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This paper presents the use and validation of a generalized learning curve in the economies of scale purchasing experience. The
model, based on Wright’s curve, incorporates two extra degrees of freedom to accommodate initial purchases of multiple (instead
of single) units and a finite asymptotic price at high volumes.The study shows that each time the part purchase quantity is doubled,
the price is reduced either by a constant percentage (a learning rate) or by an approach to an asymptotic plateau rate indicating a
point of diminishing returns. Supplier price quotations at multiple purchase quantities were obtained for a pool of 17 critical parts.
The data were fitted with the generalized learning curve by the method of least squares regression.The regressed learning rate, first
unit price, and the asymptotic price can be used to infer supplier pricing strategies. Coupled with a “should-cost” analysis based on
estimates of standard time and material, a system cost reduction task was carried out by the supply chain organization.

1. Introduction

One of the challenges in a supply chain function is to carry
out win-win negotiations with suppliers for part quality,
cost, and delivery. Part quality is essential and should not
be negotiable, provided that the specification is sound. A
well-written specification with measurable attributes and
well-defined statistical requirements will provide a precise
quality foundation. Just-in-time (JIT) part delivery schedule
would be ideal. However, some inventories of parts may
help to ensure the continuity of supplies during abnormal
circumstances. In the case of critical parts, the company may
want to source them from more than one supplier. Tradeoff
analysismust be conducted judiciouslywithmultiple supplier
sourcing strategy since it usually works against the part cost.

Here is a brief description of a cost reduction strategy
used in a fuel cell company. A Wright-based learning curve
was used to determine the economic order quantity and to aid
in the negotiation of the lowest possible, but fair, part price.
A win-win negotiation strategy can build upon openness and
trust. However, doing the homework upfront will go a long
way in the negotiation process. Competitive benchmarking
of suppliers is an important step to narrow down the list of

potential suppliers. Should-cost analysis should be carried
out on 20% of parts that make up 80% of the system cost.
The analysis takes into account the production method, the
amount of material used, the various processing times, and
the estimated profits. While this analysis may provide a
good understanding of the variable costs, the fixed costs may
vary widely among suppliers. A typical classification between
variable and fixed costs is shown in Table 1.

Not all variable costs have exactly the same meaning.
Some variable costs behave in a true variable or proportion-
ately variable fashion. Other variable costs behave in a step-
variable fashion. The same can be said about the fixed and
quasifixed costs. For simplicity, part costs shall be classified
as either variable or fixed from here on in this paper.

The objectives of this paper are organized primarily as
follows: (1) a literature review of the relevant learning curves
is discussed because they have been used extensively in the
past to model the simple concept known as the economies
of scale; (2) a generalized learning curve model adapted for
purchasing and cost reduction negotiations is introduced;
the model is then used to fit supplier quotations of parts
through a least squares percent error method; the results
are used to shed light on the supplier pricing strategies and
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Table 1: Cost classification.

Cost item Category Description

Direct material cost Variable The materials (parts, and subsystems) that go into the final
product

Direct labor cost Variable Constant productivity of people directly involved in production
Energy Variable Used primarily for production
SAG Variable Selling, administrative, and general costs
Commissions Variable Usually proportional to the quantity of goods sold

Shipping Variable Sometimes, a portion with the supplier and a portion with the
buyer

R&D Fixed Research and development tasks

Fixed cost Fixed
Amortization of capital goods, rent, depreciation of buildings
and equipment, taxes on real estate, insurance, salaries of top
management and operating personnel

Discretionary fixed Fixed Advertising, public relations, management development
programs

IP acquisition cost Quasi-fixed Intellectual property design cost, licensing agreement, and
royalty payment

Manufacturing overhead cost Quasi-fixed Maintenance and repairs on production equipment, heat and
light, and depreciation

Indirect labor Quasi-fixed Discrete jump will happen when the overall scale of production
drastically changes.

Profits Quasi-fixed Depending on pricing strategies

(𝑖, 𝑌𝑖)

𝑌

𝑋

(2𝑖, 𝑌 )

𝑌2𝑖 − 𝑌𝑡

(∞, 𝑌𝑡)

𝑌𝑖 − 𝑌𝑡

Figure 1: The power curve model of 𝑌 as a function of𝑋.

cost reduction negotiations; and (3) finally, the purchasing
experience and cost reduction results are discussed.

2. Literature Review

Learning curves have been around since the early 1900s
and have been used to model productivity or efficiency
improvement based on learning experience. Some forty dif-
ferent equations on published learning curves were reviewed
by Thurstone [1] for consideration in his typewriter typing
experiment. He selected ultimately the hyperbolic form of
learning curve as follows to fit his data;

𝑌 =
𝐿 (𝑋 + 𝑃)

(𝑋 + 𝑃) + 𝑅
, (1)

where 𝑌 = typing speed, 𝑋 = pages typed in the past, 𝐿 =
limit, 𝑃 = equivalent previous practice and 𝑅 = rate of
learning.

The hyperbolic model fits well with his empirical exper-
iment. He concluded that typewriter learning increases with
practice and attains an upper limit quickly. The meaning for
the rate of learning in his model is simply a dimensional
model coefficient and is not nearly as meaningful as the

dimensionless rate in Wright’s [2] curve. Furthermore, the
hyperbolic model does not fit well with slow learning pro-
cesses.

Another common form to capture the learning effect is
the exponential decay model. In their modeling work of a
production-inventory study, Das et al. [3] took into account
the efficiency gain in production and setup costs to maximize
the expected profit. Two coefficients, one for product cost
and one for setup cost, were used in the learning effect.
Discussions of the learning coefficients were limited since
their effort focused on using the genetic algorithm for a fuzzy
simulation.

Wright studied the variation of cost with quantity since
1922 and described a basic theory for obtaining cost estimates
based on repetitive production of airplane assemblies. His
curve was derived empirically based on previous production
experience. AlthoughWright did not name his curve and the
word “learning” never appeared in his paper, somehow his
curve became widely known as the learning curve.

The theory of learning is simple. It is recognized that
repetition of the same operation results in less time or effort
expended on that operation. For the Wright learning curve,
the underlying hypothesis is that the direct labor man-hours
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Figure 2: Model summary for filter.
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necessary to complete a unit of production will decrease by
a constant percentage each time the production quantity is
doubled.Wright’s learning curve is a simple powermodel and
can be interpreted as

𝐹 = 𝑁
(− log(𝑟)/ log(2))

, (2)

where 𝑁 = production quantity, 𝑟 = learning rate, and 𝐹 = a
factor equal to the first unit cost divided by the average cost
of the𝑁 units.

Typical learning rates range between 70 and 95% for
manufacturing and procurement activities. Accordingly, each
time the volume doubles, the cost is reduced by 30 to 5% (i.e.,
100% minus the learning rate). As the production quantity
(𝑁) approaches a very large number, the average cost for each
of the 𝑁 units diminishes. The Wright learning curve has
wide applications in startup situations, where𝑁 is small.

In light of the law of diminishing returns, a factor of
incompressibility was added to the power model by DeJong
[4] to extend the learning curve model from start-up to
steady-state conditions. The model was used to express
the impact of the effects of increasing skill on cycle time
performance and had the form of

𝑇𝑠 = 𝑇1 [𝑀 + (1 −𝑀) 𝑆
−𝑚
] , (3)

where 𝑇1 = cycle time required for the first product,
𝑇𝑠 = cycle time required for the 𝑆th product, 𝑆 = sequence
number, 𝑀 = incompressibility factor, 0 ≤ 𝑀 ≤ 1 m =
exponent of reduction, and 0 < 𝑚 < 1.

In the case where the incompressibility factor is zero,
DeJong’s model reverts back to the Wright learning curve.
DeJong found that the incompressibility factorwas about 0.25
in assembly operations, and it increased (less learning) as
tasks became more uniform. In his study, the exponent of
reduction stayed at 0.32 corresponding to a learning rate of
80%.

Over the years, variants of Wright’s learning curve and
applications have been reported widely in many industries
and disciplines. Here are examples on the selected few of
them.Globerson andGold. [5] treated learning as a stochastic
process and derived statistical expressions to predict the
range of future performance. Jaber [6] provided a com-
prehensive review of various learning curve models and
discussed both the learning and forgetting phenomena.

Kara and Kayis [7] examined five learning curve models
along with simulation to estimate iteration cycles and project
completion time in concurrent engineering projects. Kull
et al. [8] compared four learning models and validated
various forms of power-law learning for the onlineweb-based
ordering experience. Gunawan [9] found learning rate to be
96% in sheet metal lean manufacturing operations. Boone
and Ganeshan [10] and Liao [11] examined productivity and
performance improvements in service organizations.

Nemet [12] found weak correlation between experience
learning and cost reductions in photovoltaic modules; plant
size and module efficiency had a stronger effect on cost
reductions. On the contrary, Lieberman [13] found a strong
and consistent learning effect on pricing in the chemical pro-
cessing industries based on data from 37 chemical products.
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Figure 3: Graph of quotation price versus learning model price for
filter.

Sinclair [14], using cost data for 221 products from a specialty
chemicals business unit, showed a learning rate of 88% for
purchasing of raw materials as compared to a learning rate of
only 97% from manufacturing of the products.

3. Generalized Learning Curve

After 76 years of examination since Wright [2] introduced
the concept, the term “learning curve” is synonymous with
a constant percentage improvement of an objective function
whenever the activity or effort is doubled. Using this postula-
tion, let us revisit the learning curve in the generalized exhibit
as shown in Figure 1.

The equation based on this foundational concept is simply

𝑌2𝑖 − 𝑌𝑡 = (𝑌𝑖 − 𝑌𝑡) 𝑅, (4)

where 𝑌𝑖 = initial value of an objective function at 𝑋 equals
to 𝑖, 𝑌2𝑖 = value of the objective function at 𝑋 equals to 2𝑖,
𝑌𝑡 = terminal value of the objective function as𝑋 approaches
infinity, 𝑅 = learning rate, and 𝑋 = activity level, which will
be generalized later.

The activity level “𝑋” is not shown earlier in (4) so that
the concept of an initial activity level variable “𝑖” can be
introduced first. The term “𝑌𝑖 − 𝑌𝑡” can be viewed as the
“learnable” portion of the total performance value that can
be “learned away” after a substantially large activity. The
terminal value also known as the asymptotical value can
either be finite or zero. By doubling the activity once, and then
again, the learning rate compounds twice and three times as
follows;

𝑌4𝑖 − 𝑌𝑡 = (𝑌𝑖 − 𝑌𝑡) 𝑅
2
,

𝑌8𝑖 − 𝑌𝑡 = (𝑌𝑖 − 𝑌𝑡) 𝑅
3
.

(5)

The general form of the equation with “n” doublings
becomes

𝑌2𝑛𝑖 − 𝑌𝑡 = (𝑌𝑖 − 𝑌𝑡) 𝑅
𝑛
. (6)

To generalize by letting 𝑥 = 2𝑛𝑖, then it can be shown that
𝑛 = log(𝑥/𝑖)/ log 2.
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Figure 4: Model summary for air compressor.
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Equation (6) becomes

𝑌𝑥 − 𝑌𝑡 = (𝑌𝑖 − 𝑌𝑡) 𝑅
log(𝑥/𝑖)/ log 2

, (7)

𝑌𝑥 = 𝑌𝑡 + (𝑌𝑖 − 𝑌𝑡) 𝑅
log(𝑥/𝑖)/ log 2

. (8)

In a more conventional form, the generalized learning
curve becomes

𝑌𝑥 = 𝑌𝑡 + (𝑌𝑖 − 𝑌𝑡) (
𝑥

𝑖
)
log𝑅/ log 2

, (9)

where 𝑥 = activity level, the independent variable, 𝑖 = initial
activity level, and 𝑌𝑥 = performance value at 𝑥 activity level.

The generalized learning curve, (9) (or (8)), maintains the
basic simplicity of the power curve and can be used for any
value of the initial activity level and terminal performance
value. In case “𝑖” is equal to one, (9) is equivalent to the
DeJong model. And additionally if “𝑌𝑡” is equal to zero, (9)
is the same as Wright Theodore’s learning curve model.

4. Application

In a similar effort as documented by Sinclair [14], the task
was to reduce the cost of a product without changing the
design. It became clear that any savings would have to come
from the purchasing of parts and assemblies, not from basic
product design. Existing supplier agreements posed an added
challenge because many parts were under contract for the
previously agreed on price. The only avenue of opportunity
came from the revised marketing forecast, which predicted
a 40% increase in initial product demand. This led to the
increase of parts’ purchasing quantity.

It was prudent to work with existing suppliers on critical
parts and, if necessary, to develop low cost suppliers on
noncritical parts. Suppliers were requested to provide quo-
tations on part pricing at three or four quantities of purchase.
Concurrently, should-cost analysis of parts was conducted
to somewhat validate the quotations. An experienced supply
chain group would determine the price versus volume data
and would fit them to the generalized learning curve model
by regression using the least square fit of the percent errors. In
this way, negotiations would be based on analytical insights,
and cost-pricing relationships could be established.

The coefficients of each part model provided a “direc-
tional” estimate of the fixed cost (𝑌𝑖 − 𝑌𝑡), variable cost (𝑌𝑡),
and the learning rate (𝑅). The estimated variable cost was
compared to the should-cost analysis.The estimated learning
rate was compared to the 85–88% guideline for purchased
parts published by Stewart et al. [15]. Furthermore, parts were
categorized into the following three groups: component off
the shelf COTS, minor modification of COTS, and custom
designed parts

If the part was a COTS, we further estimated the percent-
age of our purchase with respect to the production volume
of the supplier to understand leverage. Custom designed
parts are unique and have huge learning potentials. Based on
the previous comparisons and part classifications, a pricing
strategy for each part was relegated to one of the four likely
standards: cost-plus pricing, target return pricing, value-
based pricing, and psychological pricing. Supplier visits

and negotiations were conducted with a majority of the
existing/new and with/without contract in place suppliers.

5. Results and Discussion

The generalized learning curve model was coded in an MS
Excel spreadsheet. The built-in “solver” function was used
to perform a least square regression fit. Three examples
have been selected for discussions. Figure 2 shows the basic
structure of the model programmed using the equivalent
equation (8) (as opposed to (9)). The independent variable
“𝑋” is the part purchase quantity or volume. The dependent
variable “𝑌” is the part price (or cost to the company) per unit
at the corresponding volume.

The inputs are the supplier quotations at three volume-
cost pairs. In this case, the initial volume (cell C3) is 100 pieces
of a filter. The primary outputs (the initial guess box) are the
learning rate, model-calculated initial cost, and the terminal
cost. It should be noted that the learning rate (cell C4) applies
only to the learnable portion of the cost.The learnable portion
does not include the terminal cost, which can be finite or zero.

The calculated pseudolearning rates (column H), which
are based on the ratio of absolute costs, trend to a plateau
effect at higher volumes. By definition, the learning rate
is supposed to stay constant at each doubling of volume.
However, with a nonzero terminal cost, the prefix “pseudo”
is added to represent a learning rate that is changing with
each volume doubling. The average for the pseudo-learning
rate (H17) calculated within the quoted volume range may be
used for comparison in the absence of the constant learning
rate. The backward projected cost for the first unit (cell E12)
is also calculated using the learning curve model.

With only three volume-cost input pairs, the regression
may give a perfect fit as in this case. The supplier quotation
price (or purchaser cost) versus the model cost and the
general learning curve shape are plotted in Figure 3. The
pricing strategy for this filter part appears to be the cost-plus
pricing type because the terminal cost (cell C6) seems to be
in line with the variable cost. In general, the learnable cost
(cell C7) can be viewed as the fixed cost for the part.The high
first unit cost (cell E12) may be implicated by setup charges or
business development expenses.

The least square regression fit algorithm is quite robust
using just the default regression fit parameters. Convergence
to the best fit may take up to three iterations by inputting
initial guess with common sense that the learning rate is
between 50 and 99%, and the initial cost is higher than the
terminal cost. These three values from the initial guess will
be written over automatically after each iteration. Most of the
time, convergence takes only one iteration.

The second example is an air compressor part shown
in Figures 4 and 5. This time, there are four quotation
pair points preventing the possibility of a perfect fit. The
maximum regression error (column F) at any price point
is less than 1%, which is quite typical based on experience
with many pricing examples. The fitted terminal cost is zero,
which implies no plateau effect. Consequently, the learning
rate and the pseudo-learning rates are one and the same.
The air compressor is a custom design with an intricate
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Table 2: Learning rate of parts with no plateau.

Item no. Purchase part name Learning rate
1 Pressure sensor 84%
2 Air compressor 84%
3 Current sensor 88%
4 Gas sensor 90%
5 Ultracapacitor module 93%
6 Inductor 94%
7 Ultracapacitor assembly 94%
8 Air mass flow sensor Assembly 96%
9 NiMH battery (supplier A) 98%
10 High power NiMH battery 98%

Average 92%

Table 3: Average pseudo learning rate of parts with plateau.

Item no. Purchase part name Learning rate
1 T-fitting assembly 74%
2 Filter 77%
3 Radiator fan 92%
4 Li-ion battery 92%
5 Air filter 93%
6 Tracking regulator 95%
7 NiMH battery (supplier B) 99%

0 1000 2000 3000 4000
0

1000
2000
3000
4000
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6000

Quotation
𝑌

Power (𝑌)

Figure 5: Graph of quotation price versus learning model price for
air compressor.

assembly procedure. Based on the information gathered
from a supplier visit and diminishing variable cost from the
regression model, the pricing strategy for the air compressor
appears to be a target return pricing type.

The last example is a pressure sensor shown in Figures
6 and 7. The sensor example was selected because it gives
the largest percent (fit) error, a little over 6%, from a pool of
17 critical parts. The fitted terminal cost is also zero, so the
learning rate is the same as the pseudo-learning rates. The
regressed first unit price is reasonable, and the learning rate
is one of the relative best. It is a COTS item with an apparent
value-based pricing strategy.

Of the 17 regression analyses, 10 parts have a zero terminal
cost.Their learning rates are shown inTable 2.The range from

best to worst goes from 84 to 98%with an average of 92%.The
learning rates of the other seven parts are not as meaningful
because of the plateau effect as discussed earlier. However,
for comparison, the average pseudo-learning rates were
calculated as shown in Table 3. These learning curve ranges
are wider than the published range of 85 to 88% for purchased
parts (Stewart et al., [15]). While the published range is
slightly outdated because of the automation advancements,
it nevertheless provided the basis for price negotiations with
suppliers. Automation has been shown to reduce the amount
of learning possibility.

6. Conclusions

It is evident that the learning curve is a helpful tool for part
purchasing negotiations. In most cases, the curve fits well
with the supplier pricing quotations, assuming the fixed and
variable costs dominated. In the case where the fit is not as
smooth, it could be caused by the quasifixed cost or step
variable cost in the supplier pricing analysis.

The generalized learning curve provides two extra
degrees of freedom to handle the initial purchase quantity
variation and the law of diminishing return issue. The
regression gives the first unit cost and the terminal cost,
which can be viewed as the total (fixed plus the variable) cost,
and the variable cost, respectively. Normally, it is not a good
idea to extrapolate to the two ends significantly beyond the
supplier quotation range. This concern is supported by 10
out of 17 parts that have a zero terminal value, a surrogate
for the variable cost. Nevertheless, the insights extracted are
valuable.
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Figure 6: Model summary for pressure sensor.
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Figure 7: Graph of quotation price versus learning model price for
pressure sensor.

Early on with the company, almost all supplier quota-
tions were single point in nature for JIT purchases. Price
elasticity of parts was not apparent, which made negotiations
contentious and difficult. By doing the essential cost and
elasticity study upfront, negotiations can becomewin-win for
both parties. The supplier can win by openly discussing cost
saving measures and potential business opportunities, such
as gainsharing.

The practice of lean manufacturing has been proven to
be a crucial competitive advantage. The lean supply chain
is a newer concept. Companies need to share information
and coordinate demand forecasts, production planning, and
inventory replenishment with suppliers. Progressive com-
panies strive to build a highly collaborative business envi-
ronment and may want to consult with their suppliers on
business best practices.

Additionally, lean means doing one’s own homework and
minimizing the nonvalue added burdens on the suppliers.
Very often and truly believing “the customer is always right,”
companies can place unreasonable demands on suppliers
resulting in unnecessary (throw away) activities. The erosion
of supplier profit margins may negate any potential for cost
reduction negotiations.

With a “lean supply chain” approach, like the work
documented in this paper, promise for a win-win approach
in purchasing relationships is clearly feasible. One supplier
was willing to drop the price of a part by 50% with a small
packaging change. Many suppliers reduced their price to be
on par with a should-cost analysis and/or with published
learning rates. Yet, there were some suppliers who would
not budge due partially to being the only game in town,
financial demands (returns), or corporate culture. Overall, a
20% system cost reduction, purely through “purchasing,” was
achieved for a fuel cell product in production.
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