task td (Example 2.5).

Let us check, on Figure 1, the result obtained by the previous calculation. We notice
that if we divide the time axe in intervals of length equal to GCD = 4 and divide each interval
in subintervals of length 1, then it is always the fourth subinterval, which is used to schedule
td. This means that the order established in the first interval of length GCD = 4 is repeated
and observed.

Definition 2.6. We denote by Ω the set of tasks which have already been assigned to a
processor. We divide the set Ω into several subsets {Ω1,Ω2, . . . ,Ωv} such that the tasks of
each subset and the task tcdt satisfy the SGCD property (introduced in Definition 2.2). Each
subset Ωj is characterized by a greater common divisor (noticed gΩj ), and we consider that
Ω1 is the subset with the smallest greater common divisor (which is denoted BG). The sum
off all execution time of a tasks set Ωj is denoted by C(Ωj) =

∑
ti∈Ωj

C(ti).

Now in order to know if tcdt is schedulable or not on a processor where other tasks
have already been scheduled, we apply the following algorithm:

(1) choose a processor;

(2) set up sets (∀j), Ωj ;

(3) compute ΨΩ1(tcdt). This represent the identical tasks to tcdt which can be scheduled
by taking into account only Ω1;

(4) for each subset (j > 1), Ωj remove to the result obtained in the previous step the
number of identical tasks to tcdt which cannot be scheduled because of nonschedu-
lability with tasks belonging to Ωj (the next theorem gives a way to compute this
number);

(5) following the reached result, we decide to assign tcdt to this processor or try to
assign it to another processor (go to 1).

Let ΓΩj (tcdt) (j /= 1) represent the number of identical tasks to tcdt that cannot be sched-
uled because of a non-schedulability with tasks belonging to Ωj (j /= 1).

The following theorem gives an equation to compute Γ.

Theorem 2.7. Let tcdt be the candidate task,Ω = {Ω1,Ω2, . . . ,Ωv} the set of already scheduled tasks,
and gΩj the GCD of all Ωj . For (j > 1), ΓΩj (tcdt) is given by

ΓΩj (tcdt) =
T(tcdt)
gΩj

⌈∑
ti∈Ωj

C(tcdt)

⌉

α (2.12)
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such that

α =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if
T(tcdt)
gΩj

> 1,

0 if
T(tcdt)
gΩj

= 1 and
∑

ti∈Ω
C(ti) < gΩj−1 − C(tcdt).

(2.13)

Proof. T(tcdt)/gΩj is the number of intervals of length gΩj in an interval of length T(tcdt). This
number is multiplied by �∑ti∈Ωj

/C(tcdt) which represents the number of tasks identical to
tcdt that cannot be scheduled inside an interval the length of which is equal to gΩj . And also,
in order to take into account the tasks of the other sets, we introduce the value of α.

Now we bring together the different results obtained previously to find out an
equationwhich allows to compute the number of schedulable tasks identical to tcdt, and hence
deduce if tcdt is schedulable or not.

Corollary 2.8. Let tcdt be the candidate task and Ω = {Ω1,Ω2, . . . ,Ωv} the set of already scheduled
tasks. The number of identical tasks to tcdt which can be scheduled is given by

ΨΩ1(tcdt) −
v∑

j=2

ΓΩj (tcdt) (2.14)

such that

ΨΩ1(tcdt) =
T(tcdt)
BG

⌊
BG − C(Ω1)

C(tcdt)

⌋
. (2.15)

Example 2.9. In order to illustrate the proposed method, we propose the following example:
let (tcdt : 2, 30) to the candidate task to the schedulability analysis. Let Ω = {(ta : 2, 5), (tb :
1, 10), (tc : 1, 20), (td : 1, 30), (te : 1, 60)} the set of tasks already proved schedulable. In this
case, BG = GCD(T(ta), T(tb), T(tc), T(td), T(te), T(tcdt)) = 5

(i) the three subsets that we can set up from the setΩ and the task tcdt according to the
SGCD property are

(1) Ω1 = {tcdt, ta}with the GCD of periods equal to 5,
(2) Ω2 = {tcdt, tb, tc}with the GCD of periods equal to 10,
(3) Ω3 = {tcdt, td, te}with the GCD of periods equal to 30.

(ii) From Corollary 2.8,

ΨΩ1 =
30
5

⌊
5 − 2
2

⌋
= 6, (2.16)

(iii) Γ = ΓΩ2 + ΓΩ3 ,

(1) ΓΩ2 = ((30/10)�3/2)= 3,
(2) by the same way ΓΩ3 = 0, so Γ = 3 + 0 = 3,

(iv) then ΨΩ1 − Γ = 6 − 3 = 3, from this, we deduce that tcdt is schedulable.
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Remark 2.10. The previous result allows us to assign several tasks (identical tasks to tcdt) at
the same times, and if other identical tasks to tcdt are not assigned then it means that these
tasks are not schedulable on this processor and they must be assigned to another processor.

Remark 2.11. Notice that, throughout this schedulability analysis, in the given schedulability
condition nothing ismentioned about precedence constraints, whereaswe allow it in the tasks
model. Indeed, a system with precedence constraints but without any periodicity constraint
is always schedulable. The next theorem demonstrates that for a set of proved schedulable
tasks, that is, satisfying periodicity constraints, it always exists a scheduling of these tasks
which satisfies precedences between them, whatever the precedences are.

Theorem 2.12. Let Ω be a set of proved schedulable tasks. Whatever precedence constraints between
Ω’s tasks are, it exists, at least, one scheduling which satisfies these precedence constraints.

Proof. Once a set of n tasks is proved schedulable, these tasks can be scheduled in n! different
ways or orders. From these n! orders, at least, one order satisfies the precedence constraints
(we remind that tasks are not allowed to be preempted).

2.1.2. Proposed Approaches

As a result of the previous study, we are able to yield an algorithm allowing the assignment
of tasks to processors while satisfying precedence and periodicity constraints. Since the
corollary condition is monoprocessor and it is applied for the assignment of each task (the
test may be done several time until finding the right processor), the execution time of the
assignment algorithm can have be long. Hence, we propose three assignment algorithms as
follows:

(1) greedy algorithm: it starts by sorting tasks following a mixed sort which takes into
account both the increasing order and a priority level [14]. Then tasks are assigned
without any backtracking;

(2) local search algorithm: it uses the condition of the corollary. In order to have an
assignment more efficient than the one of the greedy heuristic, we introduce a
backtracking process. It is used once a task cannot be assigned to any processor,
however, by taking off some assigned tasks from their processors until this task
could be assigned and taken off tasks will be assigned to another processors. This
backtracking does not change all the assignment but only a part that should not
considerably increase the algorithm execution time;

(3) exact algorithm (optimal): it uses the condition of the corollary. This algorithm takes
advantage of the Branch & Cut exact method [14].

2.2. Unrolling

The unrolling algorithm consists in repeating each task of the graph (hp/T) times, where the
period of this task is T and hp is the hyper-period (Least Common Multiple of all period
tasks) [15].

When two tasks are dependent and have not the same period, there are two
possibilities. If the period of the consumer task is equal to n times the period of the producer
task, then the producer task must be executed n times compared to the consumer task, and
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the consumer task cannot start its execution until it has received all data from the n executions
of the producer task. Notice that the produced data differ from one execution of the producer
task to another execution; therefore, data are not duplicated. Reciprocally, if the period of the
producer task, is equal to n times the period of the consumer task then the consumer task
must be executed n times compared to the producer task. The unrolling algorithm exploits
this data transfer mechanism.

2.3. Scheduling

This algorithm distributes and schedules each task of the unrolled graph onto the processor
where it has been assigned by the assignment algorithm. In case where the task was assigned
to several processors; the algorithm distributes it to the processor which minimizes the
makespan. The minimization of the makespan is based on a cost function which takes into
account the WCETs of tasks and the communication costs due to dependant tasks scheduled
on different processors.

Once a task is scheduled all its instances take start times computed in function of the
task period and the number of the instance. In addition, to be scheduled, the first instance of
each task must satisfy the condition of the next theorem.

Theorem 2.13. Let {(ti : C(ti), T(ti), S(ti)), i = 1 · · ·n} be n tasks already scheduled on a processor.
The task {(tj : C(tj), T(tj)} is schedulable at the date S(tj) on this processor if and only if

∀i, S(ti) ≤
(
S
(
tj
) − S(ti)

)
mod gi ≤

(
gi − C

(
tj
))

(2.17)

such that gi = GCD(T(ti), T(tj)).

Proof. In order to prove Theorem 2.13, it suffices to prove that two tasks {(ta : C(ta), T(ta),
S(ta))} and {(tb : C(tb), T(tb), S(tb))} (and g = GCD(T(ta), T(tb))) are schedulable if and only
if

C(ta) ≤ (S(tb) − S(ta)) mod g ≤ (
g − C(tb)

)
. (2.18)

Without any loss of generality, we assume that S(ta) = 0. We start by showing the sufficiency
of the Condition 5. Let us consider time intervals I = {∀l ∈ N, [0+ lg, g −1+ lg]. The first C(ta)
time units of each of these intervals can be allocated for executions of ta once every T(ta)/g
intervals, and the remaining g −C(ta) time units only or partly for executions of tb once every
T(tb)/g intervals. If (2.18) is verified, then the allocated time units suffice to execute ta and
tb.

In order to prove the necessity of (2.18), let us consider again time intervals {∀l ∈
N, [0+lg, g−1+lg]. If (2.18) is not verified, then the execution of tb overlaps the firstC(ta) time
units once every T(tb)/g time intervals. We also note that the C(ta) time units of the intervals
are used to execute ta once every T(ta)/g time intervals. As gcd(T(ta)/g, T(tb)/g) = 1, there
will be an interval from I where ta and tb are executed together. Hence, if (2.18) is not verified,
the tasks ta and tb cannot be scheduled on the same processor. This completes the proof of the
theorem.

A complete example of the scheduling heuristic can be found in [14].
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3. Performance Evaluation

In order to get the best approach among the three ones proposed into the scheduling heuristic
(greedy heuristic, local search, and exact algorithm), we performed two kinds of tests.

The first one consisted in comparing the scheduling success ratio for the three
approaches on different systems. This test has been performed as follows: we compute for
each system the value of θ which is the ratio between the number of processors and the
number of different and nonmultiple periods. Then, we gather all the systems with the
same θ, and we execute for them the three approaches of the proposed heuristic. Finally,
we compute the scheduling success ratio for the systems of each θ by using the results of
the previous step. This method allows us to underline the impact of the architecture in terms
of number of processors, and of the number of periods of tasks. The diagram of Figure 2
depicts the evolution of the success ratio according to the variation of θ. Excluding the exact
algorithm which finds always the solution, we notice that the local search heuristic displays
an interesting results. In addition, the greedy heuristic is efficient only when θ ≥ 1 which
means that its use is relative to the targeted systems.

In the second test, the speed of the three approaches of the proposed heuristic
isevaluated by varying the size of the systems (both number graph tasks and number of
processors). The diagram of Figure 3 shows that the exact algorithm explodes very quickly
whereas the local search heuristic keeps a reasonable execution time. In addition the greedy
heuristic, as expected, stands for the fastest one. Notice that the algorithm execution time
follows a logarithmic scale.

To perform these tests, we generated automatically tasks graphs taking into account
the periodic issues with dependent and nondependent tasks. The content itself of the task has
no impact on the scheduling, only its WCET and its period are relevant. Also, we generated
systems such that the number of different periods is not large relatively to the number of
tasks; however, we generated systems with all the possible cases (multiple and not multiple
period) in order to obtain more realistic results. In addition, the architecture graphs were
generated according to a star topology meaning that any two processors can communicate
through the medium without using intermediate processors (no routing).

4. Applications

The first example is a simple version of a “Visual control of autonomous vehicles for
platooning”. This application is developed by several teams at INRIA. It consists in replacing
the joystick which is used to drive manually a CyCab, by an automatic controller based
on a video camera which gathers the necessary information to identify the vehicle ahead
and to guarantee a minimum distance between the two vehicles. In order to simplify the
original version, we use two major tasks, the first one includes the camera and image
processing and the second one includes the distance controller and the tasks performing
moving forward, steering, and braking (Figure 4 shows the window containing the algorithm
graph). The architecture is also a simple version of the real one with only two processors
(Figure 5 shows the window containing the architecture graph). The separate execution of
these two tasks showed that the first task produces a data every 1 second, whereas the
second task consumes the data every 10 milliseconds. It means that these two dependent
tasks are periodic, thus, nonperiodic real-time scheduling algorithms are unable to perform
a scheduling which satisfies the periods and ensures the right data transfer between them. A
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Figure 2: Scheduling success ratio comparison.

shared memory could be an alternative but data sizes and memory access costs represent
a significant inconvenient. AAA/SynDEx distributes and schedules onto the architecture
these two periodic tasks which implies that the second task is repeated ten times for each
execution of the first task. Thereby, the data produced by the first task is diffused to
the ten repetitions of the second task (see Figure 6). The result is standing for a timing
window corresponding to the predicted real-time behavior of the algorithm running on
the architecture following the proposed distribution and scheduling algorithm. It includes
one column for each processor and communication medium, describing the distribution
(spatial allocation) and the scheduling (temporal allocation) of operations on processors,
and of interprocessor data transfers on communication media. Here time flows from top to
bottom, the height of each box is proportional to the execution duration of the corresponding
operation (periods and execution durations are given or measured by the user).

The second example shows another aspect of AAA/SynDEx multiperiodic utilization.
It consists in the “Engine Cooling System”, and as for the first example, this application is
also a simple version of the original one. This application is composed of two sensors, the
first one is a temperature sensor and the second one gives parameters representing the state
of the engine. These two sensors are connected to the main task which is the engine control
unit, supposed to perform the cooling of the engine. The cooling reads the temperatures sent
by the first sensor and combine them with the information representing the operating state
of the engine (Figure 7 shows the windows containing the algorithm graph). Thereby, it can
predict the change of the temperature and achieve the temperature control (by operating
the cooling fan, e.g.). In order to perform more accurate predictions, the main task needs
several temperatures which must be taken at equal time intervals and needs also several state
information. This is why the temperature sensor is executed every 10 milliseconds (period =
10), the second sensor is executed every 15 milliseconds (Period = 15), and the main task
every 30 milliseconds (period = 30). The architecture is composed of two processors similarly
to the architecture of the previous example.
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Figure 4: Platooning application (tasks graph).

Figure 8 shows the result of the adequation applied to the algorithm and the architec-
ture.

On Figure 8 we can observe that the temperature sensor is executed three times. These
three temperatures and two data producded by the two executions of the state sensor are sent
to the main task. This latter, by receiving all these data, predicts the change of the temperature
and achieves the temperature control.

Finally, the user can launch the generation of an optimized distributed macro-
executive, which produces as much files as there are of processors. This macroexecutive,
independent of the processors and of the media, is directly derived from the result of the
distribution and the scheduling. It will be macroprocessed with GM4 using executive-kernels
which are dependent of the processors and the media, in order to produce source codes.
These codes will be compiled with the corresponding tools (several compilers or assemblers
corresponding to the different types of processors and/or source languages), then they will
be linked and loaded on the actual processors where the applications will ultimately run in
realtime.
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5. Load and Memory Balancing

We proposed to improve the new distributed real-time scheduling heuristic in two main
directions:

(i) minimizing the makespan of distributed applications by equalizing the workloads
of processors (even thought a first attempt was carried out in the proposed
heuristic),

(ii) efficient utilization of the memory resource.

Towards these purposes we proposed, a load and memory balancing heuristic for
homogeneous distributed real-time embedded applications with dependence and strict
periodicity constraints. It deals with applications involving N tasks and M processors. Each
task a has an execution time Ea, a start time Sa computed by the distributed scheduling
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heuristic, and a requiredmemory amountma. The requiredmemory amountmay be different
for every task. It represents the memory space necessary to store the data managed by the
task, that is, all the variables necessary for the task according to their types.

For each processor, the proposed heuristic starts by building blocks from tasks
distributed and scheduled onto this processor. Then, each block A is processed according
to the increasing order of their start times. This process consists in computing the cost
function λ (defined in the next paragraph) for the processors whose end time of the last
block scheduled on these processors is less than or equal to the start time of the block A, and
in seeking the processor which maximizes λ. Moreover, a block is moved to that processor
if the periodicity of the other blocs on this processor is verified, otherwise that processor is
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no longer considered, and the heuristic seeks again another processor which maximizes λ. If
the moved block belongs to the first category and λ > 0, then this block will decrease its start
time. In order to keep its strict periodicity constraint satisfied, the heuristic looks through the
remaining blocks and updates the start times of the blocks containing tasks whose instances
are in the moved block. This heuristic is applied to the output of the scheduling heuristic
already presented.

The heuristic is based then on a Cost Function λPi →Pj (A)which is computed for a block
A initially scheduled on processor Pi and a processor Pj

λPi →Pj (A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

GPi →Pj (A) if no block has been moved to Pj,

GPi →Pj (A) + 1
∑i=k

i=1 mBi

otherwise.
(5.1)

It combines GPi →Pj (A) and the sum of required memory amounts by the k blocks
B1, . . . , Bk already moved to this processor Pj . Notice that G is the gain in terms of time due
to the move of this block.

A detailed example and a complexity and a theoretical performance studies can be
found in [16].

6. Conclusion

We presented a new feature for AAA/SynDEx tool which allows the scheduling of mul-
tiperiodic dependent nonpreemptive tasks onto a multiprocessor. The new feature of
AAA/SynDEx provides a unique scheduling algorithm since it is based on a schedulability
analysis which allows for distributing and scheduling the tasks while satisfying their
dependences and their strict periodicity. The analysis proposed here is composed in several
stages to reach the main result which is a necessary and sufficient condition we obtain at the
end through a corollary. Such schedulability analysis can be used in suboptimal heuristics
to find an assignment of the tasks for each processor when partitioned multiprocessor
scheduling is intended.

When dependent tasks with two different periods are distributed and scheduled onto
two different processors the proposed heuristic handles correctly the interprocessor commu-
nications.

Since memory is limited in embedded systems, it must be efficiently used and, also,
the total execution time must be minimized since the systems we are dealing with include
feedback control loops. Thus, we improved the presented heuristic in order to perform
load Balancing and efficient memory usage of homogeneous distributed real-time embedded
systems. This is achieved by grouping the tasks into blocks, andmoving them to the processor
such that the block start time decreases, and this processor has enough memory capacity to
execute the tasks of the block.

The study of this paper stands for a first step from a more global work which targets
resolving all kinds of periodicity constraints.
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