EXISTENCE OF INFINITELY MANY NODAL SOLUTIONS FOR A SUPERLINEAR NEUMANN BOUNDARY VALUE PROBLEM

AIXIA QIAN

Received 12 January 2005

We study the existence of a class of nonlinear elliptic equation with Neumann boundary condition, and obtain infinitely many nodal solutions. The study of such a problem is based on the variational methods and critical point theory. We prove the conclusion by using the symmetric mountain-pass theorem under the Cerami condition.

1. Introduction

Consider the Neumann boundary value problem:

$$
\begin{gather*}
-\triangle u+\alpha u=f(x, u), \quad x \in \Omega \\
\frac{\partial u}{\partial v}=0, \quad x \in \partial \Omega \tag{1.1}
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ is a bounded domain with smooth boundary $\partial \Omega$ and $\alpha>0$ is a constant. Denote by $\sigma(-\triangle):=\left\{\lambda_{i} \mid 0=\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{k} \leq \ldots\right\}$ the eigenvalues of the eigenvalue problem:

$$
\begin{gather*}
-\triangle u=\lambda u, \quad x \in \Omega, \\
\frac{\partial u}{\partial v}=0, \quad x \in \partial \Omega . \tag{1.2}
\end{gather*}
$$

Let $F(x, s)=\int_{0}^{s} f(x, t) d t, G(x, s)=f(x, s) s-2 F(x, s)$. Assume
$\left(f_{1}\right) f \in C(\bar{\Omega} \times \mathbb{R}), f(0)=0$, and for some $2<p<2^{*}=2 N /(N-2)$ (for $N=1,2$, take $\left.2^{*}=\infty\right), c>0$ such that

$$
\begin{equation*}
|f(x, u)| \leq c\left(1+|u|^{p-1}\right), \quad(x, u) \in \Omega \times \mathbb{R} . \tag{1.3}
\end{equation*}
$$

$\left(f_{2}\right)$ There exists $L \geq 0$, such that $f(x, s)+L s$ is increasing in s.
$\left(f_{3}\right) \lim _{|s| \rightarrow \infty}(f(x, s) s) /|s|^{2}=+\infty$ uniformly for a.e. $x \in \Omega$.
(f_{4}) There exist $\theta \geq 1, s \in[0,1]$ such that

$$
\begin{equation*}
\theta G(x, t) \geq G(x, s t), \quad(x, u) \in \Omega \times \mathbb{R} . \tag{1.4}
\end{equation*}
$$

$\left(f_{5}\right) f(x,-t)=-f(x, t),(x, u) \in \Omega \times \mathbb{R}$.
Because of $\left(f_{3}\right),(1.1)$ is called a superlinear problem. In [6, Theorem 9.38], the author obtained infinitely many solutions of (1.1) under $\left(f_{1}\right)-\left(f_{5}\right)$ and
(AR) $\exists \mu>2, R>0$ such that

$$
\begin{equation*}
x \in \Omega, \quad|s| \geq R \Longrightarrow 0<\mu F(x, s) \leq f(x, s) s \tag{1.5}
\end{equation*}
$$

Obviously, $\left(f_{3}\right)$ can be deduced from $(A R)$. Under $(A R)$, the $(P S)$ sequence of corresponding energy functional is bounded, which plays an important role for the application of variational methods. However, there are indeed many superlinear functions not satisfying $(A R)$, for example, take $\theta=1$, the function

$$
\begin{equation*}
f(x, t)=2 t \log (1+|t|) \tag{1.6}
\end{equation*}
$$

while it is easy to see that the above function satisfies $\left(f_{1}\right)-\left(f_{5}\right)$. Condition $\left(f_{4}\right)$ is from [2] and (1.6) is from [4].

In view of the variational point, solutions of (1.1) are critical points of corresponding functional defined on the Hilbert space $E:=W^{1,2}(\Omega)$. Let $X:=\left\{u \in C^{1}(\Omega) \mid \partial u / \partial v=\right.$ $0, x \in \partial \Omega\}$ a Banach space. We consider the functional

$$
\begin{equation*}
J(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+\alpha u^{2}\right) d x-\int_{\Omega} F(x, u) d x, \tag{1.7}
\end{equation*}
$$

where E is equipped with the norm

$$
\begin{equation*}
\|u\|=\left(\int_{\Omega}|\nabla u|^{2}+\alpha \int_{\Omega} u^{2}\right)^{1 / 2} . \tag{1.8}
\end{equation*}
$$

$\operatorname{By}\left(f_{1}\right), J$ is of C^{1} and

$$
\begin{equation*}
\left\langle J^{\prime}(u), v\right\rangle=\int_{\Omega}(\nabla u \nabla v+\alpha u v) d x-\int_{\Omega} f(x, u) v d x, \quad u, v \in E . \tag{1.9}
\end{equation*}
$$

Now, we can state our main result.
Theorem 1.1. Under assumptions $\left(f_{1}\right)-\left(f_{5}\right)$, (1.1) has infinitely many nodal solutions.
Remark 1.2. [8, Theorem 3.2] obtained infinitely many solutions under $\left(f_{1}\right)-\left(f_{5}\right)$ and
$\left(f_{3}\right)^{\prime} \lim _{|u| \rightarrow \infty} \inf (f(x, u) u) /|u|^{\mu} \geq c>0$ uniformly for $x \in \Omega$, where $\mu>2$.
$\left(f_{4}\right)^{\prime} f(x, u) / u$ is increasing in $|u|$.
It turns out that $\left(f_{3}\right)^{\prime}$ and $\left(f_{4}\right)^{\prime}$ are stronger than $\left(f_{3}\right)$ and $\left(f_{4}\right)$, respectively, furthermore, the function (1.6) does not satisfy $\left(f_{3}\right)^{\prime}$, then Theorem 1.1 applied to Dirichlet boundary value problem improves [8, Theorem 3.2].

Remark 1.3. [1, Theorem 7.3] also got infinitely many nodal solutions for (1.1) under assumption that the functional is of C^{2}.

2. Preliminaries

Let E be a Hilbert space and $X \subset E$, a Banach space densely embedded in E. Assume that E has a closed convex cone P_{E} and that $P=: P_{E} \bigcap X$ has interior points in X, that is, $P=\stackrel{\circ}{P} \bigcup \partial P$, with $\stackrel{\circ}{P}$ the interior and ∂P the boundary of P in X. Let $J \in C^{1}(E, \mathbb{R})$, denote $K=\left\{u \in E: J^{\prime}(u)=0\right\}, J^{c}=\{u \in E: J(u) \leq c\}, K_{c}=\{u \in K: J(u)=c\}, c \in \mathbb{R}$.

Definition 2.1. We say that J satisfies Cerami condition (C), if for all $c \in \mathbb{R}$
(i) Any bounded sequence $\left\{u_{n}\right\} \subset E$ satisfying $J\left(u_{n}\right) \rightarrow c, J^{\prime}\left(u_{n}\right) \rightarrow 0$ possesses a convergent subsequence.
(ii) There exist $\sigma, R, \beta>0$ such that for any $u \in J^{-1}([c-\sigma, c+\sigma])$ with $\|u\| \geq R$, $\left\|J^{\prime}(u)\right\|\|u\| \geq \beta$.

Definition 2.2 (see [3]). Let $M \subset X$ be an invariant set under σ. We say M is an admissible invariant set for J, if (a) M is the closure of an open set in X, that is, $M=\stackrel{\circ}{M} \cup \partial M$; (b) if $u_{n}=\sigma\left(t_{n}, v\right)$ for some $v \notin M$ and $u_{n} \rightarrow u$ in E as $t_{n} \rightarrow \infty$ for some $u \in K$, then $u_{n} \rightarrow u$ in X; (c) if $u_{n} \in K \bigcap M$ such that $u_{n} \rightarrow u$ in E, then $u_{n} \rightarrow u$ in X; (d) for any $u \in \partial M \backslash K$, $\sigma(t, u) \in \stackrel{\circ}{M}$ for $t>0$.

In [5], we proved $J \in C^{1}(E, \mathbb{R})$ satisfier the deformation Lemma 2.3 under $(P S)$ condition and assumption $(\Phi): K(J) \subset X, J^{\prime}(u)=u-A(u)$ for $u \in E, A: X \rightarrow X$ is continuous. It turns out that the same lemma still holds if J satisfies (C), that is.

Lemma 2.3. Assume $J \in C^{1}(E, \mathbb{R})$ satisfies (Φ) and (C) condition. Let $M \subset X$ be an admissible invariant set to the pseudo-gradient flow σ of J. Define $K_{c}^{1}=K_{c} \cap \stackrel{\circ}{M}, K_{c}^{2}=K_{c} \cap(X \backslash M)$ for some c. Assume $K_{c} \cap \partial M=\varnothing$, there exits $\delta>0$ such that $\left(K_{c}^{1}\right)_{4 \delta} \cap\left(K_{c}^{2}\right)_{4 \delta}=\varnothing$, where $\left(K_{c}^{i}\right)_{4 \delta}=\left\{u \in E: d_{E}\left(u, K_{c}^{i}\right)<4 \delta\right\}$ for $i=1,2$. Then there is $\varepsilon_{0}>0$, such that for any $0<\varepsilon<$ ε_{0} and any compact subset $A \subset\left(J^{c+\varepsilon} \cap X\right) \cup M$, there is $\eta \in C([0,1] \times X, X)$ such that
(i) $\eta(t, u)=u$, if $t=0$ or $u \notin J^{-1}\left(\left[c-3 \varepsilon_{0}, c+3 \varepsilon_{0}\right]\right) \backslash\left(K_{c}^{2}\right)_{\delta}$;
(ii) $\eta\left(1, A \backslash\left(K_{c}^{2}\right)_{3 \delta}\right) \subset J^{c-\varepsilon} \cup M$, and $\eta(1, A) \subset J^{c-\varepsilon} \cup M$ if $K_{c}^{2}=\varnothing$;
(iii) $\eta(t, \cdot)$ is a homeomorphism of X for $t \in[0,1]$;
(iv) $J(\eta(\cdot, u))$ is nonincreasing for any $u \in X$;
(v) $\eta(t, M) \subset M$ for any $t \in[0,1]$;
(vi) $\eta(t, \cdot)$ is odd, if J is even and M is symmetric about the origin.

Indeed, $\sigma>\varepsilon_{0}>0$ can be chosen small, where σ is from (ii) of (C), such that $\left\|J^{\prime}(u)\right\|^{2} /(1+$ $\left.2\left\|J^{\prime}(u)\right\|\right) \geq 6 \varepsilon_{0} / \delta, \forall u \in J^{-1}\left(\left[c-3 \varepsilon_{0}, c+3 \varepsilon_{0}\right]\right) \backslash\left(K_{c}\right)_{\delta}$.

In $[3,5]$, a version of symmetric mountain-pass theorem holds under $(P S) .(C)$ is weaker than $(P S)$, but by above deformation Lemma 2.3, a version of "symmetric mountain-pass theorem" still follows.

Theorem 2.4. Assume $J \in C^{1}(E, \mathbb{R})$ is even, $J(0)=0$ satisfies (Φ) and $(C)_{c}$ condition for $c>$ 0 . Assume that P is an admissible invariant set for $J, K_{c} \cap \partial P=\varnothing$ for all $c>0, E=\overline{\bigoplus_{j=1}^{\infty} E_{j}}$, where E_{j} are finite dimensional subspaces of X, and for each k, let $Y_{k}=\bigoplus_{j=1}^{k} E_{j}$ and $Z_{k}=$ $\overline{\bigoplus_{j=k}^{\infty} E_{j}}$. Assume for each k there exist $\rho_{k}>\gamma_{k}>0$, such that $\overline{\lim _{k \rightarrow \infty}} a_{k}<\infty$, where $a_{k}=$ $\max _{Y_{k} \cap \partial B_{\rho_{k}}(0)} J(x), b_{k}=\inf _{Z_{k} \cap \partial B_{\gamma_{k}}(0)} J(x) \rightarrow \infty$ as $k \rightarrow \infty$. Then J has a sequence of critical
points $u_{n} \in X \backslash(P \bigcup(-P))$ such that $J\left(u_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$, provided $Z_{k} \cap \partial B_{\gamma_{k}}(0) \cap P=\varnothing$ for large k.

3. Proof of Theorem 1.1

Proposition 3.1. Under $\left(f_{1}\right)-\left(f_{3}\right)$ and $\left(f_{4}\right)$, J satisfies the (C) condition.
Proof. For all $c \in \mathbb{R}$, since Sobolev embedding $H^{1}(\Omega) \rightarrow L^{2}(\Omega)$ is compact, the proof of (i) in (C) is trivial.

About (ii) of (C). If not, there exist $c \in \mathbb{R}$ and $\left\{u_{n}\right\} \subset H^{1}(\Omega)$ satisfying, as $n \rightarrow \infty$

$$
\begin{equation*}
J\left(u_{n}\right) \longrightarrow c, \quad\left\|u_{n}\right\| \longrightarrow \infty, \quad\left\|J^{\prime}\left(u_{n}\right)\right\|\left\|u_{n}\right\| \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left(\frac{1}{2} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) d x=\lim _{n \rightarrow \infty}\left(J\left(u_{n}\right)-\frac{1}{2}\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right)=c . \tag{3.2}
\end{equation*}
$$

Denote $v_{n}=u_{n} /\left\|u_{n}\right\|$, then $\left\|v_{n}\right\|=1$, that is, $\left\{v_{n}\right\}$ is bounded in $H^{1}(\Omega)$, thus for some $v \in H^{1}(\Omega)$, we get

$$
\begin{array}{ll}
v_{n} \rightarrow v & \text { in } H^{1}(\Omega), \\
v_{n} \longrightarrow v & \text { in } L^{2}(\Omega), \tag{3.3}\\
v_{n} \longrightarrow v & \text { a.e. in } \Omega .
\end{array}
$$

If $v=0$, as the similar proof in [2], define a sequence $\left\{t_{n}\right\} \in \mathbb{R}$:

$$
\begin{equation*}
J\left(t_{n} u_{n}\right)=\max _{t \in[0,1]} J\left(t u_{n}\right) \tag{3.4}
\end{equation*}
$$

If for some $n \in \mathbb{N}$, there is a number of t_{n} satisfying (3.4), we choose one of them. For all $m>0$, let $\bar{v}_{n}=2 \sqrt{m} v_{n}$, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} F\left(x, \bar{v}_{n}\right) d x=\lim _{n \rightarrow \infty} \int_{\Omega} F\left(x, 2 \sqrt{m} v_{n}\right) d x=0 \tag{3.5}
\end{equation*}
$$

Then for n large enough

$$
\begin{equation*}
J\left(t_{n} u_{n}\right) \geq J\left(\bar{v}_{n}\right)=2 m-\int_{\Omega} F\left(x, \bar{v}_{n}\right) d x \geq m \tag{3.6}
\end{equation*}
$$

that is, $\lim _{n \rightarrow \infty} J\left(t_{n} u_{n}\right)=+\infty$. Since $J(0)=0$ and $J\left(u_{n}\right) \rightarrow c$, then $0<t_{n}<1$. Thus

$$
\begin{gather*}
\int_{\Omega}\left(\left|\nabla\left(t_{n} u_{n}\right)\right|^{2}+\alpha\left(t_{n} u_{n}\right)^{2}\right)-\int_{\Omega} f\left(x, t_{n} u_{n}\right) t_{n} u_{n} \\
=\left\langle J^{\prime}\left(t_{n} u_{n}\right), t_{n} u_{n}\right\rangle=\left.t_{n} \frac{d}{d t}\right|_{t=t_{n}} J\left(t u_{n}\right)=0 . \tag{3.7}
\end{gather*}
$$

We see that

$$
\begin{align*}
\int_{\Omega} & \left(\frac{1}{2} f\left(s, t_{n} u_{n}\right) t_{n} u_{n}-F\left(x, t_{n} u_{n}\right)\right) d x \\
& =\frac{1}{2} \int_{\Omega}\left(\left|\nabla\left(t_{n} u_{n}\right)\right|^{2}+\alpha\left(t_{n} u_{n}\right)^{2}\right)-\int_{\Omega} F\left(x, t_{n} u_{n}\right) \tag{3.8}\\
& =J\left(t_{n} u_{n}\right) \longrightarrow+\infty, \quad n \longrightarrow \infty
\end{align*}
$$

From above, we infer that

$$
\begin{align*}
& \int_{\Omega}\left(\frac{1}{2} f\left(s, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) d x \\
&=\frac{1}{2} \int_{\Omega} G\left(x, u_{n}\right) d x \geq \frac{1}{2 \theta} \int_{\Omega} G\left(x, t_{n} u_{n}\right) d x \tag{3.9}\\
&=\frac{1}{\theta} \int_{\Omega}\left(\frac{1}{2} f\left(s, t_{n} u_{n}\right) t_{n} u_{n}-F\left(x, t_{n} u_{n}\right)\right) d x \longrightarrow+\infty, \quad n \longrightarrow \infty
\end{align*}
$$

which contradicts (3.2).
If $v \not \equiv 0$, by (3.1)

$$
\begin{equation*}
\int_{\Omega}\left(\left|\nabla u_{n}\right|^{2}+\alpha u_{n}^{2}\right)-\int_{\Omega} f\left(x, u_{n}\right) u_{n}=\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle=o(1) \tag{3.10}
\end{equation*}
$$

that is,

$$
\begin{equation*}
1-o(1)=\int_{\Omega} \frac{f\left(x, u_{n}\right) u_{n}}{\left\|u_{n}\right\|^{2}} d x=\left(\int_{v \neq 0}+\int_{v=0}\right) \frac{f\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{2}}\left|v_{n}\right|^{2} d x \tag{3.11}
\end{equation*}
$$

For $x \in \Omega^{\prime}:=\{x \in \Omega: v(x) \neq 0\}$, we get $\left|u_{n}(x)\right| \rightarrow+\infty$. Then by $\left(f_{3}\right)$

$$
\begin{equation*}
\frac{f\left(x, u_{n}(x)\right) u_{n}(x)}{\left|u_{n}(x)\right|^{2}}\left|v_{n}(x)\right|^{2} d x \longrightarrow+\infty, \quad n \longrightarrow \infty \tag{3.12}
\end{equation*}
$$

By using Fatou lemma, since $\left|\Omega^{\prime}\right|>0\left(|\cdot|\right.$ is the Lebesgue measure in $\left.\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\int_{v \neq 0} \frac{f\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{2}}\left|v_{n}\right|^{2} d x \longrightarrow+\infty, \quad n \longrightarrow \infty \tag{3.13}
\end{equation*}
$$

On the other hand, by $\left(f_{3}\right)$, there exists $\gamma>-\infty$, such that $f(x, s) s /|s|^{2} \geq \gamma$ for $(x, s) \in$ $\Omega \times \mathbb{R}$. Moreover,

$$
\begin{equation*}
\int_{v=0}\left|v_{n}\right|^{2} d x \longrightarrow 0, \quad n \longrightarrow \infty \tag{3.14}
\end{equation*}
$$

Now, there exists $\Lambda>-\infty$ such that

$$
\begin{equation*}
\int_{v=0} \frac{f\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{2}}\left|v_{n}\right|^{2} d x \geq \gamma \int_{v=0}\left|v_{n}\right|^{2} d x \geq \Lambda>-\infty \tag{3.15}
\end{equation*}
$$

together with (3.11) and (3.13), it is a contradiction.
This proves that J satisfies (C).

Proposition 3.2. Under $\left(f_{4}\right)^{\prime}$, then for $|t| \geq|s|$ and $t s \geq 0, G(x, t) \geq G(x, s)$, that is, (f_{4}) holds for $\theta=1$.

Proof. for $0 \leq s \leq t$,

$$
\begin{align*}
G(x, t)-G(x, s) & =2\left[\frac{1}{2}(f(x, t) t-f(x, s) s)-(F(x, t)-F(x, s))\right] \\
& =2\left[\int_{0}^{t} \frac{f(x, t)}{t} \tau d \tau-\int_{0}^{s} \frac{f(x, s)}{s} \tau d \tau-\int_{s}^{t} \frac{f(x, \tau)}{\tau} \tau d \tau\right] \\
& =2\left[\int_{s}^{t}\left(\frac{f(x, t)}{t}-\frac{f(x, \tau)}{\tau}\right) \tau d \tau+\int_{0}^{s}\left(\frac{f(x, t)}{t}-\frac{f(x, s)}{s}\right) \tau d \tau\right] \geq 0 \tag{3.16}
\end{align*}
$$

In like manner, for $t \leq s \leq 0, G(x, t)-G(x, s) \geq 0$.
On $E:=H^{1}(\Omega)$, let us define $P_{E}=\{u \in E: u(x) \geq 0$, a.e. in $\Omega\}$, which is a closed convex cone. Let $X=C_{\nu}^{1}(\Omega)$, which is a Banach space and embedded densely in E. Set $P=P_{E} \bigcap X$, then P is a closed convex cone in X. Furthermore, $P=\stackrel{\circ}{P} \cup \partial P$ under the topology of X, that is, there exist interior points in X. We may define a partial order relation: $u, v \in X, u>v \Leftrightarrow u-v \in P \backslash\{0\}, u \gg v \Leftrightarrow u-v \in \stackrel{\circ}{P}$.

As the proof of those propositions in [5, Section 5], it turns out that condition Φ is satisfied and P is an admissible invariant set for J under $\left(f_{1}\right),\left(f_{2}\right)$, and (C) condition.

Proof of Theorem 1.1. Let $E_{i}=\operatorname{ker}\left(-\triangle-\lambda_{i}\right), Y_{k}=\bigoplus_{i=1}^{k} E_{i}$ and $Z_{k}=\bigoplus_{i=k}^{\infty} E_{i}$. It shows that J is continuously differentiable by $\left(f_{1}\right)$ and satisfies the $(C)_{c}$ condition for every $c \in R$ by Proposition 3.1.
(1) As the proof of [7, Theorem 3.7(3)], there exists $\gamma_{k}>0$ such that for $u \in Z_{k},\|u\|=$ γ_{k}, we have

$$
\begin{equation*}
b_{k}:=\inf _{Z_{k} \cap \partial B_{\gamma_{k}}(0)} J(u) \longrightarrow \infty, \quad k \longrightarrow \infty . \tag{3.17}
\end{equation*}
$$

(2) Since $\operatorname{dim} Y_{k}<+\infty$ and all norms are equivalent on the finite dimensional space, there exists $C_{k}>0$, for all $u \in Y_{k}$, we get

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+\alpha u^{2}\right)=\frac{1}{2}\|u\|^{2} \leq C_{k}|u|_{2}^{2} \equiv C_{k} \int_{\Omega}|u|^{2} d x . \tag{3.18}
\end{equation*}
$$

Next, by $\left(f_{3}\right)$, there exists $R_{k}>0$ such that $F(x, s) \geq 2 C_{k}|s|^{2}$ for $|s| \geq R_{k}$. Take $M_{k}:=$ $\max \left\{0, \inf _{|s| \leq R_{k}} F(x, s)\right\}$, then for all $(x, s) \in \Omega \times \mathbb{R}$, we obtain

$$
\begin{equation*}
F(x, s) \geq 2 C_{k}|s|^{2}-M_{k} \tag{3.19}
\end{equation*}
$$

It follows from (3.18) and (3.19) that, for all $u \in Y_{k}$

$$
\begin{align*}
J(u) & =\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+\alpha u^{2}\right)-\int_{\Omega} F(x, u) \\
& \leq-C_{k}|u|_{2}^{2}+M_{k}|\Omega| \leq-\frac{1}{2}\|u\|^{2}+M_{k}|\Omega|, \tag{3.20}
\end{align*}
$$

which implies that for ρ_{k} large enough $\left(\rho_{k}>\gamma_{k}\right)$,

$$
\begin{equation*}
a_{k}:=\max _{Y_{k} \cap \partial B_{\rho_{k}}(0)} J(u) \leq 0 . \tag{3.21}
\end{equation*}
$$

Moreover, for $k \geq 2, Z_{k} \cap P=\{0\}$. This can be seen by noting that for all $u \in P \backslash\{0\}$, $\int_{\Omega} u \phi_{1}(x) d x>0$, while for $u \in Z_{k}, \int_{\Omega} u \phi_{1}(x) d x=0$, where ϕ_{1} is the first eigenfunction corresponding to λ_{1}, which implies $Z_{k} \bigcap \partial B_{\gamma_{k}}(0) \cap P=\varnothing$.

By Theorem 2.4, J has a sequence of critical points $u_{n} \in X \backslash(P \bigcup(-P))$ such that $J\left(u_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$, that is, (1.1) has infinitely many nodal solutions.

Example 3.3. By Theorem 1.1, the following equation with $\alpha>0$

$$
\begin{gather*}
-\triangle u+\alpha u=2 u \log (1+|u|), \quad x \in \Omega \\
\frac{\partial u}{\partial v}=0, \quad x \in \partial \Omega \tag{3.22}
\end{gather*}
$$

has infinitely many nodal solutions, while the result cannot be obtained by either [6, Theorem 9.12] or [8, Theorem 3.2].

References

[1] T. Bartsch, Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001), no. 1, 117-152.
[2] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbf{R}^{\mathbf{N}}$, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787-809.
[3] S. Li and Z.-Q. Wang, Ljusternik-Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc. 354 (2002), no. 8, 3207-3227.
[4] S. Liu, Existence of solutions to a superlinear p-Laplacian equation, Electron. J. Differential Equations 2001 (2001), no. 66, 1-6.
[5] A. Qian and S. Li, Multiple nodal solutions for elliptic equations, Nonlinear Anal. 57 (2004), no. 4, 615-632.
[6] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Rhode Island, 1986.
[7] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser Boston, Massachusetts, 1996.
[8] W. Zou, Variant fountain theorems and their applications, Manuscripta Math. 104 (2001), no. 3, 343-358.

Aixia Qian: Department of Mathematics, Qufu Normal University, Qufu, Shandong 273165, China E-mail address: qianax@163.com

