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The monotone iterative method is used to obtain sufficient conditions which guarantee
that a delay differential equation with a nonlinear boundary condition has quasisolutions,
extremal solutions, or a unique solution. Such results are obtained using techniques of
weakly coupled lower and upper solutions or lower and upper solutions. Corresponding
results are also obtained for such problems with more delayed arguments. Some new
interesting results are also formulated for delay differential inequalities.

1. Introduction

In this paper we discuss the boundary value problem

x′(t)= f
(
t,x(t),x

(
α(t)

))≡ Fx(t), t ∈ J = [0,T], T > 0,

0= g
(
x(0),x(T)

)
,

(1.1)

where
(H1) f ∈ C(J ×R×R,R), α∈ C(J , J), α(t)≤ t, t ∈ J , and g ∈ C(R×R,R).
To obtain some existence results for differential problems, someone can apply the

monotone iterative technique, for details see, for example, [8]. In recent years, much at-
tention has been paid to the study of ordinary differential equations with different condi-
tions but only a few papers concern such problems with nonlinear boundary conditions,
see, for example, [1, 2, 3, 4]. The monotone technique can also be successfully applied
to ordinary delay differential problems which are special cases of (1.1), see, for example,
[5, 7, 9, 10, 11]. It is known that the monotone method works when a function (appearing
on the right-hand side of a differential problem) satisfies a one-sided Lipschitz condition
with a corresponding constant (or constants). It is important to indicate that also the au-
thors of the above-mentioned papers obtained their results under such an assumption. In
this paper we consider a more general case when constants are replaced by functions. This
remark is important when we have differential problems with deviated arguments since
in such cases we can obtain less restrictive conditions from corresponding differential in-
equalities. In this paper we discuss delay problems with nonlinear boundary conditions
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of type (1.1) to obtain quite general existence results. It is the first paper where the mono-
tone technique is applied for delay differential equations when a boundary condition has
a nonlinear form. The case when t ≤ α(t)≤ T , t ∈ J is considered in [6].

In Section 2, delay differential inequalities are studied. This part is important when
the monotone technique is used with problem (1.1). In the next section we study weakly
coupled lower and upper solutions of problem (1.1) formulating corresponding results
when problem (1.1) has coupled quasisolutions, extremal solutions, or a unique solution.
In Section 4, we formulate corresponding existence results for problem (1.1) using the
notion of lower and upper solutions of (1.1). In Section 5, some generalizations of the
previous results are formulated when we have more delayed arguments. Examples show
how to apply the obtained results.

2. Delay differential inequalities

In this chapter we will discuss delay differential inequalities. Such problems are important
when we use the monotone iterative technique to obtain existence results for (1.1).

Lemma 2.1. Let α∈ C(J , J), α(t)≤ t on J. Suppose that p ∈ C1(J ,R) and

p′(t)≤−N(t)p
(
α(t)

)
, t ∈ J , p(0)≤ 0, (2.1)

where a nonnegative function N is integrable on J .
In addition assume that

∫ T

0
N(t)dt ≤ 1. (2.2)

Then p(t)≤ 0 on J.

Proof. We need to prove that p(t)≤ 0, t ∈ J. Suppose that the above inequality is not true.
Then, we can find t0 ∈ (0,T] such that p(t0) > 0. Put

p
(
t1
)=min

[0,t0]
p(t)≤ 0. (2.3)

Integrating the differential inequality in (2.1) from t1 to t0, we obtain

p
(
t0
)− p

(
t1
)≤−

∫ t0

t1
N(t)p

(
α(t)

)
dt ≤−p(t1)

∫ T

0
N(t)dt ≤−p(t1). (2.4)

It contradicts assumption that p(t0) > 0. This shows that p(t) ≤ 0 on J and the proof is
complete. �
Lemma 2.2. Let α∈ C(J , J), α(t)≤ t on J. Suppose that K ∈ C(J ,R), q ∈ C1(J ,R), and

q′(t)≤−K(t)q(t)−L(t)q
(
α(t)

)
, t ∈ J , q(0)≤ 0, (2.5)

where a nonnegative function L is integrable on J .
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In addition assume that
(H2)

∫ T
0 L(t)e

∫ t
α(t) K(s)dsdt ≤ 1.

Then q(t)≤ 0 on J.

Proof. Indeed, the assertion holds if L(t)= 0, t ∈ J. Let
∫ T

0 L(t)dt > 0. Put

p(t)= e
∫ t

0 K(s)dsq(t), t ∈ J. (2.6)

This yields p(0)= q(0)≤ 0, and

p′(t)= e
∫ t

0 K(s)ds[K(t)q(t) + q′(t)
]
, (2.7)

so

p′(t)≤−L(t)e
∫ t
α(t) K(s)ds p

(
α(t)

)
, t ∈ J , p(0)≤ 0. (2.8)

In view of Lemma 2.1, p(t)≤ 0 on J , by assumption (H2). This also proves that q(t)≤ 0
on J and the proof is complete. �

Remark 2.3. Note that assumption (H2) holds if K(t)≥ 0 on J and

∫ T

0
L(t)e

∫ t
0 K(s)ds dt ≤ 1. (2.9)

We see that condition (2.9) does not depend on α. Moreover, if we assume that K(t) =
K > 0, L(t)= L > 0, t ∈ J , and

L
(
eKT − 1

)≤ K , (2.10)

then condition (2.9) is satisfied.
Note that if K(t)= K > 0, L(t)= L > 0, t ∈ J , then assumption (H2) takes the form

L
∫ T

0
eK[t−α(t)]dt ≤ 1; (2.11)

such condition is considered in [11].

3. Weakly coupled lower and upper solutions

Here we apply the method of weakly coupled lower and upper solutions to problems of
type (1.1). We begin introducing the following definition.

We say that u,v ∈ C1(J ,R) are called weakly coupled lower and upper solutions of
problem (1.1) if

u′(t)≤ Fu(t), t ∈ J , g
(
u(0),v(T)

)≤ 0,

v′(t)≥ Fv(t), t ∈ J , g
(
v(0),u(T)

)≥ 0.
(3.1)

We say that X ,Y ∈ C1(J ,R) are called coupled quasisolutions of (1.1) if

X ′(t)= FX(t), t ∈ J , 0= g
(
X(0),Y(T)

)
,

Y ′(t)= FY(t), t ∈ J , 0= g
(
Y(0),X(T)

)
.

(3.2)
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We first formulate conditions when problem (1.1) has coupled quasisolutions.

Theorem 3.1. Let assumption (H1) hold. Let y0,z0 ∈ C1(J ,R) be weakly coupled lower and
upper solutions of (1.1) and let y0(t)≤ z0(t), t ∈ J. In addition assume that

(H3) there exist a function K ∈ C(J ,R) and a nonnegative function L, integrable on J , such
that assumption (H2) is satisfied and

f
(
t,u1,u2

)− f
(
t,v1,v2

)≤ K(t)
[
v1−u1

]
+L(t)

[
v2−u2

]
(3.3)

if y0(t)≤ u1 ≤ v1 ≤ z0(t), y0(α(t))≤ u2 ≤ v2 ≤ z0(α(t)),
(H4) g is nondecreasing in the second variable and there exists a constant M > 0 such that

g(u,v)− g(ū,v)≥−M(ū−u) if y0(0)≤ u≤ ū≤ z0(0). (3.4)

Then problem (1.1) has, in the sector [y0,z0]∗, coupled quasisolutions where

[
y0,z0

]
∗ =

{
w ∈ C1(J ,R) : y0(t)≤w(t)≤ z0(t), t ∈ J

}
. (3.5)

Proof. Let

y′n+1(t)=�
(
t, yn, yn+1

)
, t ∈ J , 0= g

(
yn(0),zn(T)

)
+M

[
yn+1(0)− yn(0)

]
,

z′n+1(t)=�
(
t,zn,zn+1

)
, t ∈ J , 0= g

(
zn(0), yn(T)

)
+M

[
zn+1(0)− zn(0)

] (3.6)

for n= 0,1, . . . with

�(t,a,b)= Fa(t)−K(t)
[
b(t)− a(t)

]−L(t)
[
b
(
α(t)

)− a
(
α(t)

)]
. (3.7)

Observe that functions y1, z1 are well-defined as initial linear problems (use the Banach
fixed point theorem with a corresponding norm). We first show that

y0(t)≤ y1(t)≤ z1(t)≤ z0(t), t ∈ J. (3.8)

Put p = y0− y1, q = z1− z0. This and assumptions (H3), (H4) show that

0= g
(
y0(0),z0(T)

)
+M

[
y1(0)− y0(0)

]≤−Mp(0),

0= g
(
z0(0), y0(T)

)
+M

[
z1(0)− z0(0)

]≥Mq(0),

p′(t)≤ Fy0(t)−�
(
t, y0, y1

)=−K(t)p(t)−L(t)p
(
α(t)

)
,

q′(t)≤�
(
t,z0,z1

)−Fz0(t)=−K(t)q(t)−L(t)q
(
α(t)

)
.

(3.9)

By Lemma 2.2, y0(t) ≤ y1(t), z1(t) ≤ z0(t), t ∈ J. Now, we put p = y1 − z1. In view of
assumption (H4), we have

0= g
(
y0(0),z0(T)

)
+M

[
y1(0)− y0(0)

]− g
(
z0(0), y0(T)

)−M
[
z1(0)− z0(0)

]≥Mp(0).
(3.10)
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Moreover,

p′(t)=�
(
t, y0, y1

)−�
(
t,z0,z1

)
≤ K(t)

[
z0(t)− y0(t)

]
+L(t)

[
z0
(
α(t)

)− y0
(
α(t)

)]
−K(t)

[
y1(t)− y0(t)− z1(t) + z0(t)

]
−L(t)

[
y1
(
α(t)

)− y0
(
α(t)

)− z1
(
α(t)

)
+ z0

(
α(t)

)]
=−K(t)p(t)−L(t)p

(
α(t)

)
,

(3.11)

by assumption (H3). Lemma 2.2 yields y1(t)≤ z1(t) on J. It proves (3.8).
In the next step we show that y1, z1 are weakly coupled lower and upper solutions of

problem (1.1). Note that

y′1(t)=�
(
t, y0, y1

)−Fy1(t) +Fy1(t)

≤ K(t)
[
y1(t)− y0(t)

]
+L(t)

[
y1
(
α(t)

)− y0
(
α(t)

)]−K(t)
[
y1(t)− y0(t)

]
−L(t)

[
y1
(
α(t)

)− y0
(
α(t)

)]
+Fy1(t)= Fy1(t),

z′1(t)=�
(
t,z0,z1

)−Fz1(t) +Fz1(t)≥ Fz1(t),

0= g
(
y0(0),z0(T)

)
+M

[
y1(0)− y0(0)

]− g
(
y1(0),z1(T)

)
+ g
(
y1(0),z1(T)

)
≥−M[y1(0)− y0(0)

]
+ g
(
y1(0),z1(T)

)
+M

[
y1(0)− y0(0)

]
= g
(
y1(0),z1(T)

)
,

0= g
(
z0(0), y0(T)

)
+M

[
z1(0)− z0(0)

]− g
(
z1(0), y1(T)

)
+ g
(
z1(0), y1(T)

)
≤ g
(
z1(0), y1(T)

)
,

(3.12)

by (3.3) and assumption (H4). This proves that y1, z1 are weakly coupled lower and upper
solutions of problem (1.1).

Using the mathematical induction, we can show that

y0(t)≤ y1(t)≤ ··· ≤ yn(t)≤ yn+1(t)≤ zn+1(t)≤ zn(t)≤ ··· ≤ z1(t)≤ z0(t), (3.13)

for t ∈ J and n= 0,1, . . . .
Now we will prove that the sequences {yn,zn} converge to their limit functions y,z,

respectively. First, we need to show that the sequences are bounded and equicontinuous
on J. Indeed,

A1 ≤ y0(t)≤ yn(t)≤ zn(t)≤ z0(t)≤A2, t ∈ J , n= 0,1, . . . , (3.14)

so the sequences {yn,zn} are uniformly bounded. Note that y′n and z′n are bounded on
J by W > 0 because |�(t,a,b)| is bounded on J × [A1,A2]× [A1,A2]. Hence yn, zn are
equicontinuous because for ε > 0, t1, t2 ∈ J such that |t1− t2| < ε/W , we have

∣∣yn(t1)− yn
(
t2
)∣∣= ∣∣y′n(ξ)

∣∣∣∣t1− t2
∣∣ < ε,

∣∣zn(t1)− zn
(
t2
)∣∣ < ε. (3.15)
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The Arzela-Ascoli theorem guarantees the existence of subsequences {ynk ,znk} of {yn,
zn}, respectively, and continuous functions y, z with ynk , znk converging uniformly on J
to y and z, respectively. Note that ynk , znk satisfy the integral equations

ynk+1(t)= ynk+1(0) +
∫ t

0
�
(
s, ynk , ynk+1

)
ds, t ∈ J ,

znk+1(t)= znk+1(0) +
∫ t

0
�
(
s,znk ,znk+1

)
ds, t ∈ J ,

ynk+1(0)= ynk(0)− 1
M

g
(
ynk (0),znk (T)

)
,

znk+1(0)= znk (0)− 1
M

g
(
znk (0), ynk (T)

)
.

(3.16)

If nk →∞, then from the above relations, we have

y(t)= y(0) +
∫ t

0
Fy(s)ds, t ∈ J , g

(
y(0),z(T)

)= 0,

z(t)= z(0) +
∫ t

0
Fz(s)ds, t ∈ J , g

(
z(0), y(T)

)= 0,

(3.17)

because f and g are continuous. Thus y,z ∈ C1(J) and

y′(t)= Fy(t), z′(t)= Fz(t), t ∈ J. (3.18)

It proves that y, z are coupled quasisolutions of problem (1.1). It ends the proof. �

Remark 3.2. If f is nondecreasing with respect to the last two variables, then assumption
(H3) holds with K(t)= L(t)= 0 on J.

Remark 3.3. Note that if g is nonincreasing with respect to the first variable, then condi-
tion (3.4) holds.

Our next two theorems concern the case when the boundary problem of type (1.1) has
a unique solution.

Theorem 3.4. Assume that all assumptions of Theorem 3.1 are satisfied. In addition assume
that

(H5) there exist constants M1, M2 such that M ≥M1 > 0, M2 ≥ 0, and

g(u, v̄)− g(ū,v)≤−M1(ū−u) +M2(v̄− v) (3.19)

if y0(0)≤ u≤ ū≤ z0(0), y0(T)≤ v ≤ v̄ ≤ z0(T),
(H6) f is nonincreasing in the last argument, there exists an integrable on J a function Q

such that K(t) +Q(t)≥ 0, t ∈ J ,

f (t,u,v)− f (t, ū,v)≥−Q(t)[ū−u] if y0(t)≤ u≤ ū≤ z0(t), (3.20)

M2e
∫ T

0 Q(s)ds < M1. (3.21)

Then problem (1.1) has, in the sector [y0,z0]∗, a unique solution.
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Proof. Theorem 3.1 guarantees that functions y, z are coupled quasisolutions of problem
(1.1) and y0(t) ≤ y(t) ≤ z(t) ≤ z0(t), t ∈ J. We first show that y(t) = z(t), t ∈ J . Put p =
y− z. Then

0= g
(
y(0),z(T)

)− g
(
z(0), y(T)

)≤M1p(0)−M2p(T),

p′(t)= Fy(t)−Fz(t)≥Q(t)p(t).
(3.22)

It yields

p(t)≥ p(0)e
∫ t

0 Q(s)ds, t ∈ J , (3.23)

so

[
M1−M2e

∫ T
0 Q(s)ds]p(0)≥ 0. (3.24)

In view of (3.21), y(t)≥ z(t), t ∈ J. It proves that y = z, so problem (1.1) has a solution.
It remains to show that y = z is a unique solution of (1.1) in the sector [y0,z0]∗. Let

w ∈ [z0, y0]∗ be any solution of (1.1). We assume that ym(t) ≤ w(t) ≤ zm(t), t ∈ J for
some m. Let p = ym+1−w, q =w− zm+1. Then,

0= g
(
ym(0),zm(T)

)
+M

[
ym+1(0)− ym(0)

]− g
(
w(0),w(T)

)
≥−M[w(0)− ym(0)

]
+M

[
ym+1(0)− ym(0)

]=Mp(0),

0= g
(
zm(0), ym(T)

)
+M

[
zm+1(0)− zm(0)

]− g
(
w(0),w(T)

)≤−Mq(0),

p′(t)=�
(
t, ym, ym+1

)−Fw(t)≤−K(t)p(t)−L(t)p
(
α(t)

)
,

q′(t)= Fw(t)−�
(
t,zm,zm+1

)≤−K(t)q(t)−L(t)q
(
α(t)

)
,

(3.25)

by assumption (H4) and condition (3.3). This, in view of Lemma 2.2, gives ym+1(t) ≤
w(t)≤ zm+1(t), t ∈ J. By induction, yn(t)≤w(t)≤ zn(t), t ∈ J , n= 0,1, . . . . If n→∞, then
y = z =w which proves the assertion of our theorem. �

Remark 3.5. Observe that if f satisfies the Lipschitz condition with respect to the first
variable, so

∣∣ f (t,u,v)− f (t, ū,v)
∣∣≤ K(t)|u− ū|, K ∈ C

(
J ,R+

)
, (3.26)

then Q(t)= K(t), t ∈ J.

Remark 3.6. Take g(x, y)= x−h(y), where h∈ C([y0(T),z0(T)],R) and

0≤ h(u)−h(v)≤M3(v−u) if y0(T)≤ u≤ v ≤ z0(T). (3.27)

Then assumptions (H4), (H5) are satisfied with M =M1 = 1, M2 =M3.
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Example 3.7. Consider the problem

x′(t)= 2e−x(t)− (sin t)e−etx
(

1
2
t
)
− 1≡ Fx(t), t ∈ J = [0,1],

0= βx(0) + x2(0) + x(1)− 1≡ g
(
x(0),x(1)

)
,

(3.28)

where β > 1. In this example α(t)= (1/2)t.

Put y0(t)=−t, z0(t)= 1, t ∈ J. Then

Fy0(t)= 2et +
1
2
t(sin t)e−et − 1 >−1= y′0(t),

Fz0(t)= 2e−1− (sin t)e−et − 1 < 0= z′0(t),

g
(
y0(0),z0(1)

)= g(0,1)= 0,

g
(
z0(0), y0(1)

)= g(1,−1)= β− 1 > 0.

(3.29)

It shows that y0, z0 are weakly coupled lower and upper solutions of problem (3.28). Note
that K(t)= 2e, L(t)= (sin t)e−et, and

∫ 1

0
L(t)e

∫ t
α(t) K(s)ds dt = 1− cos1 < 1, (3.30)

so assumption (H3) holds. Similarly, assumption (H5) is satisfied with M1 = β, M2 = 1. It
is easy to see that for −t ≤ u≤ ū≤ 1, we have

f (t,u,v)− f (t, ū,v)= 2
[
e−u− e−ū

]≥ 0=−0(ū−u), (3.31)

so Q(t)= 0, t ∈ J. Moreover

M2e
∫ 1

0 Q(s)ds = 1 < β. (3.32)

All assumptions of Theorem 3.4 hold, so problem (3.28) has, in the segment [y0,z0]∗, a
unique solution.

Theorem 3.8. Let assumptions (H1), (H6) hold. Assume that problem (1.1) has, in the
sector [y0,z0]∗, at least one solution. In addition assume that

(H7) there exist constants M1, M2 such that M1 > 0, M2 ≥ 0, and

g(ū, v̄)− g(u,v)≤−M1(ū−u) +M2(v̄− v) (3.33)

if y0(0)≤ u≤ ū≤ z0(0), y0(T)≤ v ≤ v̄ ≤ z0(T).
Then problem (1.1) has, in the sector [y0,z0]∗, a unique solution.

Proof. Let y,z ∈ [y0,z0]∗ be arbitrary solutions of problem (1.1). Put p(t)= y(t)− z(t),
t ∈ J. We distinguish two cases.
Case 1. Let y(t) 	= z(t) for all t ∈ J. Without the loss of generality, we can assume that
p(t) > 0, t ∈ J. It yields

0= g
(
y(0), y(T)

)− g
(
z(0),z(T)

)≤−M1p(0) +M2p(T), (3.34)
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by assumption (H7). Moreover

p′(t)= Fy(t)−Fz(t)≤Q(t)p(t), (3.35)

by assumption (H6). Hence

p(t)≤ e
∫ t

0 Q(s)ds p(0), t ∈ J ,

M1p(0)≤M2p(T)≤M2e
∫ T

0 Q(s)ds p(0),
(3.36)

so

p(0)
[
M1−M2e

∫ T
0 Q(s)ds]≤ 0. (3.37)

Because p(0) > 0, it yields

M1−M2e
∫ T

0 Q(s)ds ≤ 0. (3.38)

In view of (3.21), it is a contradiction.
Case 2. Assume that there exists t0 ∈ J such that y(t0)= z(t0).
Subcase 2.1. Let t0 = T. Then p(T)= 0. It yields

0= g
(
y(0), y(T)

)= g
(
z(0), y(T)

)
. (3.39)

We show that in this case also y(0) = z(0), so p(0) = 0. Assume that it is not true. This
means that p(0) > 0 or p(0) < 0. If p(0) > 0, then

0= g
(
y(0), y(T)

)− g
(
z(0),z(T)

)≤−M1p(0), (3.40)

this is a contradiction. If p(0) < 0, then

0= g
(
y(0), y(T)

)− g
(
z(0),z(T)

)≥M1
[
z(0)− y(0)

]=−M1p(0), (3.41)

and this is a contradiction too. It shows that p(0)= 0.
Without the loss of generality, we can assume that p(t) > 0, t ∈ (0, t1] for some t1 ≤ T.

In view of assumption (H6), we have

p′(t)= Fy(t)−Fz(t)≤Q(t)p(t). (3.42)

This yields

p(t)≤ p(0)e
∫ t

0 Q(s)ds = 0, t ∈ [0, t1
]
. (3.43)

It is a contradiction.
Subcase 2.2. Let t0 = 0. Then p(0)= 0 and we have the case considered above.
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Subcase 2.3. Let t0 ∈ (0,T). Then p(t0)= 0. Without the loss of generality, we can assume
that p(t) > 0, t ∈ (t0, t1] for some t1 ≤ T. In view of assumption (H6), we have

p′(t)= Fy(t)−Fz(t)≤Q(t)p(t). (3.44)

This gives

p(t)≤ p
(
t0
)
e
∫ t
t0
Q(s)ds = 0, t ∈ [t0, t1

]
. (3.45)

It is a contradiction. Hence we have p(t)= 0, t ∈ [t0,T], so p(T)= 0. This case was con-
sidered in Subcase 2.1. This ends the proof. �

Remark 3.9. Take g(x, y)= −x + h(y), where h ∈ C([y0(T),z0(T)],R) and there exists a
positive constant M3 such that

h(v)−h(u)≤M3(v−u) if y0(T)≤ u≤ v ≤ z0(T). (3.46)

Then assumption (H7) holds with M1 = 1, M2 =M3. Such case was discussed in [4] for
the case when f does not depend on the last argument.

4. Lower and upper solutions

We say that u∈ C1(J ,R) is called a lower solution of (1.1) if

u′(t)≤ Fu(t), t ∈ J , g
(
u(0),u(T)

)≤ 0, (4.1)

and it is an upper solution of (1.1) if the above inequalities are reversed.

Remark 4.1. Note that if u,v ∈ C1(J ,R) are lower and upper solutions of (1.1), respec-
tively, then g(u(0),u(T)) ≤ 0 ≤ g(v(0),v(T)). In case we have an initial problem, so if
g(x, y)= x− c, c ∈R, then the above condition reduces to u(0)≤ c ≤ v(0).

Theorem 4.2. Let assumption (H1) hold. Let y0,z0 ∈ C1(J ,R) be lower and upper solutions
of (1.1), respectively, and let y0(t) ≤ z0(t), t ∈ J. In addition assume that assumption (H3)
holds and

(H′
4) g is nonincreasing in the second variable and there exists a constant M > 0 such that

condition (3.4) is satisfied.
Then problem (1.1) has, in the sector [y0,z0]∗, minimum and maximum solutions.

Proof. Let

y′n+1(t)=�
(
t, yn, yn+1

)
, t ∈ J , 0= g

(
yn(0), yn(T)

)
+M

[
yn+1(0)− yn(0)

]
,

z′n+1(t)=�
(
t,zn,zn+1

)
, t ∈ J , 0= g

(
zn(0),zn(T)

)
+M

[
zn+1(0)− zn(0)

] (4.2)

for n = 0,1, . . . with � defined as in the proof of Theorem 3.1. Repeating the proof of
Theorem 3.1, we can show that yn, zn converge, respectively, to solutions y, z of problem
(1.1) and y0(t)≤ y(t)≤ z(t)≤ z0(t), t ∈ J.
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Now we need to show that y, z are extremal solutions of (1.1) in the sector [y0,z0]∗.
Let w ∈ [y0,z0]∗ be any solution of (1.1). We assume that ym(t)≤ w(t)≤ zm(t), t ∈ J for
some m. Let p = ym+1−w, q =w− zm+1. Then,

0= g
(
ym(0), ym(T)

)
+M

[
ym+1(0)− ym(0)

]− g
(
w(0),w(T)

)≥Mp(0),

0= g
(
zm(0),zm(T)

)
+M

[
zm+1(0)− zm(0)

]− g
(
w(0),w(T)

)≤−Mq(0),

p′(t)=�
(
t, ym, ym+1

)−Fw(t)≤−K(t)p(t)−L(t)p
(
α(t)

)
,

q′(t)= Fw(t)−�
(
t,zm,zm+1

)≤−K(t)q(t)−L(t)q
(
α(t)

)
,

(4.3)

by assumption (H4) and condition (3.3). This and Lemma 2.2 give ym+1(t)≤w(t)≤ zm+1

(t), t ∈ J. By induction, yn(t)≤w(t)≤ zn(t), t ∈ J , n= 0,1, . . . . If n→∞, then we have the
assertion. This ends the proof. �

Theorem 4.3. Let all assumptions of Theorem 4.2 be satisfied. In addition assume that as-
sumptions (H′

7) and (H6) hold, where
(H′

7) there exist constants M1, M2 such that M ≥M1 > 0, M2 ≥ 0, and

g(u,v)− g(ū, v̄)≤−M1(ū−u) +M2(v̄− v) (4.4)

if y0(0)≤ u≤ ū≤ z0(0), y0(T)≤ v ≤ v̄ ≤ z0(T).
Then problem (1.1) has, in the sector [y0,z0]∗, a unique solution.

The proof is similar to the proof of Theorem 3.4 and therefore it is omitted.

Remark 4.4. Assume that g(x, y)=−x−h(y), where h∈ C([y0(T),z0(T)],R) and

h(u)−h(v)≤M3(v−u) if y0(T)≤ u≤ v ≤ z(T). (4.5)

Then assumption (H7) is satisfied with M1 = 1, M2 =M3.

Example 4.5. Consider the problem

x′(t)= β(sin t)x(t)− 2β(sin t)x
(
α(t)

)−β sin t ≡ Fx(t), t ∈ J = [0,π],

0= x(0)− e−1x(π),
(4.6)

where 0≤ β ≤ 1/4, α∈ C(J , J), α(t)≤ t on J.

Put y0(t)=−1, z0(t)= 0, t ∈ J. Then

Fy0(t)= 0= y′0(t), Fz0(t)=−β sin t ≤ 0= z′0(t),

g
(
y0(0), y0(π)

)= g(−1,−1) < 0, g
(
z0(0),z0(π)

)= g(0,0)= 0.
(4.7)

It proves that y0, z0 are lower and upper solutions of problem (4.6), respectively. Note
that K(t)= 0, L(t)= 2β sin t, and

∫ T

0
L(t)e

∫ t
α(t) K(s)ds dt = 4β ≤ 1, (4.8)
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so assumption (H3) holds. Assumption (H′
7) holds with M1 = 1, M2 = e−1. Moreover

Q(t)= β sin t, and

M2e
∫ T

0 Q(s)ds = e2β−1 < 1. (4.9)

By Theorem 4.3, problem (4.6) has, in the sector [y0,z0]∗, a unique solution.

5. Generalizations

In this section we consider a boundary value problem of the form

x′(t)= f
(
t,x(t),x

(
α1(t)

)
, . . . ,x

(
αr(t)

))≡Gx(t), t ∈ J = [0,T],

0= g
(
x(0),x(T)

)
.

(5.1)

We formulate only corresponding results using the notions of lower and upper (or weakly
lower and upper) solutions (or coupled quasisolutions) of problem (5.1) which are the
same as before with the operator G instead of operator F.

We introduce three assumptions:
(H8) f ∈ C(J × Rr+1,R), g ∈ C(R × R,R), αi ∈ C(J , J), αi(t) ≤ t on J for i =

1,2, . . . ,r,
(H9) there exist a function K ∈ C(J ,R) and nonnegative integrable on J functions Li,

i= 1,2, . . . ,r such that the following condition holds:

r∑
i=1

∫ T

0
Li(t)e

∫ t
αi(t)

K(s)ds dt ≤ 1, (5.2)

and moreover

f
(
t,u0,u1, . . . ,ur

)− f
(
t,v0,v1, . . . ,vr

)≤ K(t)
[
v0−u0

]
+

r∑
i=1

Li(t)
[
vi−ui

]
(5.3)

if t ∈ J , z0(αi(t))≤ ui ≤ vi ≤ y0(αi(t)), i= 0,1, . . . ,r with α0(t)= t,
(H10) f is nonincreasing in the last r variables, there exists an integrable on J a function

Q such that K(t) + Q(t) ≥ 0, t ∈ J , condition (3.21) holds (for some constants
M1, M2), and

f
(
t,u,v1, . . . ,vr

)− f
(
t, ū,v1, . . . ,vr

)≥−Q(t)[ū−u] (5.4)

if y0(t)≤ u≤ ū≤ z0(t).
The next two lemmas are natural generalizations of Lemmas 2.1 and 2.2.

Lemma 5.1. Let αi ∈ C(J , J), αi(t)≤ t on J for i= 1,2, . . . ,r. Suppose that p ∈ C1(J ,R) and

p′(t)≤−
r∑

i=1

Ni(t)p
(
αi(t)

)
, t ∈ J , p(0)≤ 0, (5.5)

where nonnegative functions Ni are integrable on J .
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In addition assume that

r∑
i=1

∫ T

0
Ni(t)dt ≤ 1. (5.6)

Then p(t)≤ 0 on J.

Lemma 5.2. Let αi ∈ C(J , J), αi(t) ≤ t on J , i = 1,2, . . . ,r. Suppose that K ∈ C(J ,R), q ∈
C1(J ,R), and

q′(t)≤−K(t)q(t)−
r∑

i=1

Li(t)q
(
αi(t)

)
, t ∈ J , q(0)≤ 0, (5.7)

where nonnegative functions Li are integrable on J . In addition assume that condition (5.2)
holds.

Then q(t)≤ 0 on J.

Now we formulate similar results to Theorems 3.1, 3.4, and 3.8, respectively.

Theorem 5.3. Let assumption (H8) be satisfied. Let y0,z0 ∈ C1(J ,R) be weakly coupled
lower and upper solutions of (5.1) and let y0(t) ≤ z0(t) on J. In addition assume that as-
sumptions (H4), (H9) are satisfied.

Then problem (5.1) has, in the sector [y0,z0]∗, coupled quasisolutions.

In the proof use the sequences {yn,zn} defined by

y′n+1(t)=Gyn(t)−K(t)
[
yn+1(t)− yn(t)

]−
r∑

i=1

Li(t)
[
yn+1

(
αi(t)

)− yn
(
αi(t)

)]
,

0= g
(
yn(0),zn(T)

)
+M

[
yn+1(0)− yn(0)

]
,

z′n+1(t)=Gzn(t)−K(t)
[
zn+1(t)− zn(t)

]−
r∑

i=1

Li(t)
[
zn+1

(
αi(t)

)− zn
(
αi(t)

)]
,

0= g
(
zn(0), yn(T)

)
+M

[
zn+1(0)− zn(0)

]

(5.8)

for t ∈ J , n= 0,1, . . . .

Theorem 5.4. Assume that all assumptions of Theorem 5.3 are satisfied. In addition suppose
that assumptions (H5), (H10) hold.

Then problem (5.1) has, in the sector [y0,z0]∗, a unique solution.

Theorem 5.5. Let assumptions (H1), (H7), (H10) hold. In addition assume that problem
(5.1) has, in the sector [y0,z0]∗, at least one solution.

Then problem (5.1) has, in the sector [y0,z0]∗, a unique solution.

The next two theorems correspond to Theorems 4.2 and 4.3, respectively.

Theorem 5.6. Let assumption (H8) hold. Let y0,z0 ∈ C1(J ,R) be lower and upper solutions
of problem (5.1), respectively, and let y0(t)≤ z0(t), t ∈ J. In addition suppose that assump-
tions (H′

4), (H9) hold.
Then problem (5.1) has, in the sector [y0,z0]∗, extremal solutions.
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In the proof use the sequences {yn,zn} defined by

y′n+1(t)=Gyn(t)−K(t)
[
yn+1(t)− yn(t)

]−
r∑

i=1

Li(t)
[
yn+1

(
αi(t)

)− yn
(
αi(t)

)]
,

0= g
(
yn(0), yn(T)

)
+M

[
yn+1(0)− yn(0)

]
,

z′n+1(t)=Gzn(t)−K(t)
[
zn+1(t)− zn(t)

]−
r∑

i=1

Li(t)
[
zn+1

(
αi(t)

)− zn
(
αi(t)

)]
,

0= g
(
zn(0),zn(T)

)
+M

[
zn+1(0)− zn(0)

]

(5.9)

for t ∈ J , n= 0,1, . . . .

Theorem 5.7. Let all assumptions of Theorem 5.6 be satisfied. In addition suppose that
assumptions (H′

7), (H10) hold.
Then problem (5.1) has, in the sector [y0,z0]∗, a unique solution.
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