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We derive existence results for initial and boundary value problems in lattice-ordered
Banach spaces. The considered problems can be singular, functional, discontinuous, and
nonlocal. Concrete examples are also solved.

1. Introduction

In this paper, we apply fixed point results for mappings in partially ordered function
spaces to derive existence results for initial and boundary value problems in an ordered
Banach space E. Throughout this paper, we assume that E satisfies one of the following
hypotheses.

(A) E is a Banach lattice whose every norm-bounded and increasing sequence is
strongly convergent.

(B) E is a reflexive lattice-ordered Banach space whose lattice operation E � x �→ x+ =
sup{0,x} is continuous and ‖x+‖ ≤ ‖x‖ for all x ∈ E.

We note that condition (A) is equivalent with E being a weakly complete Banach lat-
tice, see, for example, [11].

The problems that will be considered in this paper include many kinds of special types,
such as, for example, the following:

(1) the differential equations may be singular;
(2) both the differential equations and the initial or boundary conditions may de-

pend functionally on the unknown function;
(3) both the differential equations and the initial or boundary conditions may con-

tain discontinuous nonlinearities;
(5) problems on unbounded intervals;
(6) finite and infinite systems of initial and boundary value problems;
(7) problems of random type.

The plan of the paper is as follows. In Section 2, we provide the basic abstract fixed point
result which will be used in later sections. In Section 3, we deal with first-order initial
value problems, and in Sections 4 and 5, second-order initial and boundary value prob-
lems are considered. Concrete examples are solved to demonstrate the applicability of the
obtained results.
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2. Preliminaries

We will start with the following auxiliary result.

Lemma 2.1. Let J = (a,b)⊂R be some interval. Given a function w : J →R+, denote

P = {u∈ C(J ,E) | ∥∥u(t)
∥∥≤w(t) for each t ∈ J

}
, (2.1)

and assume that C(J ,E) is ordered pointwise. Then the following results hold.
(a) The zero function 0 is an order center of P in the sense that sup{0,v} and inf{0,v}

belong to P for each v ∈ P.
(b) If U is an equicontinuous subset of P, then U is relatively well-order complete in P in

the sense that all well-ordered and inversely well-ordered chains of U have supremums
and infimums in P.

Proof. (a) In both cases (A) and (B), the mapping x �→ x+ is continuous in E and ‖x+‖ ≤
‖x‖ for each x ∈ E. Thus, for each v ∈ C(J ,E), the mapping v+ = sup{0,v} = t �→ sup{0,
v(t)} belongs to C(J ,E), and ‖v+(t)‖ ≤ ‖v(t)‖ for all t ∈ J . These properties ensure that
v+ = sup{0,v}, v− = sup{0,−v}, and inf{0,v} = −v− belong to P for each v ∈ P.

(b) Assume next thatU is an equicontinuous subset of P. If E is reflexive, then bounded
and monotone sequences converge weakly in E. Consequently, if W is a well-ordered
chain in U , then all its monotone sequences converge pointwise in E strongly in case (A)
and weakly in case (B). Because W is also equicontinuous, it follows from [8, Proposition
4.3 and Remarks 4.1] that u= supW exists in C(J ,E), and there is an increasing sequence
(un) in W which converges pointwise strongly in case (A) and weakly in the case (B) to
u. Moreover, in both cases,

∥∥u(t)
∥∥≤ liminf

n→∞
∥∥un(t)

∥∥≤w(t), t ∈ J , (2.2)

so that u= supW ∈ P by the definition (2.1) of P.
If W is an inversely well-ordered chain in U , then −W is a well-ordered chain in −U .

The above proof ensures that v = sup(−W) exists in C(J ,E) and belongs to P. Thus,
inf W = −v exists and belongs to P. Noticing also that each well-ordered chain has a
minimum and each inversely well-ordered chain has a maximum, the proof of (b) is
complete. �

Let P be a nonempty subset of C(J ,E). We say that a mapping G : P → P is increasing
if Gu≤ Gv whenever u,v ∈ P and u≤ v. Given a subset U of P, we say that u∈U is the
least fixed point of G in U if u=Gu, and if u≤ v whenever v ∈U and v =Gv. The greatest
fixed point of G in U is defined similarly, by reversing the inequality. A fixed point u of G
is called minimal, if v ∈ P, v =Gv, and v ≤ u imply v = u, and maximal, if v ∈ P, v =Gv,
and u≤ v imply v = u.

Our main existence results in later sections are based on the following fixed point
lemma.
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Lemma 2.2. Let P be given by (2.1), and let G : P→ P be an increasing mapping whose range
G[P] is equicontinuous. Then G has

(a) minimal and maximal fixed points;
(b) least and greatest fixed points u∗ and u∗ in {u∈ P | u≤ u≤ u}, where u is the great-

est solution of the equation

u(t)=−(Gu(t)
)−

, t ∈ J , (2.3)

and u is the least solution of the equation

u(t)= (Gu(t)
)+

, t ∈ J. (2.4)

Moreover, u∗ and u∗ are increasing with respect to G.

Proof. The hypotheses imply by Lemma 2.1 that P has an order center, and that G[P]
is relatively well-order complete in P. Thus the assertions follow from [9, Proposition
2.3], whose proof is based on a recursion method and generalized iteration methods in-
troduced in [10]. For instance, u and u∗ can be obtained as follows. The union C of
those well-ordered subsets A of P whose elements satisfy u= sup{(Gv)+ | v ∈A, v < u} is
well-ordered and u=maxC. The union D of those inversely well-ordered subsets B of P
whose elements are of the form u= inf{u,{Gv | v ∈ B, u < v}} is inversely well-ordered,
and u∗ =minD. By dual reasoning, one obtains u and u∗. �

Remark 2.3. In the case when the sets C and D in the above proof are finite, the fixed
point u∗ of G is the last member of the finite sequence D∪C, which can be determined
by the following.

Algorithm 2.4. u0 ≡ 0: For n from 0 while un �= Gun do: If un < (Gun)+, then un+1 =
(Gun)+ else un+1 =Gun.

3. Existence results for first-order initial value problems

In this section, we study initial value problems which can be represented in the form

d

dt

(
p(t)u(t)

)= f (t,u) for almost every (a.e.) t ∈ J := (a,b),

lim
t→a+

p(t)u(t)= c(u),
(3.1)

where −∞≤ a < b ≤∞, p ∈ C(J), f : J ×C(J ,E)→ E, and c : C(J ,E)→ E.
We are looking for solutions of (3.1) from the set

X := {u∈ C(J ,E) | pu is locally absolutely continuous and a.e. differentiable
}
. (3.2)

We will first convert the IVP (3.1) to an integral equation.

Lemma 3.1. Assume that p(t) > 0 on J , and that u∈ X and f (·,u)∈ L1(J ,E). Then u is a
solution of the IVP (3.1) if and only if u satisfies the integral equation

u(t)= 1
p(t)

(
c(u) +

∫ t

a
f (x,u)dx

)
, t ∈ J. (3.3)
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Proof. Assume that u is a solution of (3.1). The differential equation of (3.1) and the
definition (3.2) of X imply that

∫ s

r

d

dt

(
p(t)u(t)

)
dt = p(s)u(s)− p(r)u(r)=

∫ s

r
f (t,u)dt, a < r ≤ s < b. (3.4)

In view of this result and the initial condition of (3.1), we obtain (3.3).
The converse part of the proof is trivial. �

Now we are ready to prove our main existence result for the IVP (3.1). Assuming that
L1(J ,E) is ordered a.e. pointwise, and that C(J ,E) is ordered pointwise, we impose the
following hypotheses on the functions p, f , and c:

(p) p(t) > 0 for all t ∈ J ,
(f0) f (·,u) is strongly measurable, and ‖ f (·,u)‖ ≤ h0 ∈ L1(J) for all u∈ C(J ,E),
(f1) f (·,u)≤ f (·,v) whenever u,v ∈ C(J ,E) and u≤ v,
(c) c is bounded, and c(u)≤ c(v) whenever u,v ∈ C(J ,E) and u≤ v.

Theorem 3.2. Assume that the hypotheses (p), (f0), (f1), and (c) hold, and assume that the
space X defined by (3.2) is ordered pointwise. Then the IVP (3.1) has

(a) minimal and maximal solutions in X ;
(b) least and greatest solutions u∗ and u∗ in {u∈ X | u≤ u≤ u}, where u is the greatest

solution of equation

u(t)=− 1
p(t)

(
c(u) +

∫ t

a
f (x,u)dx

)−
, t ∈ J , (3.5)

and u is the least solution of equation

u(t)= 1
p(t)

(
c(u) +

∫ t

a
f (x,u)dx

)+

, t ∈ J. (3.6)

Moreover, u∗ and u∗ are increasing with respect to c and f .

Proof. Let P be defined by (2.1) with w given by

w(t) := 1
p(t)

(
c0 +

∫ t

a
h0(x)dx

)
, t ∈ J , (3.7)

where c0 = sup{‖c(u)‖ | u∈ C(J ,E)}, and the function h0 ∈ L1(J) is as in the hypothesis
(f0). The given hypotheses imply that the relation

Gu(t)= 1
p(t)

(
c(u) +

∫ t

a
f (x,u)dx

)
, t ∈ J , (3.8)

defines an increasing mapping G : P → P, and that G[P] is an equicontinuous subset of
P. Thus G satisfies the hypotheses of Lemma 2.2. Moreover, it is easy to verify that each
solution of (3.1) in X belongs to P, and that Gu increases if c(u) or f (·,u) increases. Thus
the assertions follow from Lemmas 3.1 and 2.2. �
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As a special case, we obtain an existence result for the IVP

d

dt

(
p(t)u(t)

)= g
(
t,u(t)

)
for a.e. t ∈ J ,

lim
t→a+

p(t)u(t)= c.
(3.9)

Corollary 3.3. Let the hypothesis (p) hold, and let g : J ×E→ E satisfy the following hy-
potheses:

(g0) g(·,u(·)) is strongly measurable and ‖g(·,u(·))‖ ≤ h0 ∈ L1(J) for all u∈ C(J ,E),
(g1) g(t,x)≤ g(t, y) for a.e. t ∈ J and whenever x ≤ y in E.

Then the IVP (3.9) has, for each choice of c ∈ E,
(a) minimal and maximal solutions in X ;
(b) least and greatest solutions u∗ and u∗ in {u∈ X | u≤ u≤ u}, where u is the greatest

solution of equation

u(t)=− 1
p(t)

(
c+

∫ t

a
g
(
x,u(x)

)
dx
)−

, t ∈ J , (3.10)

and u is the least solution of equation

u(t)= 1
p(t)

(
c+

∫ t

a
g
(
x,u(x)

)
dx
)+

, t ∈ J. (3.11)

Moreover, u∗ and u∗ are increasing with respect to c and g.

Proof. If c ∈ E, the IVP (3.9) is reduced to (3.1) when we define

f (t,u)= g
(
t,u(t)

)
, t ∈ J , u∈ C(J ,E),

c(u)≡ c, u∈ C(J ,E).
(3.12)

The hypotheses (g0) and (g1) imply that f satisfies the hypotheses (f0) and (f1). The
hypothesis (c) is also valid, whence the asserted results follow from Theorem 3.2. �

Example 3.4. Consider the following system of IVPs:

d

dt

(√
tu(t)

)= t

4
+

[∫ 2
1 v(s)ds

]
(
1 +

∣∣[∫ 2
1 v(s)ds

]∣∣) a.e. in (0,∞),

d

dt

(√
tv(t)

)=√t+ 2

[∫ 2
1 u(s)ds

]
(
1 +

∣∣[∫ 2
1 u(s)ds

]∣∣) , a.e. in (0,∞),

lim
t→0+

√
tu(t)=

[
v(1)

]
1 +

∣∣[v(1)
]∣∣ , lim

t→0+

√
tv(t)= 2

[
u(1)

]
1 +

∣∣[u(1)
]∣∣ ,

(3.13)

where [z] denotes the greatest integer ≤ z.
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Solution 3.5. The system (3.13) is a special case of (3.1) when E = R2, ordered coordi-
natewise, a= 0, b =∞, p(t)=√t,

f
(
t, (u,v)

)=
(
t

4
+

[∫ 2
1 v(s)ds

]
1 +

∣∣[
∫ 2

1 v(s)ds
]∣∣ ,
√
t+ 2

[∫ 2
1 u(s)ds

]
1 +

∣∣[∫ 2
1 u(s)ds

]∣∣
)

,

c
(
(u,v)

)=
( [

v(1)
]

1 +
∣∣[v(1)

]∣∣ ,2

[
u(1)

]
1 +

∣∣[u(1)
]∣∣
)
.

(3.14)

The hypotheses (f0), (f1), and (c) are satisfied, with respect to 1-norm ofR2, when h0(t)=
t/4 +

√
t + 3 and c0 = 3. Thus the results of Theorem 3.2 can be applied. In this case,

the chains needed in the proof of Theorem 3.2 (cf. the proof of Lemma 2.2) are reduced
to finite ordinary iteration sequences. Thus one can apply algorithms of the form (2.4)
presented in Remark 2.3 to calculate solutions to the system (3.13). Calculations, which
are carried out by the use of a simple Maple program, show that the least and the greatest
solutions of (3.13) between u, which is the zero function, and u are equal to u, and this
solution (u∗,v∗) is the only solution of (3.13) between u and u. Moreover, (3.13) has
only one minimal solution, (u−,v−) and only one maximal solution (u+,v+), and thus
they are the least and the greatest of all the solutions of (3.13). The exact expressions of
these solutions are

(
u∗(t),v∗(t)

)= (1
8
t
√
t+

1
2

√
t,

2
3
t
)

,

(
u+(t),v+(t)

)= (1
8
t
√
t+

3
4

√
t+

2
3
√
t
,
2
3
t+
√
t+

1√
t

)
,

(
u−(t),v−(t)

)= (1
8
t
√
t− 2

3

√
t− 2

3
√
t
,
2
3
t− 4

3

√
t− 4

3
√
t

)
.

(3.15)

4. Existence results for second-order initial value problems

Next we will study initial value problems which can be represented in the form

d

dt

(
p(t)u′(t)

)= f (t,u) for a.e. t ∈ J := (a,b),

lim
t→a+

p(t)u′(t)= c(u), lim
t→a+

u(t)= d(u),
(4.1)

where −∞≤ a < b ≤∞, p ∈ C(J), f : J ×C(J ,E)→ E, and c,d : C(J ,E)→ E.
Now we are looking for solutions from the set

Y := {u∈ C1(J ,E) | p ·u′ is locally absolutely continuous and a.e. differentiable
}
. (4.2)

The method is similar to that applied in Section 3, that is, we will first convert the IVP
(4.1) to an integral equation, and then apply Lemma 2.2.
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Lemma 4.1. Assume that p(t) > 0 on J , and that f (·,u)∈ L1(J ,E) for all u∈ C(J ,E). Then
u∈ Y is a solution of the IVP (4.1) if and only if u satisfies the integral equation

u(t)= d(u) +
∫ t

a

1
p(s)

(
c(u) +

∫ s

a
f (x,u)dx

)
ds, t ∈ J. (4.3)

Proof. Assume that u∈ Y is a solution of (4.1). The differential equation of (4.1) and the
definition (4.2) of Y ensure that

∫ s

r

d

dt

(
p(t)u′(t)

)
dt = p(s)u′(s)− p(r)u′(r)=

∫ s

r
f (t,u)dt, a < r ≤ s < b. (4.4)

In view of this result and the first initial condition of (4.1), we obtain

u′(s)= 1
p(s)

(
c(u) +

∫ s

a
f (x,u)dx

)
, s∈ J. (4.5)

Because the right-hand side of (4.5) is continuous in s, we can integrate it to obtain

u(t)−u(r)=
∫ t

r

1
p(s)

(
c(u) +

∫ s

a
f (x,u)dx

)
ds, a < r ≤ t < b. (4.6)

Applying the second initial condition of (4.1) to the above equation, we see that u satisfies
the integral equation (4.3).

The converse part of the proof is trivial. �

To prove our main existence result for the IVP (4.1), we assume the following hypothe-
ses for the functions p, f , c, and d:

(p0) p(t) > 0 and
∫ t
a ds/p(s) <∞ for all t ∈ J ,

(f0) f (·,u) is strongly measurable, and ‖ f (·,u)‖ ≤ h0 ∈ L1(J) for all u∈ C(J ,E),
(f1) f (·,u)≤ f (·,v) whenever u,v ∈ C(J ,E) and u≤ v,
(c) c is bounded, and c(u)≤ c(v) whenever u,v ∈ C(J ,E) and u≤ v,
(d) d is bounded, and d(u)≤ d(v) whenever u,v ∈ C(J ,E) and u≤ v.

Theorem 4.2. Assume that the hypotheses (p0), (f0), (f1), (c), and (d) hold, and assume
that the space Y defined by (4.2) is ordered pointwise. Then the IVP (4.1) has

(a) minimal and maximal solutions in Y ;
(b) least and greatest solutions u∗ and u∗ in {u∈ Y | u≤ u≤ u}, where u is the greatest

solution of equation

u(t)=−
(
d(u) +

∫ t

a

1
p(s)

(
c(u) +

∫ s

a
f (x,u)dx

)
ds
)−

, t ∈ J , (4.7)

and u is the least solution of equation

u(t)=
(
d(u) +

∫ t

a

1
p(s)

(
c(u) +

∫ s

a
f (x,u)dx

)
ds
)+

, t ∈ J. (4.8)

Moreover, u∗ and u∗ are increasing with respect to c, d, and f .
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Proof. Let P be defined by (2.1) with

w(t) := d0 +
∫ t

a

1
p(s)

(
c0 +

∫ s

a
h0(x)dx

)
ds, t ∈ J , (4.9)

where c0 = sup{‖c(u)‖ | u ∈ C(J ,E)}, d0 = sup{‖d(u)‖ | u ∈ C(J ,E)}, and the function
h0 ∈ L1(J) is as in the hypothesis (f0). The given hypotheses imply that the relation

Gu(t)= d(u) +
∫ t

a

1
p(s)

(
c(u) +

∫ s

a
f (x,u)dx

)
ds, t ∈ J , (4.10)

defines an increasing mapping G : P→ P, and that

∥∥Gu(t)−Gu(t)
∥∥≤ (c0 +

∥∥h0
∥∥

1

)∣∣∣∣
∫ t

t

ds

p(s)

∣∣∣∣ ∀u∈ P, t, t ∈ J. (4.11)

The above inequality implies that G[P] is an equicontinuous subset of P, whence G sat-
isfies the hypotheses of Lemma 2.2. Moreover, it is easy to verify that each solution of
(4.1) in Y belongs to P, and that Gu increases if c(u), d(u), or f (·,u) increases. Thus the
assertions follow from Lemmas 4.1 and 2.2. �

As a special case, we obtain an existence result for the IVP

d

dt

(
p(t)u′(t)

)= g
(
t,u(t)

)
for a.e. t ∈ J ,

lim
t→a+

p(t)u′(t)= c, lim
t→a+

u(t)= d.
(4.12)

Corollary 4.3. Let the hypothesis (p0) hold, and let g : J ×E×E→ E satisfy the following
hypotheses:

(g0) g(·,u(·)) is strongly measurable and ‖g(·,u(·))‖ ≤ h0 ∈ L1(J) for all u∈ C(J ,E),
(g1) g(t,x)≤ g(t, y) for a.e. t ∈ J and whenever x ≤ y in E.

Then the IVP (4.12) has, for each choice of c,d ∈ E,
(a) minimal and maximal solutions in Y ;
(b) least and greatest solutions u∗ and u∗ in {u∈ Y | u≤ u≤ u}, where u is the greatest

solution of equation

u(t)=−
(
d+

∫ t

a

1
p(s)

(
c+

∫ s

a
g
(
x,u(x)

)
dx
)
ds
)−

, t ∈ J , (4.13)

and u is the least solution of equation

u(t)=
(
d+

∫ t

a

1
p(s)

(
c+

∫ s

a
g
(
x,u(x)

)
dx
)
ds
)+

, t ∈ J. (4.14)

Moreover, u∗ and u∗ are increasing with respect to c, d, and f .
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Proof. If c,d ∈ E, the IVP (4.12) is reduced to (4.1) when we define

f (t,u)= g
(
t,u(t)

)
, t ∈ J , u∈ C(J ,E),

c(v)≡ c, v ∈ C(J ,E), d(v)≡ d, v ∈ C(J ,E).
(4.15)

The hypotheses (g0) and (g1) imply that f satisfies the hypotheses (f0) and (f1). The hy-
potheses (c) and (d) are also valid, whence the asserted results follow from Theorem 4.2.

�

Example 4.4. Consider the following system of IVPs:

d

dt

(√
tu′(t)

)= t+

[∫ 2
1 v(s)ds

]
1 +

∣∣[∫ 2
1 v(s)ds

]∣∣ a.e. in (0,∞),

d

dt

(√
tv′(t)

)=√t+ 2

[∫ 2
1 u(s)ds

]
1 +

∣∣[∫ 2
1 u(s)ds

]∣∣ a.e. in (0,∞),

lim
t→0+

√
tu′(t)= 2

[∫ 2
1 v(s)ds

]
1 +

∣∣[∫ 2
1 v(s)ds

]∣∣ , u(0)=
[
v(1)

]
1 +

∣∣[v(1)
]∣∣ ,

lim
t→0+

√
tv′(t)=

[∫ 2

1
u(s)ds

]

1 +
∣∣∣∣
[∫ 2

1
u(s)ds

]∣∣∣∣
, v(0)= 2

[
u(1)

]
1 +

∣∣[u(1)
]∣∣ ,

(4.16)

where [z] denotes the greatest integer ≤ z.

Solution 4.5. The system (4.16) is a special case of (4.1) when E = R2, ordered coordi-
natewise, a= 0, b =∞, p(t)=√t,

f
(
t, (u,v)

)=
(
t+

[∫ 2
1 v(s)ds

]
1 +

∣∣[∫ 2
1 v(s)ds

]∣∣ ,
√
t+ 2

[∫ 2
1 u(s)ds

]
1 +

∣∣[∫ 2
1 u(s)ds

]|
)

,

c
(
(u,v)

)=
(

2

[∫ 2
1 v(s)ds

]
1 +

∣∣[∫ 2
1 v(s)ds

]∣∣ ,

[∫ 2
1 u(s)ds

]
1 +

∣∣[∫ 2
1 u(s)ds

]∣∣
)

,

d
(
(u,v)

)=
( [

v(1)
]

1 +
∣∣[v(1)

]∣∣ ,2

[
u(1)

]
1 +

∣∣[u(1)
]∣∣
)
.

(4.17)

The hypotheses (f0), (f1), (c), and (d) hold, with respect to 1-norm of R2, when h0(t)=
3t+ 2

√
t+ 4 and c0 = d0 = 3. Thus the results of Theorem 4.2 can be applied. It turns out

that the chains needed in the proof of Theorem 4.2 (cf. the proof of Lemma 2.2) are re-
duced to finite ordinary iteration sequences. Thus algorithms of the form (2.4) presented
in Remark 2.3 can be used to calculate solutions to the system (4.16). Calculations, carried
out by the use of a simple Maple program, show that the least and the greatest solutions
of (4.16) between u, which is the zero function, and u are equal to u, and this solution
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(u∗,v∗) is the only solution of (4.16) between u and u. Moreover, (4.16) has only one
minimal solution (u−,v−) and only one maximal solution (u+,v+), and thus they are the
least and the greatest of all the solutions of (4.16). The exact expressions of these solutions
are

(
u∗(t),v∗(t)

)= (1
5
t2
√
t,

1
3
t2
)

,

(
u+,v+)= (4

5
+

24
7

√
t+

4
7
t
√
t+

1
5
t2
√
t,

5
3

+
12
7

√
t+

8
7
t
√
t+

1
2
t2
)

,

(
u−(t),v−(t)

)= (− 5
6
− 24

7

√
t− 4

7
t
√
t+

1
5
t2
√
t,−5

3
− 12

7

√
t− 8

7
t
√
t+

1
3
t2
)
.

(4.18)

5. Existence results for second-order boundary value problems

This section is devoted to the study of boundary value problems which can be represented
in the form

− d

dt

(
p(t)u′(t)

)= f (t,u) for a.e. t ∈ J := (a,b),

lim
t→a+

p(t)u′(t)= c(u), lim
t→b−

u(t)= d(u),
(5.1)

where −∞≤ a < b ≤∞, p ∈ C(J), f : J ×C(J ,E)→ E, and c,d : C(J ,E)→ E.
We are looking for solutions of the set Y , defined in (4.2). In our main existence re-

sult for the BVP (5.1), we assume that the functions p, f , c, and d satisfy the following
hypotheses:

(p1) p(t) > 0 and
∫ b
t ds/p(s) <∞ for all t ∈ J ,

(f0) f (·,u) is strongly measurable, and ‖ f (·,u)‖ ≤ h0 ∈ L1(J) for all u∈ C(J ,E),
(f1) f (·,u)≤ f (·,v) whenever u,v ∈ C(J ,E) and u≤ v,
(c0) c is bounded, and c(u)≥ c(v) whenever u,v ∈ C(J ,E) and u≤ v,
(d) d is bounded, and d(u)≤ d(v) whenever u,v ∈ C(J ,E) and u≤ v.

To apply Lemma 2.2, we will first convert the BVP (5.1) to an integral equation.

Lemma 5.1. Assume that p(t) > 0 on J , and that f (·,u)∈ L1(J ,E) for all u∈ C(J ,E). Then
u∈ Y is a solution of the BVP (5.1) if and only if u satisfies the integral equation

u(t)= d(u)−
∫ b

t

1
p(s)

(
c(u)−

∫ s

a
f (x,u)dx

)
ds, t ∈ J. (5.2)

Proof. Assume that u∈ Y is a solution of (5.1). The differential equation and the defini-
tion (4.2) of Y ensure that

−
∫ s

r

d

dt

(
p(t)u′(t)

)
dt = p(r)u′(r)− p(s)u′(s)=

∫ s

r
f (t,u)dt, a < r ≤ s < b. (5.3)
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In view of this result and the first boundary condition of (5.1), we obtain

u′(s)= 1
p(s)

(
c(u)−

∫ s

a
f (x,u)dx

)
, s∈ J. (5.4)

Because the right-hand side of (5.4) is continuous in s, we can integrate it to obtain

u(r)−u(t)=
∫ r

t

1
p(s)

(
c(u)−

∫ s

a
f (x,u)dx

)
ds, a < t ≤ r < b. (5.5)

Applying the second boundary condition of (5.1) to the above equation, we see that u
satisfies the integral equation (5.2).

The converse part of the proof is trivial. �

The main result of this section is the following existence theorem.

Theorem 5.2. Assume that the hypotheses (p1), (f0), (f1), (c0), and (d) hold, and assume
that the space Y defined by (4.2) is ordered pointwise. Then the BVP (5.1) has

(a) minimal and maximal solutions in Y ;
(b) least and greatest solutions u∗ and u∗ in {u∈ Y | u≤ u≤ u}, where u is the greatest

solution of equation

u(t)=−
(
d(u)−

∫ b

t

1
p(s)

(
c(u)−

∫ s

a
f (x,u)dx

)
ds

)−
, t ∈ J , (5.6)

and u is the least solution of equation

u(t)=
(
d(u)−

∫ b

t

1
p(s)

(
c(u)−

∫ s

a
f (x,u)dx

)
ds

)+

, t ∈ J. (5.7)

Moreover, u∗ and u∗ are increasing with respect to d and f , and decreasing with respect to c.

Proof. Let P be defined by (2.1) with

w(t) := d0 +
∫ b

t

1
p(s)

(
c0 +

∫ s

a
h0(x)dx

)
ds, t ∈ J , (5.8)

where c0 = sup{‖c(u)‖ | u ∈ C(J ,E)}, d0 = sup{‖d(u)‖ | u ∈ C(J ,E)}, and the function
h0 ∈ L1(J) is as in the hypothesis (f0). The given hypotheses imply that the relation

Gu(t)= d(u)−
∫ b

t

1
p(s)

(
c(u)−

∫ s

a
f (x,u)dx

)
ds, t ∈ J , (5.9)

defines an increasing mapping G : P→ P, and that

∥∥Gu(t)−Gu(t)
∥∥≤ (c0 +

∥∥h0
∥∥

1

)∣∣∣∣∣
∫ t

t

ds

p(s)

∣∣∣∣∣ ∀u∈ P, t, t ∈ J. (5.10)
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The above inequality implies that G[P] is an equicontinuous subset of P, whence G sat-
isfies the hypotheses of Lemma 2.2. Moreover, it is easy to verify that each solution in Y
belongs to P, and that Gu increases if c(u) decreases, or if d(u) or f (·,u) increases. Thus
the assertions follow from Lemmas 5.1 and 2.2. �

As a special case, we obtain an existence result for the BVP

− d

dt

(
p(t)u′(t)

)= g
(
t,u(t)

)
for a.e. t ∈ J ,

lim
t→a+

p(t)u′(t)= c, lim
t→b−

u(t)= d.
(5.11)

Corollary 5.3. Let the hypothesis (p1) hold, and let g : J ×E×E→ E satisfy the following
hypotheses:

(g0) g(·,u(·)) is strongly measurable and ‖g(·,u(·))‖ ≤ h0 ∈ L1(J) for all u∈ C(J ,E),
(g1) g(t,x)≤ g(t, y) for a.e. t ∈ J and whenever x ≤ y in E.

Then the BVP (5.11) has, for each choice of c,d ∈ E,
(a) minimal and maximal solutions in Y ;
(b) least and greatest solutions u∗ and u∗ in {u∈ Y | u≤ u≤ u}, where u is the greatest

solution of equation

u(t)=−
(
d−

∫ b

t

1
p(s)

(
c−

∫ s

a
g
(
x,u(x)

)
dx
)
ds

)−
, t ∈ J , (5.12)

and u is the least solution of equation

u(t)=
(
d−

∫ b

t

1
p(s)

(
c−

∫ s

a
g
(
x,u(x)

)
dx
)
ds

)+

, t ∈ J. (5.13)

Moreover, u∗ and u∗ are increasing with respect to d and f , and decreasing with respect to c.

Proof. If c,d ∈ E, the BVP (5.11) is reduced to (5.1) when we define

f (t,u)= g
(
t,u(t)

)
, t ∈ J , u∈ C(J ,E),

c(v)≡ c, v ∈ C(J ,E), d(v)≡ d, v ∈ C(J ,E).
(5.14)

The hypotheses (g0) and (g1) imply that f satisfies the hypotheses (f0) and (f1). The hy-
potheses (c0) and (d) are also valid, whence the asserted results follow from Theorem 5.2.

�
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Example 5.4. Consider the following system of BVPs:

− d

dt

(
t
√
tu′(t)

)= 2t+ 1 +

[
10arctan

(∫ 2

1
v(s)ds

)]
a.e. in (0,3),

− d

dt

(
t
√
tv′(t)

)=√t+ 1 +

[
5arctan

(∫ 2

1
u(s)ds

)]
a.e. in (0,3),

lim
t→0+

t
√
tu′(t)=−2

[∫ 2
1 v(s)ds

]
1 +

∣∣[∫ 2
1 v(s)ds

]∣∣ , u(3)=
[
5v(1)

]
1 +

∣∣[5v(1)
]∣∣ ,

lim
t→0+

t
√
tv′(t)=−

[∫ 2
1 u(s)ds

]
1 +

∣∣[∫ 2
1 u(s)ds

]∣∣ , v(3)=
[
10u(1)

]
1 +

∣∣[10u(1)
]∣∣ ,

(5.15)

where [z] denotes the greatest integer ≤ z.

Solution 5.5. The system (5.15) is a special case of (5.1) when E = R2, ordered coordi-
natewise, a= 0, b = 3, p(t)= t

√
t,

f
(
t, (u,v)

)=
(

2t+ 1 +

[
10arctan

(∫ 2

1
v(s)ds

)]
,
√
t+ 1 +

[
5arctan

(∫ 2

1
u(s)ds

)])
,

c
(
(u,v)

)=
(
− 2

[∫ 2
1 v(s)ds

]
1 +

∣∣[∫ 2
1 v(s)ds

]∣∣ ,−
[∫ 2

1 u(s)ds
]

1 +
∣∣[∫ 2

1 u(s)ds
]∣∣
)

,

d
(
(u,v)

)=
( [

5v(1)
]

1 +
∣∣[5v(1)

]∣∣ ,

[
10u(1)

]
1 +

∣∣[10u(1)
]∣∣
)
.

(5.16)

The hypotheses (f0), (f1), (c0), and (d) hold, with respect to 1-norm of R2, when h0(t)=
2t +

√
t + 26, c0 = 3 and d0 = 2. Thus the results of Theorem 5.2 hold. Also, in this case,

the chains needed in the proof of Theorem 5.2 (cf. the proof of Lemma 2.2) are reduced
to finite ordinary iteration sequences. Applying a simple Maple program, one can show
that the least and the greatest solutions of (5.15) between u, which is the zero function,
and u are equal to u, and this solution (u∗,v∗) is also the greatest of all the solutions of
(5.15). Moreover, (5.15) has only one minimal solution (u−,v−) and thus is the least of
all the solutions of (5.15). The exact expressions of these solutions are

(
u∗(t),v∗(t)

)=(
74
75

+
1016

33

√
3− 2

3
t
√
t− 30

√
t+

40
11
√
t
,
818
273

+
461
30

√
3− 2

3
t− 16

√
t+

19
10
√
t

)
,

(
u−(t),v−(t)

)=(
− 54

55
− 670

27

√
3− 2

3
t
√
t+ 28

√
t− 32

9
√
t
,
204
203

− 107
8

√
3− 2

3
t+ 14

√
t− 15

8
√
t

)
.

(5.17)
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Remarks 5.6. The following spaces are examples of weakly complete Banach lattices:
(i) a reflexive (e.g., a uniformly convex) Banach lattice;

(ii) a uniformly monotone Banach lattice in the sense defined in [1, XV, 14];
(iii) a separable Hilbert space whose order cone is generated by an orthonormal basis;
(iv) Rm ordered coordinatewise and normed by a p-norm, 1≤ p ≤∞;
(v) lp, 1≤ p <∞, normed by p-norm and ordered componentwise;

(vi) Lp(Ω), 1≤ p <∞, normed by p-norm and ordered a.e. pointwise.

The Sobolev spaces W1,p(Ω) or W
1,p
0 (Ω), 1 < p <∞, ordered a.e. pointwise, have prop-

erties given for E in the hypothesis (B) (cf. [2, Appendix C4]).
Thus the results of Theorems 3.2, 4.2, and 5.2 and Corollaries 3.3, 4.3, and 5.3 hold

when E is one of the spaces listed above.

Problems of the form (3.1), (4.1), and (5.1) include many kinds of special types. For
instance, they can be

(i) singular, because limt→a+ p(t)= 0 is allowed;
(ii) nonlocal, because the functions c, d, and f may depend functionally on u;

(iii) discontinuous, because the dependencies of c, d, and f on u can be discontinu-
ous;

(iv) problems on an infinite interval, because cases a = −∞ and/or b = ∞ are in-
cluded;

(v) finite systems when E =Rm;
(vi) infinite systems when E = lp;

(vii) of random type when E = Lp(Ω) and Ω is a probability space.
According to the hypotheses of Lemma 2.2, the operator G may be discontinuous and

noncompact. Moreover, the boundedness hypotheses assumed for functions f , c, and
d don’t provide means to construct a priori upper and/or lower solutions for problems
(3.1), (4.1), and (5.1). Thus, for instance, Schauder’s fixed point theorem, ordinary itera-
tion methods or the method of upper and lower solutions are not, in general, applicable
alternatives to Lemma 2.2 used in the proofs of Theorems 3.2, 4.2, and 5.2.

As for generalized versions and applications of Lemma 2.2, as well as applications of
algorithms of the type presented in Remark 2.3, see, for example, [3, 4, 5, 6, 7].
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