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We solve boundary value problems for elliptic semilinear equations in which no asymp-
totic behavior is prescribed for the nonlinear term.

1. Introduction

Many authors (beginning with Landesman and Lazer [1]) have studied resonance prob-
lems for semilinear elliptic partial differential equations of the form

−∆u− λ�u= f (x,u) in Ω, u= 0 on ∂Ω, (1.1)

where Ω is a smooth bounded domain in Rn, λ� is an eigenvalue of the linear problem

−∆u= λu in Ω, u= 0 on ∂Ω, (1.2)

and f (x, t) is a bounded Carathéodory function on Ω×R such that

f (x, t)−→ f±(x) a.e. as t −→±∞. (1.3)

Sufficient conditions were given on the functions f± to guarantee the existence of a solu-
tion of (1.1). (Some of the references are listed in the bibliography. They mention other
authors as well.)

In the present paper, we consider the situation in which (1.3) does not hold. In fact,
we do not require any knowledge of the asymptotic behavior of f (x, t) as |t| →∞. As an
example, we have the following.

Theorem 1.1. Assume that

sup
v∈E(λ�)

∫
Ω
F(x,v)dx <∞, (1.4)

where E(λ�) is the eigenspace of λ� and

F(x, t)=
∫ t

0
f (x,s)ds. (1.5)
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2 Semilinear problems with bounded nonlinear term

Assume also that if there is a sequence {uk} such that

∥∥P�uk∥∥−→∞,
∥∥(I −P�

)
uk
∥∥≤ C,

2
∫
Ω
F
(
x,uk

)
dx −→ b0,

f
(
x,uk

)−→ f (x) weakly in L2(Ω),

(1.6)

where f (x)⊥ E(λ�) and P� is the projection onto E(λ�), then

b0 ≤
(
f ,u1

)−B0, (1.7)

where B0 =
∫
ΩW0(x)dx, W0(x)= supt[(λ�−1− λ�)t2− 2F(x, t)], and u1 is the unique solu-

tion of

−∆u− λ�u= f , u⊥ E
(
λ�
)
. (1.8)

Then (1.1) has at least one solution. In particular, the conclusion holds if there is no sequence
satisfying (1.6).

A similar result holds if (1.4) is replaced by

inf
v∈E(λ�)

∫
Ω
F(x,v)dx >−∞. (1.9)

In proving these results we will make use of the following theorem [2].

Theorem 1.2. Let N be a closed subspace of a Hilbert space H and let M = N⊥. Assume
that at least one of the subspaces M, N is finite dimensional. Let G be a C1-functional on H
such that

m1 := inf
w∈M

sup
v∈N

G(v+w) <∞,

m0 := sup
v∈N

inf
w∈M

G(v+w) >−∞.
(1.10)

Then there are a constant c ∈R and a sequence {uk} ⊂H such that

m0 ≤ c ≤m1, G
(
uk
)−→ c, G′

(
uk
)−→ 0. (1.11)

2. The main theorem

We now state our basic result. Let Ω be a domain inRn, and let A be a selfadjoint operator
on L2(Ω) such that the following hold.

(A)

σe(A)⊂ (0,∞). (2.1)

(B) There is a function V(x) > 0 in L2(Ω) such that multiplication by V is a compact
operator from D :=D(|A|1/2) to L1(Ω).

(C) If u∈N(A) \ {0}, then u �= 0 a.e. in Ω.
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Let f (x, t) be a Carathéodory function on Ω×R satisfying
(D)

∣∣ f (x, t)
∣∣≤V(x). (2.2)

Let λ(λ) be the largest (smallest) negative (positive) point in σ(A), and define

W0(x) := sup
t

[
λt2− 2F(x, t)

]
, (2.3)

W1(x) := sup
t

[
2F(x, t)− λt2], (2.4)

where

F(x, t) :=
∫ t

0
f (x,s)ds. (2.5)

Note that (D) implies

−V(x)2λ≤W0(x), W1(x)≤ V(x)2

λ
. (2.6)

We also assume
(E)

sup
v∈N(A)

∫
Ω
F(x,v)dx <∞. (2.7)

(F) If there is a sequence {uk} ⊂D such that
∥∥P0uk

∥∥−→∞,
∥∥(I −P0

)
uk
∥∥≤ const,

2
∫
Ω
F
(
x,uk

)
dx −→ b0, f

(
x,uk

)−→ f (x) weakly in L2(Ω),
(2.8)

where f (x)∈ R(A) and P0 is the projection of D onto N(A), then b0 ≤ ( f ,u1)−B0, where
B0 =

∫
ΩW0(x)dx and u1 is the unique solution of

Au= f , u∈ R(A). (2.9)

We have the following.

Theorem 2.1. Under hypotheses (A)–(F), there is at least one solution of

Au= f (x,u), u∈D. (2.10)

Proof. We begin by letting

N ′ = ⊕λ<0N(A− λ), N =N ′ ⊕N(A), M =N⊥ ∩D, M =M′ ⊕N(A). (2.11)

By hypothesis (A), N ′, N(A), and N are finite dimensional, and

D =M⊕N ′ =M′ ⊕N. (2.12)
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It is easily verified that the functional

G(u) := (Au,u)− 2
∫
Ω
F(x,u)dx (2.13)

is continuously differentiable on D. We take

‖u‖2
D := (|A|u,u

)
+
∥∥P0u

∥∥2
(2.14)

as the norm squared on D. We have

(
G′(u),v

)= 2(Au,v)− 2
(
f (x,u),v

)
, u,v ∈D. (2.15)

Consequently (2.10) is equivalent to

G′(u)= 0, u∈D. (2.16)

Note that

(Av,v)≤ λ‖v‖2, v ∈N ′, (2.17)

λ‖w‖2 ≤ (Aw,w), w ∈M′. (2.18)

By hypothesis (D), (2.5), and (2.13),

G(v)≤ λ‖v‖2 + 2‖V‖ · ‖v‖ −→−∞ as ‖v‖ −→∞, v ∈N ′. (2.19)

Forw ∈M, we writew = y +w′, y ∈N(A),w′ ∈M′. Since |F(x,w)−F(x, y)| ≤V(x)|w′|
by (D) and (2.5), we have

G(w)≥ λ‖w′‖2− 2
∫
F(x, y)dx− 2‖V‖ · ‖w′‖. (2.20)

In view of (E), (2.19) and (2.20) imply

inf
M

G >−∞, sup
N ′

G <∞. (2.21)

We can now apply Theorem 1.2 to conclude that there is a sequence satisfying (1.11). Let

uk = vk +wk + ρk yk, vk ∈N ′, wk ∈M′, yk ∈N(A),
∥∥yk∥∥= 1, ρk ≥ 0. (2.22)

We claim that

∥∥uk∥∥D ≤ C. (2.23)

To see this, note that (1.11) and (2.15) imply

(
Auk,h

)− ( f (x,uk
)
,h
)= o

(‖h‖). (2.24)
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Taking h = vk, we see that ‖vk‖2 = O(‖vk‖) in view of (2.17) and (D). Thus ‖vk‖D is
bounded. Similarly, taking h=wk, we see that ‖wk‖D ≤ C. Suppose

ρk −→∞. (2.25)

There is a renamed subsequence such that yk → y in N(A). Clearly ‖y‖ = 1. Thus by
hypothesis (D), y �= 0 a.e. This means that ‖ρk yk‖→∞. Hence (2.8) holds. Let u′k = vk +
wk ∈ N(A)⊥ = R(A). Then ‖u′k‖D ≤ C. Thus there is a renamed subsequence such that
u′k → u1 weakly in D. By hypothesis (B), there is a renamed subsequence such that Vu′k →
Vu1 strongly in L1(Ω). Since V(x) > 0, there is another renamed subsequence such that
u′k → u1 a.e. in Ω. On the other hand, since fk(x)= f (x,uk(x)) is uniformly bounded in
L2(Ω) by hypothesis (D), there is an f (x)∈ L2(Ω) such that for a subsequence

fk(x)−→ f (x) weakly in L2(Ω). (2.26)

Since

(
Au′k,h

)− ( fk(x),h
)= o

(‖h‖D), h∈D, (2.27)

we see in the limit that u1 is a solution of (2.9), and consequently that f ∈ R(A). More-
over, we see by (2.27) that

(
A
[
u′k −u1

]
,h
)− ( fk − f ,h

)= o
(‖h‖D), h∈D. (2.28)

Write u1 = v1 +w1, and take h successively equal to vk − v1 and wk −w1. Then

∥∥vk − v1
∥∥2
D ≤ 2

∥∥V[vk − v1
]∥∥

1 + o
(∥∥v′k − v1

∥∥
D

)
,

∥∥wk −w1
∥∥2
D ≤ 2

∥∥V[wk −w1
]∥∥

1 + o
(∥∥wk −w1

∥∥
D

)
.

(2.29)

Hence u′k → u1 in D. Consequently,

(
Auk,uk

)= (Au′k,u′k
)= ( fk,u′k

)
+ o
(∥∥u′k

∥∥)−→ ( f ,u1
)
, (2.30)

2
∫
F
(
x,uk

)
dx = (Auk,uk

)−G
(
uk
)−→ ( f ,u1

)− c, (2.31)

where m0 ≤ c ≤m1. By (2.3)

G(v)≤ (Av,v)− λ‖v‖2 +B0, v ∈N ′. (2.32)

Thus m1 ≤ B0. Consider first the case m1 < B0. Then (2.31) implies b0 = ( f ,u1)− c, and
consequently, m0 ≤ ( f ,u1)− b0 ≤ m1 < B0. Thus b0 > ( f ,u1)− B0, contradicting (1.7).
This shows that the assumption (2.25) is not possible. Consequently (2.23) holds, and we
have a renamed subsequence such that uk → u strongly in D and a.e. in Ω. It now follows
from (2.27) that

(Au,h)= ( f (x,u),h
)
, h∈D, (2.33)
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showing that (2.10) indeed has a solution. Assume now thatm1 = B0. Let vk be a maximiz-
ing sequence in N ′ such that G(vk)→m1. By (2.19), ‖vk‖D ≤ C, and there is a renamed
subsequence such that vk → v0 in N ′. By continuity G(vk)→ G(v0). Hence G(v0)=m1 =
B0. Thus

λ
∥∥v0
∥∥2 ≤ 2

∫
F
(
x,v0

)
dx+B0 =

(
Av0,v0

)≤ λ‖v‖2. (2.34)

Consequently, (Av0,v0)= λ‖v0‖2 and Av0 = λv0. We also have

∫
Ω

[
2F
(
x,v0

)− λv2
0 +W0(x)

]
dx = 0. (2.35)

In view of (2.3), the integrand is nonnegative. Hence

2F
(
x,v0

)≡ λv2
0 −W0(x). (2.36)

Let

Φ(u)=
∫
Ω

[
2F(x,u)− λu2]dx. (2.37)

Then

Φ(u)≥Φ
(
v0
)
, u∈D,(

Φ′(u), y
)= 2

(
f (x,u),h

)− 2λ(u,h).
(2.38)

Thus

Φ′(v0
)= 2 f

(
x,v0

)− 2λv0 ≡ 0. (2.39)

This implies

Av0 = λv0 = f
(
x,v0

)
, (2.40)

and v0 is a solution of (2.10). This completes the proof. �

Theorem 2.2. In Theorem 2.1, replace hypotheses (E), (F) by
(E’)

inf
v∈N(A)

∫
Ω
F(x,v)dx >−∞, (2.41)

(F’) if (2.8) hold with f (x)∈ R(A), then

b0 ≥
(
f ,u1

)
+B1. (2.42)

Then (2.10) has at least one solution.
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Proof. We modify the proof of Theorem 2.1. This time we use the second decomposition
in (2.12). For v ∈N we write v = v′ + v0, where v′ ∈N ′ and v0 ∈N(A). By (D) and (2.5),

∫
Ω
F
(
x,v0

)
dx ≤

∫
Ω
F(x,v)dx+‖V‖ · ‖v′‖. (2.43)

Hence

G(v)≤ λ‖v′‖2 + 2‖V‖ · ‖v′‖− 2
∫
F
(
x,v0

)
dx, v ∈N. (2.44)

Consequently,

m1 = sup
N

G <∞. (2.45)

On the other hand

G(w)≥ λ‖w‖2− 2‖V‖ · ‖w‖, w ∈M′, (2.46)

so that

m0 = inf
M′

G >−∞. (2.47)

It now follows from Theorem 1.2 that there is a sequence {uk} ⊂D satisfying (1.11). We
now follow the proof of Theorem 2.1 from (2.22) to (2.31). By (2.4),

G(w)≥ (Aw,w)= λ‖w‖2−B1, w ∈M′, (2.48)

where B1 =
∫
ΩW1(x)dx. Thus m0 ≥ −B1. Assume first that m0 > −B1. Then (1.11) and

(2.31) imply

−B1 <m0 ≤
(
f ,u1

)− b0, (2.49)

contradicting (2.42). Thus (2.25) cannot hold, and we obtain a solution of (2.10) as in
the proof of Theorem 2.1. If m0 = −B1, let {wk} ⊂M′ be a minimizing sequence such
that wk →w0 weakly in D,Vwk →Vw0 in L1(Ω) and a.e. in Ω. By hypothesis (D),

∫
Ω

[
F
(
x,wk

)−F
(
x,w0

)]
dx =

∫
Ω

∫ 1

0
f
(
x,w0 + θ

(
wk −w0

))(
wk −w0

)
dθdx −→ 0.

(2.50)

Thus G is weakly lower semicontinuous, and

G
(
w0
)≤ limG

(
wk
)=m0−B1. (2.51)

Hence

λw0 = f
(
x,w0

)≤ 2
∫
F
(
x,w0

)−B1 ≤ λ
∥∥w0

∥∥2
, (2.52)
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and we proceed as before to show that

Aw0 = λw0 = f
(
x,w0

)
. (2.53)

The proof is complete. �
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