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We investigate the existence of multiple solutions to quasilinear elliptic problems con-
taining Laplace like operators (φ-Laplacians). We are interested in Neumann boundary
value problems and our main tool is Brézis-Nirenberg’s local linking theorem.

1. Introduction

In this paper, we consider the following elliptic problem with Neumann boundary con-
dition,

−div
(
α
(∣∣∇u(x)

∣∣)∇u(x)
)= g(x,u) a.e. on Ω

∂u

∂ν
= 0 a.e. on ∂Ω.

(1.1)

Here, Ω is a bounded domain with sufficiently smooth (e.g. Lipschitz) boundary ∂Ω
and ∂/∂ν denotes the (outward) normal derivative on ∂Ω. We assume that the function
φ :R→R, defined by φ(s)= α(|s|)s if s �= 0 and 0 otherwise, is an increasing homeomor-
phism from R to R. Let Φ(s)= ∫ s0 φ(t)dt, s∈R. Then Φ is a Young function. We denote
by LΦ the Orlicz space associated with Φ and by ‖ · ‖Φ the usual Luxemburg norm on LΦ:

‖u‖Φ = inf
{
k > 0 :

∫
Ω
Φ
(
u(x)
k

)
dx ≤ 1

}
. (1.2)

Also, W1LΦ is the corresponding Orlicz-Sobolev space with the norm ‖u‖1,Φ=‖u‖Φ +
‖|∇u|‖Φ. The boundary value problem (1.1) has the following weak formulation in
W1LΦ:

u∈W1LΦ :
∫
Ω
α
(|∇u|)∇u ·∇vdx =

∫
Ω
g(·,u)vdx, ∀v ∈W1LΦ. (1.3)

Our goal in this short note is to prove the existence of two nontrivial solutions to our
problem under some suitable conditions on g. The main tool that we are going to use is
an abstract existence result of Brézis and Nirenberg [1], which is stated here for the sake
of completeness.
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First, let us recall the well known Palais-Smale (PS) condition. Let X be a Banach
space and I : X → R. We say that I satisfies the (PS) condition if any sequence {un} ⊆ X
satisfying

∣∣I(un)∣∣≤M
∣∣〈I ′(un),φ〉∣∣≤ εn‖φ‖X , (1.4)

with εn→ 0, has a convergent subsequence.

Theorem 1.1 [1]. Let X be a Banach space with a direct sum decomposition

X = X1⊕X2 (1.5)

with dimX2 <∞. Let J be a C1 function on X with J(0) = 0, satisfying (PS) and, for some
R > 0,

J(u)≥ 0, for u∈ X1, ‖u‖ ≤ R,

J(u)≤ 0, for u∈ X2, ‖u‖ ≤ R.
(1.6)

Assume also that J is bounded below and infX J < 0. Then J has at least two nonzero critical
points.

Note that our abstract main tool is the local linking theorem stated above. This method
was first introduced by Liu and Li in [4] (see also [3]). It was generalized later by Silva
in [6] and by Brézis and Nirenberg in [1]. The theorem stated above is a version of local
linking theorems established in the last cited reference.

2. Existence result

First, let us state our assumptions on φ and g. Put

p1 = inf
t>0

tφ(t)
Φ(t)

, pΦ = liminf
t→∞

tφ(t)
Φ(t)

, p0 = sup
t>0

tφ(t)
Φ(t)

. (2.1)

(H(φ)) We assume that

1 < liminf
s→∞

sφ(s)
Φ(s)

≤ limsup
s→∞

sφ(s)
Φ(s)

< +∞. (2.2)

It is easy to check that under hypothesis (H(φ)), both Φ and its Hölder conjugate
satisfy the ∆2 condition.

Let g : Ω×R→R be a Carathéodory function and let G be its anti-derivative:

G(x,u)=
∫ u

0
g(x,r)dr, x ∈Ω, u∈R. (2.3)
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(H(g)) We suppose that g and G satisfy the following hypotheses.
(i) There exist nonnegative constants a1, a2 such that |g(x,s)| ≤ a1 + a2|s|a−1,

for all s∈R, almost all x ∈Ω, with p0 < a < Np1/(N − p1).
(ii) We suppose that there exists δ > 0 such that G(x,u) ≥ 0, for a.e. x ∈ Ω, all

u∈ [−δ,δ].
(iii) Assume that

lim
u→0

G(x,u)
|u|p0 = 0, limsup

u→∞
G(x,u)
|u|p1 ≤ 0, (2.4)

uniformly for x ∈Ω.
(iv) Suppose that

liminf
|u|→∞

p1G(x,u)− g(x,u)u
|u| ≥ k(x), (2.5)

with k ∈ L1(Ω), and such that
∫
Ω k(x)dx > 0.

(v) There exists some t∗ ∈ R such that
∫
ΩG(x, t∗)dx > 0 and G(x,u) ≤ j(x) for

|u| >M with M > 0 and j ∈ L1(Ω).
Our energy functional is I : W1LΦ→R with

I(u)=
∫
Ω
Φ
(∣∣∇u(x)

∣∣)dx−
∫
Ω
G
(
x,u(x)

)
dx. (2.6)

It is easy to check that I is of class C1 and the critical points of I are solutions of (1.3).
Let

V ′ =
{
u∈W1,p1

(Ω) :
∫
Ω
u(x)dx = 0

}
, (2.7)

and V = V ′ ∩X . It is clear that V ′ (resp., V) is the topological complement of R with
respect to W1,p1

(Ω) (resp., with respect to X). From the Poincaré-Wirtinger inequality,
we have the following estimates in V ′:

‖u‖Lp1 (Ω) ≤ C
∥∥|∇u|∥∥Lp1 (Ω), ∀u∈V ′, (2.8)

(for some constant C > 0).

Lemma 2.1. If hypotheses (H(φ)) and (H(g)) hold, then the energy functional I satisfies the
(PS) condition.

Proof. Let X =W1LΦ(Ω). Suppose that there exists a sequence {un} ⊆ X such that

∣∣I(un)∣∣≤M, (2.9)∣∣〈I ′(un),φ〉∣∣≤ εn‖φ‖1,Φ, (2.10)

for all n ∈ N, all φ ∈ X . We first show that {un} is a bounded sequence in X . Suppose
otherwise that the sequence is unbounded. By passing to a subsequence if necessary, we
can assume that ‖un‖1,Φ →∞. Let yn(x) = un(x)/‖un‖1,Φ. Since {yn} is bounded in X ,
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by passing once more to a subsequence, we can assume that yn⇀ y (weakly) in X and
therefore

yn −→ y (strongly) in LΦ(Ω). (2.11)

From (2.9), we have

∫
Ω
Φ
(∣∣∇un(x)

∣∣)dx−
∫
Ω
G
(
x,un(x)

)
dx ≤M. (2.12)

On the other hand, note that

Φ(t)≥ ρp
1
Φ
(
t

ρ

)
, ∀t > 0, ρ > 1. (2.13)

Indeed, from the definition of p1, we have that Φ(t)p1 ≤ tφ(t) for t > 0. Thus,

∫ t

t/ρ

p1

s
ds≤

∫ t

t/ρ

φ(s)
Φ(s)

ds, (2.14)

for all t > 0 and for ρ > 1. Simple calculations on these integrals give the above inequality.
It follows from (2.13) that

∫
Ω
Φ
(∣∣∇yn(x)

∣∣)dx ≤ 1∥∥un∥∥p1

1,Φ

∫
Ω
Φ
(∣∣∇un(x)

∣∣)dx. (2.15)

Dividing both sides of (2.12) by ‖un‖p
1

1,Φ > 1 and making use of (2.15), we obtain

∫
Ω
Φ(
∣∣∇yn(x)

∣∣)dx ≤
∫
Ω

G
(
x,un(x)

)
∥∥un∥∥p1

1,Φ

dx+
M∥∥un∥∥p1

1,Φ

, ∀n. (2.16)

Next, let us prove that

∫
Ω

G
(
x,un(x)

)
∥∥un∥∥p1

1,Φ

dx −→ 0. (2.17)

In fact, from (H(g))(iii) we have that for every ε > 0 there exists M1 > 0 such that for
|u| >M1 we have G(x,u)/|u|p1 ≤ ε for almost all x ∈Ω. Thus,

∫
Ω

G
(
x,un(x)

)
∥∥un∥∥p1

1,Φ

dx ≤
∫
{x∈Ω:|un(x)|≤M}

G
(
x,un(x)

)
∥∥un∥∥p1

1,Φ

dx+
∫
{x∈Ω:|un(x)|≥M}

ε
∣∣yn(x)

∣∣p1

dx.

(2.18)
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Because p1 ≤ p0 ≤ a, we have W1LΦ↩Lp1
(Ω). From this embedding, one obtains

∫
Ω

G
(
x,un(x)

)
∥∥un∥∥p1

1,Φ

dx ≤
∫
{x∈Ω:|un(x)|≤M}

G
(
x,un(x)

)
∥∥un∥∥p1

1,Φ

dx+ εc
∥∥yn∥∥p1

1,Φ. (2.19)

Finally, noting that ‖yn‖1,Φ = 1, we obtain (2.17).
From (2.16) and (2.17), we have

∫
Ω
Φ
(∣∣∇yn(x)

∣∣)dx −→ 0, (2.20)

and thus ‖∇yn‖Φ→ 0. The lower semicontinuity of the norm ‖ · ‖Φ yields

(0≤)‖∇y‖Φ ≤ liminf
n→∞

∥∥∇yn
∥∥
Φ(= 0). (2.21)

Hence,∇y = 0 a.e. on Ω, that is, y ∈R. This also implies that

lim
n→∞

∥∥∇(yn− y
)∥∥

Φ = lim
n→∞

∥∥∇yn
∥∥
Φ = 0. (2.22)

From (2.11) and (2.22), we get

∥∥yn− y
∥∥

1,Φ =
∥∥yn− y

∥∥
Φ +

∥∥∇(yn− y
)∥∥

Φ −→ 0 as n−→∞, (2.23)

that is, yn → y (strongly) in X . Since ‖yn‖1,Φ = 1, we have y �= 0. Furthermore, from the
above arguments, y = c ∈R with c �= 0. From this we obtain that |un(x)| →∞.

Choosing φ = un in (2.10) and noting (2.9), we arrive at

∫
Ω
p1G

(
x,un(x)

)− g
(
x,un(x)

)
un(x)dx

+
∫
Ω
φ
(∣∣∇un∣∣)∣∣∇un∣∣− p1Φ

(∣∣∇un∣∣)dx ≤M + εn
∥∥un∥∥1,Φ.

(2.24)

From the definition of p1 we have p1Φ(t)≤ tφ(t). Using this fact and dividing the last
inequality by ‖un‖1,Φ, one gets

∫
Ω

p1G
(
x,un(x)

)− g
(
x,un(x)

)
un(x)∣∣un(x)

∣∣ ∣∣yn(x)
∣∣dx ≤ M + εn

∥∥un∥∥1,Φ∥∥un∥∥1,Φ

. (2.25)

From this we can see that

liminf
n→∞

∫
Ω

p1G
(
x,un(x)

)− g
(
x,un(x)

)
un(x)∣∣un(x)

∣∣ ∣∣yn(x)
∣∣dx ≤ 0. (2.26)

Using Fatou’s lemma and (H(g))(iv) we obtain a contradiction, which shows that the
sequence {un} is bounded. Passing to a subsequence, we can assume that un⇀ u weakly
in X and thus un→ u strongly in La(Ω).
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In order to show the strong convergence of {un} in X , we get back to (2.10) and choose
φ = un−u. We obtain

∣∣∣∣
∫
Ω

(
α
(∣∣∇un∣∣)∇un−α

(|∇u|)∇u)(∇un−∇u)dx
∣∣∣∣

≤
∫
Ω
f
(
x,un

)(
un−u

)
dx+ εn

∥∥un−u
∥∥

1,Φ−
∫
Ω
α
(|∇u|)∇u(∇un−∇u)dx.

(2.27)

Using again the compact imbedding X↩ La(Ω) and the fact that un → u weakly in X
we arrive at

∫
Ω

(
a
(∣∣∇un∣∣)∇un− a

(|∇u|)∇u)(∇un−∇u)dx −→ 0. (2.28)

Using [2, Theorem 4] we obtain the strong convergence of {un} in X . �

In the next result, we verify that under the above assumptions, the functional I satisfies
the saddle conditions in Brézis-Nirenberg’s theorem.

Lemma 2.2. If hypotheses (H(φ)) and (H(g)) hold, then there exists ρ > 0 such that for all
u∈V with ‖u‖1,Φ ≤ ρ we have that I(u)≥ 0 and I(e)≤ 0 for all e ∈R with |e| ≤ ρ.

Proof. Choose u∈V with ||u||1,Φ = ρ, with ρ sufficiently small, to be specified later. From
(H(g))(iii) we have that for every ε > 0 there exists some δ > 0 for which

G(x,u)≤ ε|u|p0 ∀|u| ≤ δ and almost all x ∈Ω. (2.29)

On the other hand, it follows from (H(g))(i) that there is ã2 > 0 such that

G(x,u)≤ a1u+ ã2|u|a (2.30)

for all u∈R and almost all x ∈Ω. Together with (H(g))(iii), this shows that there is γ > 0
such that

G(x,u)≤ ε|u|p0
+ γ|u|a (2.31)

for all u∈R, almost all x ∈Ω. From the definition of p0 we have p0/t ≥ φ(t)/Φ(t). Inte-
grating this inequality in [t, t/ρ] with ρ < 1, t > 0 yields

Φ(t)≥ ρp
0
Φ

(
t

ρ

)
. (2.32)
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Recall also that from the definition of p1 we can take for t ≥ 1

Φ(t)≥Φ(1)tp
1
, (2.33)

thus, LΦ↩Lp1
(Ω) and there exists k0 > 0 such that

‖u‖p1 ≤ k0‖u‖Φ, (2.34)

for all u∈ LΦ (‖ · ‖p1 is the usual Lebesgue norm on Lp1
(Ω)).

Because ‖u‖1,Φ ≤ 1 we have also ‖∇u‖Φ ≤ 1. Then, we have the estimate
∫
Ω
Φ
(|∇u|)dx ≥ ∥∥|∇u|∥∥p0

Φ ≥ C
∥∥|∇u|∥∥p0

p1 , (2.35)

noting that
∫
ΩΦ(|∇u|/‖∇u‖Φ)= 1 (see [5, Proposition 6, page 77]).

Using now the Poincaré-Wirtinger inequality, we arrive at
∫
Ω
Φ
(|∇u|)dx ≥ C‖u‖p0

1,p1 . (2.36)

Also, ∫
Ω
G(x,u)dx ≤ ε‖u‖p0

p0 + γ1‖u‖a1,p1 ≤ εc1‖u‖p
0

1,p1 + γ1‖u‖a1,p1 . (2.37)

Choosing small enough ε we arrive at I(u)≥ C‖u‖p0

1,p1 − γ1‖u‖a1,p1 .
Therefore, we choose small enough ρ to obtain I(u)≥ 0 for ‖u‖1,Φ ≤ ρ.
For t ∈ R we have I(t) = −∫ΩG(x, t)dx. But from (H(g))(ii) we have that G(x, t) ≥ 0

for small enough t ∈R. Thus, for such a t ∈R we obtain I(t)≤ 0. �

Finally from (H(v)) we have that I is bounded from below and that infX I < 0, thus we
are allowed to use the multiplicity theorem of Brézis-Nirenberg and have the following
result.

Theorem 2.3. Under hypotheses (H(φ)) and (H(g)) hold, the boundary value problem (1.3)
has at least two nontrivial solutions.

We conclude with a simple example to illustrate the above conditions and arguments.

Example 2.4. Let α and g be defined by

α(s)= ln
(
e+ s2), ∀s∈R, (2.38)

g(u)=




4u3 if |u| ≤ 1√
5

,

u−u3 if |u| > 1√
5
.

(2.39)

It can be easily checked that Φ(s)= 1/2(e+ s2)[ln(e+ s2)− 1](s∈R) and thus pΦ = p1 =
2 and p0 ≈ 2.6. Because G(u)= u4 for |u| small and G(u)≈ u2/2−u4/4 for |u| large, we
see that the conditions in (H(φ)) and (H(g)) are satisfied.
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