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We study the properties of the positive principal eigenvalue and the corresponding
eigenspaces of two quasilinear elliptic systems under nonlinear boundary conditions. We
prove that this eigenvalue is simple, unique up to positive eigenfunctions for both sys-
tems, and isolated for one of them.

1. Introduction

Let Ω be an unbounded domain inRN ,N ≥ 2, with a noncompact and smooth boundary
∂Ω. In this paper we prove certain properties of the principal eigenvalue of the following
quasilinear elliptic systems

−∆pu= λa(x)|u|p−2u+ λb(x)|u|α−1|v|β+1u, in Ω,

−∆qv = λd(x)|v|q−2v+ λb(x)|u|α+1|v|β−1v, in Ω,
(1.1)

−∆pu= λa(x)|u|p−2u+ λb(x)|u|α|v|βv in Ω,

−∆qv = λd(x)|v|q−2v+ λb(x)|u|α|v|βu in Ω
(1.2)

satisfying the nonlinear boundary conditions

|∇u|p−2∇u ·η+ c1(x)|u|p−2u= 0 on ∂Ω,

|∇v|q−2∇v ·η+ c2(x)|v|q−2v = 0 on ∂Ω,
(1.3)

where η is the unit outward normal vector on ∂Ω. As it will be clear later, under condition
(H1), 1 < p,q < N , α,β ≥ 0 and

α+ 1
p

+
β+ 1
q

= 1, α+ 1 <
pq∗

N
, β+ 1 <

p∗q
N

, (1.4)

systems (1.1), (1.2) are in fact nonlinear eigenvalue problems. Our procedure here will
be based on the proper space setting provided in [14], (see Section 2). In this section, we
also state the assumptions on the coefficient functions.
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Problems of such a type arise in a variety of applications, for example, non-Newtonian
fluids, reaction-diffusion problems, theory of superconductors, biology, and so forth, (see
[2, 15] and the references therein). As a consequence, there are many works treating non-
linear systems from different points of view, for example, [4, 7, 9, 11, 13].

Properties of the principal eigenvalue are of prime interest since for example they are
closely associated with the dynamics of the associated evolution equations (e.g., global bi-
furcation, stability) or with the description of the solution set of corresponding perturbed
problems (e.g., [17]). These properties are: existence, positivity, simplicity, uniqueness up to
eigenfunctions which do not change sign and isolation, which hold in the case of the Lapla-
cian operator in a bounded domain. It is well known that these properties also hold for
the p-Laplacian scalar eigenvalue problem (in both bounded and unbounded domains)
and were recently obtained in [12] under nonlinear boundary conditions while the case of
some (p,q)-Laplacian systems with Dirichlet boundary conditions was also successfully
treated in [1, 10, 16, 18].

Note that we discuss the case of a potential (or gradient) system, which is a restriction.
However, this is in some sense natural because the aforementioned properties of the prin-
cipal eigenvalue are stronger than in the scalar equation case; for example the principal
eigenvalue of the system is the only eigenvalue which admits a nonnegative eigenfunc-
tion in the sense that both components do not change sign. It is also remarkable that the
associated “eigenspaces” are generally not linear subspaces.

Starting with the system (1.1)–(1.3), we proceed as follows: in Section 2, we give the
space setting and the assumptions on the coefficient functions. In Section 3, using the
compactness of the corresponding operators we prove the existence and positivity of
λ1 and we state a regularity result based on the iterative procedure of [5]. In Section 4,
we prove the simplicity and the uniqueness up to positive (componentwise) eigenfunc-
tions. This is done by using the Picone’s identity (see [1]). Finally, in Section 5, we prove
Theorem 2.3 by establishing the connection between the two systems with respect to ex-
istence and simplicity of the common principal eigenvalue λ1 as well as the regularity of
the eigenfunctions. In addition, we show that λ1 is isolated for the system (1.2)-(1.3).

2. Preliminaries and statement of the results

Let Ω be an unbounded domain in RN , N ≥ 2, with a noncompact and smooth bound-
ary ∂Ω. For m > 0 and r ∈ (1,+∞) let wm(x) = 1/(1 + |x|)m and assume that the space
Lr(wm,Ω) := {u :

∫
Ω(1/(1 + |x|)m)|u|r < +∞} is supplied with the norm

‖u‖wm,r =
(∫

Ω

1(
1 + |x|)m |u|r

)1/r

. (2.1)

We require the following hypotheses:
(H1) 1 < p,q < N , α,β ≥ 0 with (α+ 1)/p + (β + 1)/q = 1, α+ 1 < pq∗/N and β + 1 <

p∗q/N .
Here p∗ and q∗ are the critical Sobolev exponents defined by

p∗ = pN

N − p
, q∗ = qN

N − q . (2.2)
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(H2)
(i) There exists positive constants α1, A1 with α1 ∈ (p+ ((β+ 1)(N − p)/q∗),N) and

0 < a(x)≤A1wα1 (x) a.e. in Ω, (2.3)

(ii) there exists positive constants α2, D1 with α2 ∈ (q+ ((α+ 1)(N − q)/p∗),N) and

0 < d(x)≤D1wα2 (x) a.e. in Ω, (2.4)

(iii) m{x ∈Ω : b(x) > 0} > 0 and

0≤ b(x)≤ B1ws(x) a.e. in Ω, (2.5)

where B1 > 0 and s∈ (max{p,q},N).
(H3) c1(·) and c2(·) are positive and continuous functions defined on RN with

k1wp−1(x)≤ c1(x)≤ K1wp−1(x),

l1wq−1(x)≤ c2(x)≤ L1wq−1(x),
(2.6)

for some positive constants k1, K1, l1, L1.
Let C∞δ (Ω) be the space of C∞0 (RN )-functions restricted to Ω. For m ∈ (1,+∞), the

weighted Sobolev space Em is the completion of C∞δ (Ω) in the norm

|||u|||m =
(∫

Ω
|∇u|m +

∫
Ω

1
(1 + |x|)m |u|

m

)1/m

. (2.7)

By [14, Lemma 2] we see that if c(·) is a positive continuous function defined on Rn then
the norm

‖u‖1,m =
(∫

Ω
|∇u|m +

∫
∂Ω
c(x)|u|m

)1/m

(2.8)

is equivalent to ||| · |||m. The proof of the following lemma is also provided in [14].

Lemma 2.1. (i) If

p ≤ r ≤ pN

N − p
, N > α≥N − r N − p

p
, (2.9)
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then the embedding E ⊆ Lr(wα,Ω) is continuous. If the upper bound for r in the first in-
equality and the lower bound in the second is strict, then the embedding is compact.

(ii) If

p ≤m≤ p(N − 1)
N − p

, N > β ≥N − 1−mN − p

p
, (2.10)

then the embedding E ⊆ Lm(wβ,∂Ω) is continuous. If the upper bounds for m are strict, then
the embedding is compact.

It is natural to consider our systems on the space E = Ep×Eq supplied with the norm

∥∥(u,v)
∥∥
pq = ‖u‖1,p +‖v‖1,q. (2.11)

We now define the functionals Φ, I , J : E→ R as follows:

Φ(u,v)= α+ 1
p

∫
Ω
|∇u|p +

α+ 1
p

∫
∂Ω
c1(x)|u|p +

β+ 1
q

∫
Ω
|∇v|p +

β+ 1
q

∫
∂Ω
c2|v|q

− λα+ 1
p

∫
Ω
a(x)|u|p− λβ+ 1

q

∫
Ω
d(x)|v|q− λ

∫
Ω
b(x)|u|α+1|v|β+1,

I(u,v)= α+ 1
p

∫
Ω
|∇u|p +

β+ 1
q

∫
Ω
|∇v|p +

α+ 1
p

∫
∂Ω
c1(x)|u|p +

β+ 1
q

∫
∂Ω
c2|v|q,

J(u,v)= α+ 1
p

∫
Ω
a(x)|u|p +

β+ 1
q

∫
Ω
d(x)|v|q +

∫
Ω
b(x)|u|α+1|v|β+1.

(2.12)

In view of (H1)–(H3), the functionals Φ, I , J are well defined and continuously differen-
tiable on E. By a weak solution of (1.1) we mean an element (u0,v0) of E which is a critical
point of the functional Φ.

The main results of this work are the following theorems.

Theorem 2.2. Let Ω be an unbounded domain in RN , N ≥ 2, with a noncompact and
smooth boundary ∂Ω. Assume that the hypotheses (H1), (H2), and (H3) hold. Then

(i) System (1.1)–(1.3) admits a positive principal eigenvalue λ1 given by

λ1 = inf
{
I(u,v) : J(u,v)= 1

}
. (2.13)

Each component of the associated normalized eigenfunction (u1,v1) is positive in Ω and of
class C1,δ

loc (Ω) for some δ ∈ (0,1).
(ii) The set of eigenfunctions corresponding to λ1 forms a one dimensional manifold E1 ⊆

E defined by

E1 =
{(
cu1,±|c|p/qv1

)
: c ∈ R\{0}}. (2.14)

Furthermore, a componentwise positive eigenfunction always corresponds to λ1.
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Theorem 2.3. Assume that the hypotheses of Theorem 2.2 hold.
(a) System (1.2)-(1.3) shares the same positive principal eigenvalue λ1 and the same prop-

erties of the associated eigenfunctions with (1.1)–(1.3).
(b) The set of eigenfunctions corresponding to λ1 forms a one dimensional manifold E2 ⊆

E defined by

E2 =
{± (cu1,cp/qv1

)
: c > 0

}
. (2.15)

(c) λ1 is isolated for the system (1.2)-(1.3), in the sense that there exists η > 0 such that
the interval (0,λ1 +η) does not contain any other eigenvalue than λ1.

3. Existence and regularity

In this section, we prove the existence of a positive principal eigenvalue and the regularity
of the corresponding eigenfunctions for the system (1.1)–(1.3).

Existence. The operators I , J are continuously Fréchet differentiable, I is coercive on E∩
{J(u,v) ≤ const}, J is compact and J ′(u,v) = 0 only at (u,v) = 0. So the assumptions
of Theorem 6.3.2 in [3] are fulfilled implying the existence of a principal eigenvalue λ1,
satisfying

λ1 = inf
J(u,v)=1

I(u,v). (3.1)

Moreover, if (u1,v1) is a minimizer of (2.13) then (|u1|,|v1|) should be also a minimizer.
Hence, we may assume that there exists an eigenfunction (u1,v1) corresponding to λ1,
such that u1 ≥ 0 and v1 ≥ 0, a.e. in Ω.

Regularity. We show first that wpu1 and wqv1 are essentially bounded in Ω. To that pur-

pose define uM(x) :=min{u1(x),M}. It is clear that u
kp+1
M ∈ Ep, for k ≥ 0. Multiplying the

first equation of (1.1) by u
kp+1
M and integrating over Ω, we get

∫
Ω

∣∣∇u1
∣∣p−2∇u1 ·∇

(
u
kp+1
M

)
dx+

∫
∂Ω
c1(x)u

p−1
1 u

kp+1
M dx

≤ λ1

∫
Ω
a(x)u

(k+1)p
1 dx+ λ1

∫
Ω
b(x)v

β+1
1 u1

kp+α+1dx.
(3.2)

Note that∫
Ω

∣∣∇u1
∣∣p−2∇u1 ·∇

(
u
kp+1
M

)
dx = (kp+ 1)

∫
Ω

∣∣∇uM∣∣pukpM dx = kp+ 1
(k+ 1)p

∫
Ω

∣∣∇uk+1
M

∣∣pdx,

(3.3)

so since (kp+ 1)/(k+ 1)p ≤ 1, then
∫
Ω

∣∣∇u1
∣∣p−2∇u1 ·∇

(
u
kp+1
M

)
dx+

∫
∂Ω
c1(x)u

p−1
1 u

kp+1
M dx

≥ c3
kp+ 1

(k+ 1)p

(∫
Ω

1
(1 + |x|)p u

(k+1)p∗
M dx

)p/p∗ (3.4)
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due to Lemma 2.1(i) and (2.8). Let t = p(1− (β+ 1/q∗))−1, which is less than p∗ because
of H(1). Then H(2)(i) and Hölder inequality imply that

∫
Ω
a(x)u

(k+1)p
1 dx ≤ A1

∫
Ω

1(
1 + |x|)α1 u

(k+1)p
1 dx

= A1

∫
Ω

1(
1 + |x|)α1−p2/t

u
(k+1)p
1(

1 + |x|)p2/t dx

≤ A1

(∫
Ω

1
(1 + |x|)(tα1−p2)/(t−p) dx

)(t−p)/t(∫
Ω

1
(1 + |x|)p u

(k+1)t
1 dx

)p/t

(3.5)

(observe that (tα1− p2)/(t− p) > N by H(2)(i)). Also, because of (H1), we may assume
that

∫
Ω
b(x)v

β+1
1 u

kp+α+1
1 dx ≤

∫
Ω
b(x)v

β+1
1 u

(k+1)p
1 dx, (3.6)

otherwise we could consider

uM(x)=

min

{
u1(x),M

}
, u1(x)≥ 1,

0, u1(x) < 1
(3.7)

as a test function. So

∫
Ω
b(x)v

β+1
1 u

(k+1)p
1 dx ≤ B1

∫
Ω

1(
1 + |x|)s v

β+1
1 u

(k+1)p
1 dx

= B1

∫
Ω

v
β+1
1(

1 + |x|)s(1−(p/t))

u
(k+1)p
1(

1 + |x|)s(p/t) dx

≤ B1

(∫
Ω

v
(β+1)(t/t−p)
1

(1 + |x|)s dx
)(t−p)/t(∫

Ω

u(k+1)t
1

(1 + |x|)s dx
)p/t

≤ B1

(∫
Ω

1
(1 + |x|)q v

q∗
1 dx

)(t−p)/t(∫
Ω

1
(1 + |x|)p u

(k+1)t
1 dx

)p/t

,

(3.8)

by H(2)(iii). On combining (3.2)–(3.8), we conclude that

∥∥uM∥∥wp , (k+1)p∗ ≤ C1/(k+1)

[
k+ 1

(kp+ 1)1/p

]1/(k+1)∥∥u1
∥∥
wp , (k+1)t, (3.9)

where C is independent of M and k. We now follow the same steps as in the proof of [8,
Theorem 2] or [5, Lemma 3.2]. Let k1 = (p∗/t)− 1. Since (k1p+ 1)/(k1 + 1)p ≤ 1, we can
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choose k = k1 in (3.9) to get

∥∥uM∥∥wp , (k1+1)p∗ ≤ C1/(k1+1)

[
k1 + 1(

k1p+ 1
)1/p

]1/(k1+1)∥∥u1
∥∥
wp , p∗ , (3.10)

while by letting M→∞ we obtain that

∥∥u1
∥∥
wp , (k1+1)p∗ ≤ C1/(k1+1)

[
k1 + 1(

k1p+ 1
)1/p

]1/(k1+1)∥∥u1
∥∥
wp , p∗ . (3.11)

Hence, u1 ∈ L(k1+1)p∗(wp,Ω). Note that if k ≥ k1 then (kp+ 1)/(k+ 1)p ≤ 1. Choosing in
(1.1) k = k2 with (k2 + 1)t = (k1 + 1)p∗, that is, k2 = (p∗/t)2− 1, we have

∥∥u1
∥∥
wp , (k2+1)p∗ ≤ C1/(k1+1)

[
k2 + 1(

k2p+ 1
)1/p

]1/(k2+1)∥∥u1
∥∥
wp , (k1+1)p∗ . (3.12)

Hence, u1 ∈ L(k2+1)p∗(wp,Ω). Proceeding by induction we arrive at

∥∥u1
∥∥
wp , (kn+1)p∗ ≤ C1/(kn+1)

[
kn + 1(

knp+ 1
)1/p

]1/(kn+1)∥∥u1
∥∥
wp , (kn−1+1)p∗ . (3.13)

From (3.10) and (3.13) we conclude that

∥∥u1
∥∥
wp , (kn+1)p∗ ≤ C

∑n
i=1 1/(ki+1)

n∏
i=1

[
ki + 1(

ki p+ 1
)1/p

]1/(ki+1)∥∥u1
∥∥
wp , p∗

= C
∑n
i=1 1/(ki+1)

n∏
i=1



(

ki + 1(
ki p+ 1

)1/p

)1/
√
ki+1



1/
√
ki+1∥∥u1

∥∥
wp , p∗ .

(3.14)

Since (y + 1/(yp + 1)1/p)1/
√
y+1 > 1 for y > 0, and limy→∞(y + 1/(yp+ 1)1/p)1/

√
y+1 = 1,

there exists K > 1 independent of kn such that

∥∥u1
∥∥
wp , (kn+1)p∗ ≤ C

∑n
i=1 1/(ki+1)K

∑n
i=1 1/

√
ki+1
∥∥u1

∥∥
wp , p∗ , (3.15)

where 1/(ki + 1)= (t/p∗)i and 1/
√
ki + 1= (

√
t/p∗)i. Letting now n→∞ we conclude that

∥∥u1
∥∥
wp ,∞ ≤ c

∥∥u1
∥∥
wp , p∗ , (3.16)

for some positive constant c. By [8], u1 ∈ C1,δ
loc (Ω). Similarly v1 ∈ C1,δ

loc (Ω).
Finally, we notice that for the principal eigenvalue, each component of an eigenfunc-

tion is either positive or negative in Ω due to the Harnack inequality [8] and if we assume
that u1(x0)= 0 for some x0 ∈ ∂Ω then by [19, Theorem 5] we have |∇u1(x0)|p−2∇u1(x0) ·
η(x0) < 0, contradicting (1.3). Thus u1 > 0 (or u1 < 0) on Ω. Similarly v1 > 0 (or v1 < 0)
on Ω.
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4. The eigenfunctions corresponding to λ1

In this section, we complete the proof of Theorem 2.2 establishing the simplicity of λ1.
More precisely, we show that if (u2,v2) is another pair of eigenfunctions corresponding
to λ1, then there exists c ∈ R\{0} such that (u2,v2) = (cu1,±|c|p/qv1). To that end, we
employ a technique similar to the one described in [1]. Namely, we will prove that if
(w1,w2) is a positive on Ω̄ solution of the problem

−∆pu≤ λa(x)|u|p−2u+ λb(x)|u|α−1|v|β+1u, in Ω,

−∆qv ≤ λd(x)|v|q−2v+ λb(x)|u|α+1|v|β−1v, in Ω,

|∇u|p−2∇u ·η+ c1(x)|u|p−2u= 0, on ∂Ω,

|∇v|q−2∇v ·η+ c2(x)|v|q−2v = 0, on ∂Ω,

(4.1)

for some λ > 0, and (w′1,w′2) is a positive on Ω̄ solution of

−∆pu≥ λa(x)|u|p−2u+ λb(x)|u|α−1|v|β+1u in Ω,

−∆qv ≥ λd(x)|v|q−2v+ λb(x)|u|α+1|v|β−1v in Ω,

|∇u|p−2∇u ·η+ c1(x)|u|p−2u= 0 on ∂Ω,

|∇v|q−2∇v ·η+ c2(x)|v|q−2v = 0 on ∂Ω

(4.2)

then (w′1,w′2)= (cw1,cp/qw2) for a constant c > 0.
Let ϕ∈ C∞δ (Ω), ϕ > 0, then ϕp/(w′1)p−1 ∈ Ep. By Picone’s identity [1], we get

0≤
∫
Ω
R
(
ϕ,w′1

)=
∫
Ω
|∇ϕ|p−

∫
Ω
∇

 ϕp(

w′1
)p−1


 ·∣∣∇w′1∣∣p∇w′1

=
∫
Ω
|∇ϕ|p +

∫
Ω

ϕp(
w′1
)p−1 ∆pw

′
1−

∫
∂Ω

ϕp(
w′1
)p−1

∣∣∇w′1∣∣p∇w′1 ·η
≤
∫
Ω
|∇ϕ|p− λ

∫
Ω

ϕp(
w′1
)p−1

(
a(x)

(
w′1
)p−1

+ b(x)
(
w′1
)α(

w′2
)β+1)

−
∫
∂Ω

ϕp(
w′1
)p−1

∣∣∇w′1∣∣p∇w′1 ·η
=
∫
Ω
|∇ϕ|p− λ

∫
Ω
a(x)ϕp

(
w′1
)
p−1(

w′1
)p−1 − λ

∫
Ω
b(x)ϕp

(
w′1
)α

(
w′1
)p−1

(
w′2
)β+1

−
∫
∂Ω

ϕp(
w′1
)p−1

∣∣∇w′1∣∣p∇w′1 ·η,

(4.3)

while the boundary conditions imply that

0≤
∫
Ω
|∇ϕ|p− λ

∫
Ω
a(x)ϕp

(
w′1
)p−1

(
w′1
)p−1 − λ

∫
Ω
b(x)ϕp

(
w′1
)α

(
w′1
)p−1

(
w′2
)β+1

+
∫
∂Ω
c1(x)

ϕp(
w′1
)p−1

(
w′1
)p−1

.

(4.4)
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Letting ϕ→w1 in Ep we obtain

0≤
∫
Ω

∣∣∇w1
∣∣p− λ

∫
Ω
a(x)w

p
1 − λ

∫
Ω
b(x)w

p
1

(
w′1
)α−p+1(

w′2
)β+1

+
∫
∂Ω
c1(x)w

p
1 . (4.5)

Note also that

∫
Ω

∣∣∇w1
∣∣p +

∫
∂Ω
c1(x)w

p
1 ≤ λ

∫
Ω
a(x)w

p
1 + λ

∫
Ω
b(x)wα+1

1 w
β+1
2 . (4.6)

On combining (4.5) and (4.6) we get

0≤
∫
Ω
b(x)

(
wα+1

1 w
β+1
2 −wp

1

(
w′1
)α−p+1(

w′2
)β+1

)
. (4.7)

Similarly,

0≤
∫
Ω
b(x)

(
wα+1

1 w
β+1
2 −wq

2

(
w′2
)β+1−q(

w′1
)α+1

)
. (4.8)

We can now work as in Theorem 2.7 in [1] to get the desired result.
Returning to our problem, we obtain E1 as the set of eigenfunctions corresponding

to λ1, simply by applying the previous result to the case of our system with λ = λ1, and
taking (u1,v1) instead of (w1,w2). One has now to combine the fact that the nonnegative
solutions are given by (cu1,cp/qv1), c > 0, with the trivial observation that if (u,v) is an
eigenfunction then (−u,v), (u,−v), (−u,−v) are also eigenfunctions.

The same technique can be used for proving that nonnegative solutions in Ω cor-
respond only to the first eigenvalue. Assume, for instance, that there exists an eigen-
pair (λ∗,u2,v2) for the problem (1.1) such that λ∗ > λ1, u2 ≥ 0 and v2 ≥ 0, a.e. in Ω.
Then (u1,v1) is a solution of (1.2) with λ = λ∗ and (u2,v2) is a solution of (1.3). Then
(u2,v2)= (cu1,cp/qv1), for some c > 0, which is a contradiction.

5. The second system

In this section, we present the proof of Theorem 2.3.
(a) Since for positive solutions systems (1.1) and (1.2) coincide, we deduce that (λ1,u1,

v1) is also an eigenpair for the system (1.2). Assume that there exists another nontrivial
eigenpair (λ∗,u∗,v∗) of (1.2), such that 0 < λ∗ < λ1. Then the following equality must be
satisfied

λ∗ = I
(
u∗,v∗

)
J̃
(
u∗,v∗

) , (5.1)

with J̃(u∗,v∗) > 0, where J̃(·,·) is defined by

J̃(u,v)= α+ 1
p

∫
Ω
a(x)|u|p +

β+ 1
q

∫
Ω
d(x)|v|q +

∫
Ω
b(x)|u|α|v|βuv. (5.2)
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Note that J̃(·,·) is also compact. From (5.1) we also have that

λ∗ = I
(
u∗,v∗

)
J
(
u∗,v∗

) J
(
u∗,v∗

)
J̃
(
u∗,v∗

) ≥ I
(
u∗,v∗

)
J
(
u∗,v∗

) , (5.3)

since

J
(
u∗,v∗

)
J̃
(
u∗,v∗

) ≥ 1. (5.4)

Normalizing (u∗,v∗) by setting

u∗ =:

∣∣u∗∣∣[
J
(
u∗,v∗

)]1/p , v∗ =:

∣∣v∗∣∣[
J
(
u∗,v∗

)]1/q , (5.5)

we get that

I
(
u∗,v∗

)= I
(
u∗,v∗

)
J
(
u∗,v∗

) , (5.6)

J
(
u∗,v∗

)= 1. (5.7)

From relations (5.3)–(5.7) we conclude that

λ∗ ≥ I
(
u∗,v∗

)
J
(
u∗,v∗

) = I(u∗,v∗
)≥ λ1, (5.8)

a contradiction.
(b) Let (u,v) be an eigenfunction of (1.2) corresponding to λ1. If uv ≥ 0 a.e., then the

right-hand sides of (1.1) and (1.2) are equal, so (u,v) is an eigenfunction of (1.1), and we
are done. On the other hand we cannot have uv < 0 on a set of positive measure, because
then

λ1 = I(u,v)
J̃(u,v)

>
I(u,v)
J(u,v)

= λ1, (5.9)

a contradiction.
(c) Suppose that there exists a sequence of eigenpairs (λn,un,vn) of (1.2) with λn→ λ1.

By the variational characterization of λ1 we know that λn ≥ λ1. So we may assume that
λn ∈ (λ1,λ1 + η) for each n∈N. Furthermore, without loss of generality, we may assume
that ‖(un,vn)‖ = 1, for all n∈N. Hence, there exists (ũ, ṽ)∈ E such that (un,vn)⇀ (ũ, ṽ).
The simplicity of λ1 implies that (ũ, ṽ) = (u1,v1) or (ũ, ṽ) = (−u1,−v1). Let us suppose
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that (un,vn)⇀ (u1,v1) in E. For any two pairs of eigenfunctions (un,vn), (um,vm), multi-
plying the first equation by un−um and integrating by parts we derive∫

Ω

(∣∣∇un∣∣p−2∇un−
∣∣∇um∣∣p−2∇um

)(∇un−∇um)dx
+
∫
∂Ω
c1(x)

(∣∣un∣∣p−2
un−

∣∣um∣∣p−2
um
)(
un−um

)
dx

= λn
∫
Ω
a(x)

(∣∣un∣∣p−2
un−

∣∣um∣∣p−2
um
)(
un−um

)
dx

+ λn

∫
Ω
b(x)

(∣∣un∣∣α∣∣vn∣∣βvn−∣∣um∣∣α∣∣vm∣∣βvm)(un−um)dx
+
(
λn− λm

)[∫
Ω
a(x)

∣∣um∣∣p−2
um
(
un−um

)
dx+

∫
Ω
b(x)

∣∣um∣∣α∣∣vm∣∣βvmdx
]
.

(5.10)

From the second equation we similarly derive∫
Ω

(∣∣∇vn∣∣q−2∇vn−
∣∣∇vm∣∣q−2∇vm

)(∇vn−∇vm)dx
+
∫
∂Ω
c2(x)

(∣∣vn∣∣q−2
vn−

∣∣vm∣∣q−2
vm
)(
vn− vm

)
dx

= λn
∫
Ω
d(x)

(∣∣vn∣∣q−2
vn−

∣∣vm∣∣q−2
vm
)(
vn− vm

)
dx

+ λn

∫
Ω
b(x)

(∣∣un∣∣α∣∣vn∣∣βun−∣∣um∣∣α∣∣vm∣∣βum)(vn− vm)dx
+
(
λn− λm

)[∫
Ω
a(x)

∣∣vm∣∣q−2
vm
(
vn− vm

)
dx+

∫
Ω
b(x)

∣∣um∣∣α∣∣vm∣∣βumdx
]
.

(5.11)

From (5.10) and (5.11), by using the compactness of the operator J̃ and the monotonicity
of the p-Laplacian operator [6], we obtain∫

Ω

∣∣∇un∣∣pdx −→
∫
Ω

∣∣∇u1
∣∣pdx,∫

Ω

∣∣∇vn∣∣qdx −→
∫
Ω

∣∣∇v1
∣∣qdx. (5.12)

Exploiting the strict convexity of Ep and Eq we get that (un,vn)→ (u1,v1) in E. For a fixed
n∈N and for every (φ,ψ)∈ E we have∫

Ω

∣∣∇un∣∣p−2∇un∇φdx+
∫
∂Ω
c1(x)

∣∣un∣∣p−2
unφdx

= λn
∫
Ω
a(x)

∣∣un∣∣p−2
unφdx+ λn

∫
Ω
b(x)

∣∣un∣∣α∣∣vn∣∣βvnφdx,∫
Ω

∣∣∇vn∣∣q−2∇vn∇ψdx+
∫
∂Ω
c1(x)

∣∣vn∣∣p−2
vnψ dx

= λn
∫
Ω
d(x)

∣∣vn∣∣q−2
vnψ dx+ λn

∫
Ω
b(x)

∣∣un∣∣α∣∣vn∣∣βunψ dx,

(5.13)
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Let �−
n =:{x ∈Ω : un(x)<0} and �−

n =:{x∈Ω : vn(x) < 0}. By (c) we must havem(Ω−
n ) >

0, with Ω−
n =�−

n ∪�−
n . Denoting by u−n =min{0,un} and v−n =min{0,vn} and choosing

φ ≡ u−n and ψ ≡ v−n , it follows that

∫
�−
n

∣∣∇u−n ∣∣pdx+
∫
∂Ω∩�−

n

c1(x)|u−n |pdx

= λn
∫

�−
n

a(x)
∣∣u−n ∣∣pdx+ λn

∫
�−
n

b(x)
∣∣u−n ∣∣α∣∣vn∣∣βu−n vndx,

∫
�−
n

∣∣∇v−n ∣∣qdx+
∫
∂Ω∩�−

n

c1(x)
∣∣v−n ∣∣qdx

= λn
∫

�−
n

d(x)
∣∣v−n ∣∣qdx+ λn

∫
�−
n

b(x)
∣∣un∣∣α∣∣v−n ∣∣βunv−n dx.

(5.14)

Since the products u−n v+
n and u+

nv
−
n are negative, from the above system of equations we

obtain

∫
�−
n

∣∣∇u−n ∣∣pdx+
∫
∂Ω∩�−

n

c1(x)
∣∣u−n ∣∣pdx

≤ λn
∫

�−
n

a(x)
∣∣u−n ∣∣pdx+ λn

∫
�−
n

b(x)
∣∣u−n ∣∣α∣∣v−n ∣∣βu−n v−n dx,

∫
�−
n

∣∣∇v−n ∣∣qdx+
∫
∂Ω∩�−

n

c2(x)
∣∣v−n ∣∣qdx

≤ λn
∫

�−
n

d(x)
∣∣v−n ∣∣qdx+ λn

∫
�−
n

b(x)
∣∣u−n ∣∣α∣∣v−n ∣∣βu−n v−n dx.

(5.15)

From Hölder and Young inequalities we derive that

∫
�−
n

b(x)
∣∣u−n ∣∣α∣∣v−n ∣∣βu−n v−n dx

≤ B1

∫
�−
n

1(
1 + |x|)s

∣∣u−n ∣∣α∣∣v−n ∣∣βu−n v−n dx
= B1

∫
�−
n

1(
1 + |x|)s

∣∣u−n ∣∣α+1∣∣v−n ∣∣β+1
dx

≤ c3

(∫
�−
n

1
(1 + |x|)s

∣∣u−n ∣∣pdx+
∫

�−
n

1
(1 + |x|)s

∣∣v−n ∣∣qdx
)
.

(5.16)

Thus

∥∥u−n ∥∥p1, p ≤ c4
(
λ1 +η

)[∥∥u−n ∥∥pLp(ws,�−
n ) +

∥∥v−n ∥∥qLq(ws,�−
n )

]
. (5.17)

Similarly,

∥∥v−n ∥∥q1, p ≤ c5
(
λ1 +η

)[∥∥v−n ∥∥qLq(ws,�−
n ) +

∥∥u−n ∥∥pLp(ws,�−
n )

]
. (5.18)
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For r > 0 let Br denote the open ball with radius r centered at 0∈ Rn. For ε > 0 let rε > 0
be such that

∥∥u−n ∥∥p1, p ≤ c4
(
λ1 +η

)(∥∥u−n ∥∥pLp(ws,�−
n∩Brε ) +

∥∥v−n ∥∥qLq(ws,�−
n∩Brε ) + ε

)
,∥∥v−n ∥∥q1,q ≤ c5

(
λ1 +η

)(∥∥v−n ∥∥qLq(ws,�−
n∩Brε ) +

∥∥u−n ∥∥pLp(ws,�−
n∩Brε ) + ε

)
.

(5.19)

Let 0 < δ < min{p∗ − p,q∗ − q} and suppose that γ1 ∈ (N(p∗ − p− δ)/p∗,s − (N −
p)(δ/p)) and γ2 ∈ (N(q∗ − q− δ)/q∗,s− (N − q)(δ/q)). Lemma 2.1 implies that Ep ⊆
Lpp

∗/(p+δ)(wζ1 ,Ω) and Eq ⊆ Lqq
∗/(q+δ)(wζ2 ,Ω), where ζ1 = (s− γ1)p∗/(p+ δ) and ζ2 =

(s− γ2)q∗/(q+ δ). Applying once again the Hölder inequality we derive that

∥∥u−n ∥∥pLp(ws,�−
n∩Brε ) ≤

(∫
�−
n∩Brε

1
(1 + |x|)γ1p∗/(p∗−p−δ) dx

)(p∗−p−δ)/p∗

×
(∫

�−
n∩Brε

1
(1 + |x|)(s−γ1)p∗/(p+δ)

∣∣u−n ∣∣pp∗/(p+δ)
dx

)(p+δ)/p∗

≤ c6

(∫
�−
n∩Brε

1
(1 + |x|)γ1p∗/(p∗−p−δ) dx

)(p∗−p−δ)/p∗∥∥u−n ∥∥p1,p,

(5.20)

(note that γ1p∗/(p∗ − p− δ) > N). A similar inequality also holds for v−n :

∥∥v−n ∥∥qLq(ws,�−
n∩Brε ) ≤ c7

(∫
�−
n∩Brε

1
(1 + |x|)γ2q∗/(q∗−q−δ) dx

)(q∗−q−δ)/q∗∥∥v−n ∥∥q1,q. (5.21)

Combining (5.19), (5.20), and (5.21) we get

∥∥u−n ∥∥p1,p− c8ε

≤ c9

(∫
�−
n∩Brε

1
(1 + |x|)γ1p∗/(p∗−p−δ) dx

)(p∗−p−δ)/p∗∥∥u−n ∥∥p1, p

+ c10

(∫
�−
n∩Brε

1
(1 + |x|)γ2q∗/(q∗−q−δ) dx

)(q∗−q−δ)/q∗∥∥v−n ∥∥q1,q

≤ c11

[∥∥u−n ∥∥p1, p +
∥∥v−n ∥∥q1,q

]

(∫

�−
n∩Brε

1
(1 + |x|)γ1p∗/(p∗−p−δ) dx

)(p∗−p−δ)/p∗

+

(∫
�−
n∩Brε

1
(1 + |x|)γ2q∗/(q∗−q−δ) dx

)(q∗−q−δ)/q∗
 .
(5.22)
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Similarly,

∥∥v−n ∥∥q1,q− c12ε

≤ c13

[∥∥u−n ∥∥p1,p +
∥∥v−n ∥∥q1,q

]

(∫

�−
n∩Brε

1
(1 + |x|)γ1q∗/(p∗−p−δ) dx

)(p∗−p−δ)/p∗

+

(∫
�−
n∩Brε

1
(1 + |x|)γ2q∗/(q∗−q−δ) dx

)(q∗−q−δ)/q∗
 .
(5.23)

We can now add inequalities (5.22), (5.23) to get

1− ε′ ≤ c14

(∫
�−
n∩Brε

1
(1 + |x|)γ1p∗/(p∗−p−δ) dx

)(p∗−p−δ)/p∗

+ c15

(∫
�−
n∩Brε

1
(1 + |x|)γ2q∗/(q∗−q−δ) dx

)(q∗−q−δ)/q∗

.

(5.24)

By taking ε sufficiently small we see that

m
(
Ω−
n ∩Brε

)
> c16 > 0, (5.25)

where the constant c16 is independent of λn and un. Since un → u1 in Ep and vn → v1 in
Eq, we have that un→ u1 in Lp

∗
(w1,Ω) and vn→ v1 in Lq

∗
(w2,Ω). Consequently, un→ u1

in Lp
∗
(w1,BK (0)) and vn → v1 in Lq

∗
(w2,BK (0)). By Egorov’s theorem we conclude that

un(x) (vn(x)) converges uniformly to u1(x) (resp., v1(x)) on Brε(0) with the exception of a
set with arbitrarily small measure. But this contradicts (5.25) and the conclusion follows.
The proof is complete.
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