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We prove some existence theorems regarding solutions to boundary value problems for
systems of second-order discrete inclusions. For a certain class of right-hand sides, we
present some lemmas showing that all solutions to discrete second-order inclusions sat-
isfy an a priori bound. Then we apply these a priori bounds, in conjunction with an ap-
propriate fixed point theorem for inclusions, to obtain the existence of solutions. The
theory is highlighted with several examples.

1. Introduction

The theory of differential inclusions has received much attention due to its versatility and
generality. For example, differential inclusions can accurately model discontinuous pro-
cesses, such as systems with dry friction; the work of an electric oscillator; and autopilot
(and other) control systems [8]. When considering these (or other) situations in discrete
time, the modeling process gives rise to a discrete (or difference) inclusion, rather than a
differential inclusion. In many cases, considering the model in discrete time gives a more
precise or realistic description [1].

LetX andY be two normed spaces. A set-valued mapG : X → Y is a map that associates
with any x ∈ X a set G(x) ⊂ Y . By CK(E), we denote the set of nonempty, convex, and
closed subsets of a Banach space E. We say that G :Rn→ CK(Rn) is upper semicontinuous
if for all sequences {ui} ⊆Rn, {vi} ⊆Rn, where i∈N, the conditions ui→ u0, vi→ v0, and
vi ∈ G(ui) imply that v0 ∈ G(u0). Since the upper semicontinuity plays an essential role
in this paper, we illustrate this notion by the simple example [5, Example 4.1.1].

Example 1.1. The set-valued map f1 :R→R defined by

f1(t)=
{0} for t = 0,

[0,1] for t ∈R \ {0}, (1.1)

is not upper semicontinuous. On the other hand, the set-valued map f2 :R→R defined
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by

f2(t)=
[0,1] for t = 0,

{0} for t ∈R \ {0}, (1.2)

is upper semicontinuous.

For more information about set-valued maps and differential inclusions, see Aubin
and Cellina [3], Smirnov [8], or Erbe, Ma and Tisdell [6].

We are interested in the following boundary value problem (BVP) for second-order
discrete inclusions:

∆2y(k− 1)∈ F
(
k, y(k),∆y(k)

)
, k = 1, . . . ,T , y(0)=A, y(T + 1)= B, (1.3)

where A,B ∈ Rd are constants and F : {1, . . . ,T} ×Rd ×Rd → CK(Rd) is a set-valued
map. A solution ȳ = {y(k)}T+1

k=0 ∈R(T+2)d to (1.3) is a vector ȳ = {y(0), . . . , y(T + 1)} such
that each element y(k)∈Rd satisfies the discrete inclusion for k = 1, . . . ,T and the bound-
ary conditions for k = 0 and k = T + 1.

In Section 2, we show that under certain conditions on the right-hand side F, all so-
lutions of (1.3) are bounded. The inequalities employed rely on growth conditions on F
and on appropriate discrete maximum principles.

Section 3 contains the appropriate operator formulations for (1.3) to be considered as
a fixed point problem.

In Section 4, we apply the results of Sections 2 and 3 to prove the existence of solutions
to (1.3), in conjunction with the following fixed-point theorem [2, Theorem 1.2].

Theorem 1.2. Let E be a Banach space, U an open subset of E, and 0 ∈ U . Suppose that
P : U → CK(E) is an upper semicontinuous and compact map. Then either

(A1) P has a fixed point in U , or
(A2) there exist u∈ ∂U and λ∈ (0,1) with u∈ λP(u).

To prove the compactness of the image of an upper semicontinuous map, we will use
a criterion which can be found in Berge [4, théorème VI.3].

Theorem 1.3. Let P : X → Y be an upper semicontinuous map. If K is a compact set in X ,
then P(K) is a compact set in Y .

In [2], Agarwal et al. gave conditions under which the following BVP has at least one
solution:

∆2y(k− 1)∈ F
(
k, y(k)

)
, k = 1, . . . ,T , y(0)= 0, y(T + 1)= 0, (1.4)

where F : {1, . . . ,T}×R→ CK(R). In comparison with the results and conditions in [2],
we introduce new inequalities unrelated to those in [2] and we also extend some of the
results in [2].



P. Stehlı́k and C. C. Tisdell 155

2. A priori bound

In this section, we prove two different a priori bound results for the following system of
BVPs for second-order discrete inclusions:

∆2y(k− 1)∈ λF
(
k, y(k),∆y(k)

)
, k = 1, . . . ,T , y(0)= λA, y(T + 1)= λB,

(2.1)

where λ∈ [0,1].
The study of the above family of BVPs is motivated by the family of inclusions in

Theorem 1.2, u∈ λP(u).
We denote 〈·,·〉 as the Euclidean inner product and by ‖ · ‖ the Euclidean norm on

Rn.

Lemma 2.1. Let F : {1, . . . ,T}×Rd ×Rd → CK(Rd) be a set-valued map. If there exist con-
stants α≥ 0 and K ≥ 0 such that

‖φ‖ ≤ α
(
2〈p,φ〉+‖q‖2)+K , for k = 1, . . . ,T and all (p,q)∈R2d, φ ∈ F(k, p,q),

(2.2)

then all solutions ȳ of BVP for the system of discrete inclusions (2.1) satisfy∥∥y(k)
∥∥ < R, k = 0, . . . ,T + 1, (2.3)

for λ∈ [0,1], and R is defined by

R := αβ2 +β+K
(T + 1)2

8
+ 1, β :=max

{‖A‖,‖B‖}. (2.4)

Proof. We suppose that ȳ is a solution of (2.1). Since we work on a discrete topology,
every solution of (2.1) is a solution of a system of discrete BVPs,

∆2y(k− 1)= λ f̂
(
k, y(k),∆y(k)

)
, k = 1, . . . ,T , y(0)= λA, y(T + 1)= λB,

(2.5)

where f̂ : {1, . . . ,T}×Rd ×Rd→CK(Rd) is a single-valued function such that f̂ (k, p,q)∈
F(k, p,q) for every k = 1, . . . ,T and (p,q)∈R2d. In the theory of the set-valued map, f̂ is
called a selector of F.

Then ȳ solves the summation equation

y(k)= λΦ(k) + λ
T∑
l=1

G(k, l) f̂
(
l, y(l),∆y(l)

)
, k = 0, . . . ,T + 1, (2.6)

where

λΦ(k)= λ
A(T + 1) + (B−A)k

T + 1
, (2.7)
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and G : {0, . . . ,T + 1}×{1, . . . ,T} →Rd defined by

G(k, l)=


− 1
T + 1

l(T + 1− k), l = 1, . . . ,k− 1,

− 1
T + 1

k(T + 1− l), l = k, . . . ,T ,

(2.8)

is Green’s function for the BVP,

∆2y(k− 1)= 0, k = 1, . . . ,T , y(0)= 0, y(T + 1)= 0. (2.9)

Since ‖λΦ(k)‖ ≤ β for each k = 0, . . . ,T + 1, we obtain that

∥∥y(k)
∥∥≤ β+

T∑
l=1

∣∣G(k, l)
∣∣λ∥∥∥ f̂ (l, y(l),∆y(l)

)∥∥∥. (2.10)

Using (2.2), we have that

∥∥y(k)
∥∥≤ β+

T∑
l=1

∣∣G(k, l)
∣∣λ{α[2

〈
y(l), f̂

(
l, y(l),∆y(l)

)〉
+
∥∥∆y(l)

∥∥2
]

+K
}

≤ β+
T∑
l=1

∣∣G(k, l)
∣∣{α[2

〈
y(l),λ f̂

(
l, y(l),∆y(l)

)〉
+
∥∥∆y(l)

∥∥2
]

+K
}
.

(2.11)

Define

r(k) := ∥∥y(k)
∥∥2

, k = 0, . . . ,T + 1, (2.12)

and use the discrete product rule to calculate the second difference of r at the point k− 1
to obtain

∆2r(k− 1)= ∥∥∆y(k)
∥∥2

+ 2
〈
y(k),∆2y(k− 1)

〉
+
∥∥∆y(k− 1)

∥∥2
. (2.13)

By using the first equation in (2.5), we deduce that

∆2r(k− 1)≥ ∥∥∆y(k)
∥∥2

+ 2
〈
y(k),λ f̂

(
k, y(k),∆y(k)

)〉
. (2.14)

We install this into (2.11) to obtain that

∥∥y(k)
∥∥≤ β+α

T∑
l=1

∣∣G(k, l)
∣∣∆2r(l− 1) +

T∑
l=1

∣∣G(k, l)
∣∣K. (2.15)
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Using (2.8) we make the following computations:

T∑
l=1

∣∣G(k, l)
∣∣∆2r(l− 1)= T + 1− k

T + 1

k−1∑
l=1

l∆2r(l− 1) +
k

T + 1

T∑
l=k

(T + 1− l)∆2r(l− 1)

= T + 1− k

T + 1

([
l∆r(l− 1)

]k
1−

k−1∑
l=1

∆r(l)

)

+
k

T + 1

([
(T + 1− l)∆r(l− 1)

]T+1
k +

T∑
l=k

∆r(l)

)

= T + 1− k

T + 1

(
k∆r(k− 1)−∆r(0)− r(k) + r(1)

)
+

k

T + 1

(− (T + 1− k)∆r(k− 1) + r(T + 1)− r(k)
)

= T + 1− k

T + 1
r(0) +

k

T + 1
r(T + 1)− r(k)≤ β2.

(2.16)

Finally, if we consider this estimation and (see, e.g., [7, Exercise 6.20])

max
k∈{0,...,T+1}

T∑
l=1

∣∣G(k, l)
∣∣≤ (T + 1)2

8
, (2.17)

we rewrite (2.15) as

∥∥y(k)
∥∥≤ β+αβ2 +K

(T + 1)2

8
< R, k = 0, . . . ,T + 1, (2.18)

and this concludes the proof. �

Definition 2.2. Let R > 0 be a constant. Define the set DR ⊂ {1, . . . ,T}×Rd ×Rd by the
set containing all triplets (k, p,q) such that

k = 1, . . . ,T , (p,q)∈R2d : ‖p‖ ≥ R, 2〈p,q〉+‖q‖2 ≤ 0. (2.19)

By using the same selector technique as above, but employing an unrelated inequality,
we now prove the second a priori bound result.

Lemma 2.3. Let R > 0 be a constant such that

max
{‖A‖,‖B‖} < R, (2.20)

and let F : {1, . . . ,T}×Rd ×Rd → CK(Rd) be a set-valued map. If

2
〈
p,φ

〉
+‖q‖2 > 0, for every (k, p,q)∈DR and all φ∈ F(k, p,q), (2.21)

then all solutions ȳ for the system of discrete inclusions (2.1) satisfy∥∥y(k)
∥∥ < R, k = 0, . . . ,T + 1, (2.22)

for λ∈ [0,1].
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Proof. Suppose that ȳ is a solution of (2.1). As in the previous proof, we can deduce that

ȳ is a solution of (2.5) for some selector f̂ (k, p,q)∈ F(k, p,q).
Assume that the conclusion is not true. Then the function r(k) := ‖y(k)‖2−R2 must

have a nonnegative maximum in {0, . . . ,T + 1}. From the assumption (2.20), this maxi-
mum must be achieved in {1, . . . ,T}. Choose c ∈ {1, . . . ,T} such that r(c)=max{r(k); k∈
{1, . . . ,T}} and suppose that there is no k < c for which r(k)= r(c). This choice of c im-
plies that the conditions

∆r(c)≤ 0, (2.23)

∆2r(c− 1)≤ 0 (2.24)

must be satisfied simultaneously. Since

∆r(c)= 〈y(c) + y(c+ 1),∆y(c)
〉= 〈2y(c) +∆y(c),∆y(c)

〉
= 2

〈
y(c),∆y(c)

〉
+
∥∥∆y(c)

∥∥2 (2.25)

holds, we rewrite (2.23) as

2
〈
y(c),∆y(c)

〉
+
∥∥∆y(c)

∥∥2 ≤ 0. (2.26)

Similarly as in the proof of Lemma 2.1, we obtain with the help of the product rule

∆2r(c− 1)≥ ∥∥∆y(c)
∥∥2

+ 2
〈
y(c), f̂

(
c, y(c),∆y(c)

)〉
> 0, (2.27)

which contradicts (2.24). Hence, ‖y(k)‖ < R for k = 0, . . . ,T + 1. �

Lemma 2.3 is a natural extension to the lower and upper solution methods used in [2]
for the case d = 1. If the right-hand side in (1.3) is a single-valued map, then we have the
following corollary to Lemma 2.3 for systems of discrete BVPs.

Corollary 2.4. Let R > 0 be a constant. If

2
〈
p,F(k, p,q)

〉
+‖q‖2 > 0, ∀(k, p,q)∈DR, (2.28)

max
{‖A‖,‖B‖} < R, (2.29)

then all solutions ȳ of (2.5) satisfy (2.22) for λ∈ [0,1].

Remark 2.5. Note that if F(k, y(k),∆y(k))= F(k, y(k)), then in place of (2.28), we would
require only

〈
p,F(k, p)

〉
> 0, ∀k = 1, . . . ,T and all p ∈Rd : ‖p‖ ≥ R (2.30)

to be satisfied.
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The advantage of (2.19) rather than assuming (2.28) for, say, all q ∈Rd is highlighted
in the following example.

Example 2.6. Consider the single, scalar-valued function f (k, p,q) = p3 − q. For all q ∈
R, we have that

2p f (k, p,q) + q2 = 2p4− 2pq+ q2, (2.31)

and for all |p| ≥ R, we can find q ∈R such that (2.31) is negative. But on the reduced set
DR, the assumption (2.19) implies that 2pq+ q2 ≤ 0 (−2pq ≥ q2 equivalently), and thus

2p f (k, p,q) + q2 = 2p4− 2pq+ q2 ≥ 2p4 + q2 + q2 > 0, (2.32)

for all (p,q)∈R2, |p|≥R, such that (2.19) holds for anyR>0. Hence we can use Corollary
2.4 to prove the a priori bound for the discrete BVP,

∆2y(k− 1)= λy3(k)− λ∆y(k), k = 1, . . . ,T , y(0)= λA, y(T + 1)= λB,
(2.33)

where λ∈ [0,1].

3. Operator formulation

In this section, we formulate the necessary operators to apply Theorem 1.2.
Solving (2.1) is equivalent to finding a vector ȳ = {y(k)}T+1

k=0 ∈R(T+2)d which satisfies

y(k)∈ λΦ(k) + λ
T∑
l=1

G(k, l)F
(
l, y(l),∆y(l)

)
, k = 0, . . . ,T + 1, (3.1)

where λΦ is the function defined by (2.7) and G : {0, . . . ,T + 1}×{1, . . . ,T} →Rd, defined
by (2.8), is the Green’s function for the BVP

∆2y(k− 1)= 0, k = 0, . . . ,T , y(0)= 0, y(T + 1)= 0. (3.2)

We suppose that F : {1, . . . ,T}×Rd ×Rd → CK(Rd) then we can define the operator � :
R(T+2)d → CK(RTd) by

�(u) := {v ∈RTd : v(k)∈ F
(
k,u(k),∆u(k)

)
, k = 1, . . . ,T

}
, (3.3)

and the operator � :RTd →R(T+2)d by

�y(k) :=
T∑
l=1

G(k, l)y(l), k = 1, . . . ,T. (3.4)

The discreteness of topology implies that � is continuous and linear, and thus, we have
� ◦� :R(T+2)d → CK(R(T+2)d). We can rewrite (3.1) as

ȳ ∈ �̂( ȳ), (3.5)
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where �̂ :R(T+2)d → CK(R(T+2)d) is defined by

�̂( ȳ) := λ� ◦�( ȳ) + λΦ. (3.6)

In order to use Theorem 1.2, we need to define a suitable open subset U of the Banach
space R(T+2)d and the operator � : U → CK(R(T+2)d). Introduce U ⊂R(T+2)d by

U := {u∈R(T+2)d :
∥∥u(k)

∥∥ < R, k = 0, . . . ,T + 1
}

, (3.7)

where R is the constant defined either in (2.4) or in Lemma 2.3. Next, we define the op-
erator � : U → CK(R(T+2)d) by

�= �̂|U. (3.8)

To satisfy the remaining assumptions of Theorem 1.2 on the operator �, we need to prove
that it is upper semicontinuous and compact.

Lemma 3.1. If F satisfies
(US) F(k, p,q) is upper semicontinuous for all (p,q) ∈ R2d, for k = 1, . . . ,T and the as-

sumptions either of Lemma 2.1 or Lemma 2.3 hold,
then the operator � is upper semicontinuous and compact.

Proof. Consider the sequences {ui}∞i=1 and {wi}∞i=1 such that wi ∈�(ui) and ui → u0 and
wi → w0 as i→∞ in R(T+2)d. To prove our assertion, we must show that w0 ∈�(u0). For
each i∈N, there exists vi ∈RTd such that wi = λ�vi + λΦ and vi ∈�(ui). Since condition
(US) holds and U is a compact set, we can deduce from Theorem 1.3 that �(U) is a
compact set. This implies that there exists at least a subsequence {vin}∞n=1 of {vi}∞i=1 such
that vin → v0 ∈�(u0). Since � is linear and continuous, we have that

wi = λ�vi + λΦ−→ λ�v0 + λΦ, (3.9)

and noting that wi→w0 in R(T+2)d, we can conclude that

w0 ∈�
(
u0
)
. (3.10)

This proves that � is upper semicontinuous and we can use Theorem 1.3 to obtain the
compactness of �. �

4. Existence results and examples

In this section, we combine the theory of Sections 2 and 3 to formulate existence results.

Theorem 4.1. If the set-valued map F : {1, . . . ,T}×Rd ×Rd → CK(Rd) satisfies (US) and
the assumptions of Lemma 2.1 hold, then the system of discrete inclusion boundary value
problems (1.3) has a solution.

Proof. We showed in the previous section that the problem of existence of a solution of
(1.3) (where F satisfies the assumptions of Lemma 2.1) is equivalent to the problem of
existence of a fixed point of �( ȳ), where � : U → CK(R(T+2)d) is defined in (3.8) and U is
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defined in (3.7). Since � is compact and upper semicontinuous (cf. Lemma 3.1), we are
ready to use Theorem 1.2, and thanks to the conclusion of Lemma 2.1, we can exclude the
possibility (A2) there. Therefore the operator � has a fixed point and the problem (1.3)
has a solution. �

We illustrate the above result on the following example with n= 1.

Example 4.2. Let F̃ : {1, . . . ,T}×R→ CK(R) be a set-valued map defined by

F̃(k, p) :=
⋃

ε∈[−1;1]

(k± ε)p5. (4.1)

Consider the BVP

∆2y(k− 1)∈ F̃
(
k, y(k)

)
, k = 1, . . . ,T , y(0)= A, y(T + 1)= B, (4.2)

where A,B ∈R. Since k ∈ {1, . . . ,T} and |ε| ≤ 1, the inequality (k± ε)p5 ≤ (k± ε)(p6 +

1) holds and thus for every selector f̃ (k, p)∈ F̃(k, p), we have that

∣∣∣ f̃ (k, p)
∣∣∣≤ (k± ε)

(
p6 + 1

)= p(k± ε)p5 + t± ε
≤ p f̃ (k, p) +T + 1,

(4.3)

and the inequality (2.2) is satisfied with α = 1/2 and K = T + 1. The set-valued map F̃
satisfies (US) and thus we can use Theorem 4.1 to prove that the problem (4.2) has a
solution.

As a natural corollary to Theorem 4.1, we have the following result.

Corollary 4.3. Let K ≥ 0 be a constant. If the set-valued map F : {1, . . . ,T}×Rd ×Rd →
CK(Rd) satisfies (US) and

‖φ‖ ≤ K , for k = 1, . . . ,T and all (p,q)∈R2d, φ ∈ F(k, p,q), (4.4)

then the system of discrete inclusion boundary value problems (1.3) has a solution.

Proof. See that this is a special case of Theorem 4.1 with α= 0. �

We now prove an existence result for the conditions from Lemma 2.3.

Theorem 4.4. If the set-valued map F : {1, . . . ,T}×Rd ×Rd → CK(Rd) satisfies (US) and
the assumptions of Lemma 2.3 hold, then the system of discrete inclusion boundary value
problems (1.3) has a solution.

Proof. The proof is identical to that of Theorem 4.1. The only difference consists of the
different definition of the constant R when defining the set U , see Lemma 2.3. �

We illustrate the above result with an example in two dimensions.
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Example 4.5. Let F̂ : {1, . . . ,T}×R2×R2 → CK(R2) be a set-valued map defined by

F̂(k, p,q) :=
⋃

ε∈(0;1]

(
εkp1− q1

p3
2

(
1 + q2

1

)− p2− q2

)
, (4.5)

where p =
(
p1

p2

)
and q =

(
q1

q2

)
. Consider the BVP

∆2y(k− 1)∈ F̂
(
k, y(k),∆y(k)

)
, k = 1, . . . ,T , y(0)=A, y(T + 1)= B, (4.6)

where A,B ∈ R2. Let f̂ (k, p,q) ∈ F̂(k, p,q) be an arbitrary selector for all k = 1, . . . ,T ,
q, p ∈Rd, ‖p‖ ≥ R, where R > 1 and p, q are such that 2〈p,q〉+‖q‖2 ≤ 0, for example,

2p1q1 + 2p2q2 + q2
1 + q2

2 ≤ 0. (4.7)

We make the following calculation:

2
〈
p, f̂ (k, p,q)

〉
+‖q‖2 = 2

〈(
p1

p2

)
,

(
kp1− q1

p3
2

(
1 + q2

1

)− p2− q2

)〉
+ q2

1 + q2
2

= 2εkp2
1 + 2p4

2(1 + q2
1)− 2p2

2− 2p1q1− 2p2q2 + q2
1 + q2

2.

(4.8)

Using (4.7), we can provide the estimation

2
〈
p, f̂ (k, p,q)

〉
+‖q‖2 ≥ 2εkp2

1 + 2p4
2

(
1 + q2

1

)− p2
2 + 2q2

1 + 2q2
2 > 0, (4.9)

since either εp2
1 > 0 or p4

2(1 + q2
1)− p2

2 > 0. The set-valued map F̂ satisfies also the con-
dition (US), and thus we can use Theorem 4.4 to prove that the problem (4.6) has a
solution.
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