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1. Introduction

We are concerned with uniqueness of solutions of certain nonlocal boundary value prob-
lems for the fourth-order ordinary differential equation,

y(4) = f (x, y, y′, y′′, y′′′), a < x < b, (1.1)

where
(A) f : (a,b)×R4 →R is continuous,
(B) solutions of initial value problems for (1.1) are unique and exist on all of (a,b).

By uniqueness of solutions, our meaning is uniqueness of solutions, when solutions exist.
In particular, we deal with “uniqueness implies uniqueness” relationships among so-

lutions of (1.1) satisfying nonlocal 5-point boundary conditions,

y
(
x1
)= y1, y

(
x2
)= y2,

y
(
x3
)= y3, y

(
x4
)− y

(
x5
)= y4,

(1.2)

y
(
x1
)− y

(
x2
)= y1, y

(
x3
)= y2,

y
(
x4
)= y3, y

(
x5
)= y4,

(1.3)

where a < x1 < x2 < x3 < x4 < x5 < b, with solutions of (1.1) satisfying nonlocal 4-point
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boundary conditions given by

y
(
x1
)= y1, y′

(
x1
)= y2, y

(
x2
)= y3, y

(
x3
)− y

(
x4
)= y4, (1.4)

y
(
x1
)− y

(
x2
)= y1, y

(
x3
)= y2, y

(
x4
)= y3, y′

(
x4
)= y4, (1.5)

y
(
x1
)= y1, y

(
x2
)= y2, y′

(
x2
)= y3, y

(
x3
)− y

(
x4
)= y4, (1.6)

y
(
x1
)− y

(
x2
)= y1, y

(
x3
)= y2, y′

(
x3
)= y3, y

(
x4
)= y4, (1.7)

where a < x1 < x2 < x3 < x4 < b, as well as with solutions of (1.1) satisfying nonlocal 3-
point boundary conditions given by

y
(
x1
)= y1, y′

(
x1
)= y2, y′′

(
x1
)= y3, y

(
x2
)− y

(
x3
)= y4, (1.8)

y
(
x1
)− y

(
x2
)= y1, y

(
x3
)= y2, y′

(
x3
)= y3, y′′

(
x3
)= y4, (1.9)

where a < x1 < x2 < x3 < b, and in each case y1, y2, y3, y4 ∈R.
Questions involving “uniqueness implies uniqueness” for solutions of boundary value

problems for ordinary differential equations enjoy some history. Jackson’s monumental
works [20, 21] dealt with this question for solutions of k-point conjugate boundary value
problems for nth-order ordinary differential equations. Later, Henderson [12] dealt with
this question for k-point right focal boundary value problems for nth-order ordinary dif-
ferential equations. Other uniqueness implies uniqueness results are found in the papers
by Clark and Henderson [2], Ehme and Hankerson [4], Henderson and McGwier [17],
and Peterson [39].

The questions in this paper involve (i) whether uniqueness of solutions of (1.1), (1.2)
implies uniqueness of solutions of (1.1), (1. j), j = 4,6,8, and (ii) whether uniqueness of
solutions of (1.1), (1. j), j = 4, . . . ,9, imply uniqueness of solutions (1.1), (1.2) and (1.1),
(1.3). A principal reason for considering questions such as (i) or (ii) is that such results
often imply the existence of solutions for boundary value problems; see for example [1, 9–
11, 13–15, 17, 18, 22, 24, 26, 27].

The literature is vast on fourth-order nonlinear boundary value problems, and we cite
[3, 5, 23, 28–30, 33, 35, 36, 38, 40] as a list for just a few of these papers dealing with both
theoretical issues as well as application models. In addition, nonlocal boundary value
problems have received a good deal of research attention. For a brief overview of some
research devoted to nonlocal boundary value problems, we suggest the list of papers [6–
8, 16, 19, 25, 31, 32, 34, 37, 43, 44].

The motivation for this paper is two-fold. First, it would be the work by Peterson [39]
in which he showed that, for the fourth-order equation (1.1), uniqueness of solutions
of 4-point “conjugate” boundary value problems is equivalent to uniqueness of both 2-
point and 3-point “conjugate” boundary value problems. Second, it would be a recent
paper by Clark and Henderson [2] in which they established for “third-order” differen-
tial equations, uniqueness of solutions of 4-point nonlocal boundary value problems is
equivalent to uniqueness of solutions of both 2-point and 3-point nonlocal boundary
value problems.
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2. Uniqueness results for conjugate problems

In this section, we will state some of the motivational uniqueness results due to Peter-
son [39] for conjugate boundary value problems for (1.1). In particular, Peterson dealt
with relationships among boundary value problems for (1.1) satisfying 4-point conjugate
boundary conditions of the form

y
(
x1
)= y1, y

(
x2
)= y2, y

(
x3
)= y3, y

(
x4
)= y4, (2.1)

a < x1 < x2 < x3 < x4 < b, along with solutions of (1.1) satisfying 3-point conjugate bound-
ary value problems of the form

y
(
x1
)= y1, y′

(
x1
)= y2, y

(
x2
)= y3, y

(
x3
)= y4,

y
(
x1
)= y1, y

(
x2
)= y2, y′

(
x2
)= y3, y

(
x3
)= y4,

y
(
x1
)= y1, y

(
x2
)= y2, y

(
x3
)= y3, y′

(
x3
)= y4,

(2.2)

a < x1 < x2 < x3 < b, as well as with solutions of (1.1) satisfying 2-point conjugate bound-
ary value problems of the form

y
(
x1
)= y1, y′

(
x1
)= y2, y′′

(
x1
)= y3, y

(
x2
)= y4,

y
(
x1
)= y1, y′

(
x1
)= y2, y

(
x2
)= y3, y′

(
x2
)= y4,

y
(
x1
)= y1, y

(
x2
)= y2, y′

(
x2
)= y3, y′′

(
x2
)= y4,

(2.3)

a < x1 < x2 < b, and in each case y1, y2, y3, y4 ∈R.
A major part of Peterson’s work dealt with establishing the next result.

Theorem 2.1. Assume conditions (A) and (B) are satisfied. Let k0 ∈ {2,3,4} be given, and
assume that solutions of k0-point conjugate boundary value problems for (1.1) are unique
on (a,b). Then, for each k ∈ {2,3,4} \ {k0}, solutions of k-point conjugate boundary value
problems for (1.1) are unique on (a,b).

It follows, in turn, from a “uniqueness implies existence” result of Hartman [10] and
Klaasen [24] for conjugate boundary value problems that, under the hypotheses of
Theorem 2.1, solutions of conjugate boundary value problems for (1.1) actually exist.

Theorem 2.2. Assume the hypotheses of Theorem 2.1. Then for k ∈ {2,3,4}, each k-point
conjugate boundary value problem for (1.1) has a unique solution on (a,b).

3. Uniqueness of 5-point implies uniqueness of 4-point and 3-point

In this section, we show that uniqueness of solutions of 5-point nonlocal boundary value
problems for (1.1) implies uniqueness of solutions for both 4-point and 3-point nonlocal
boundary value problems. In addition to hypotheses (A) and (B), we will draw upon some
uniqueness conditions for the 5-point nonlocal problems (1.1), (1.2) and (1.1), (1.3).



4 Fourth-order nonlocal boundary value problems

(C) Given a < x1 < x2 < x3 < x4 < x5 < b, if y(x) and z(x) are two solutions of (1.1)
satisfying

y
(
x1
)= z

(
x1
)
, y

(
x2
)= z

(
x2
)
, y

(
x3
)= z(x3),

y
(
x4
)− y

(
x5
)= z

(
x4
)− z

(
x5
)
,

(3.1)

then y(x)= z(x), a < x < b.
(D) Given a < x1 < x2 < x3 < x4 < x5 < b, if y(x) and z(x) are two solutions of (1.1)

satisfying

y
(
x1
)− y

(
x2
)= z

(
x1
)− z

(
x2
)
, y

(
x3
)= z

(
x3
)
,

y
(
x4
)= z

(
x4
)
, y

(
x5
)= z

(
x5
)
,

(3.2)

then y(x)= z(x), a < x < b.

Remarks 3.1. (a) We note that, under either assumption (C) or (D), solutions of 4-point
“conjugate” boundary value problems for (1.1) are unique, when they exist. That is, if
y(x) and z(x) are both solutions of (1.1) such that, for some points a < t1 < t2 < t3 < t4 < b,
y(ti)= z(ti), i= 1,2,3,4, then by the intermediate value theorem, there exist t1 < τ1 < τ2 <
t2 < t3 < σ1 < σ2 < t4 such that, both y(τ1)− y(τ2)= z(τ1)− z(τ2), y(ti)= z(ti), i= 2,3,4,
and y(ti) = z(ti), i = 1,2,3, y(σ1)− y(σ2) = z(σ1)− z(σ2). Namely, if either (C) or (D)
holds, then y(x)= z(x).

(b) As a consequence, if either (A), (B), and (C), or (A), (B), and (D) are assumed, then
Theorem 2.2 implies that each k-point “conjugate” boundary value problem for (1.1),
k = 2,3,4, has a unique solution.

Behind the uniqueness results of this section is the role of continuous dependence of
solutions on boundary conditions. This continuous dependence arises somewhat from
applications of the Brouwer theorem on invariance of domain [41] in conjunction with
continuous dependence of solutions on initial conditions. We present our first such con-
tinuous dependence result. The proof is rather standard in the context of uniqueness
properties on solutions with respect to both initial conditions and boundary conditions.
So we will omit the details of the proof, but we suggest [2, 21] as good references for
typical arguments used in the proof.

Theorem 3.2. Assume (A), (B), and (C), and let z(x) be an arbitrary solution of (1.1).
Then, for any a < x1 < x2 < x3 < x4 < x5 < b and a < c < x1, and x5 < d < b, and given any
ε > 0, there exists δ(ε, [c,d]) > 0, so that |xi− ti| < δ, 1≤ i≤ 5, |z(xi)− yi| < δ, i= 1,2,3,
and |z(x4)− z(x5)− y4| < δ imply that (1.1) has a solution y(x) with

y
(
ti
)= yi, i= 1,2,3,

y
(
t4
)− y

(
t5
)= y4,

(3.3)

and |y(i−1)(x)− z(i−1)(x)| < ε on [c,d], i= 1,2,3,4.

We now proceed to establish a sequence of theorems exhibiting that uniqueness of
solutions of (1.1), (1.2) implies uniqueness of solutions of (1.1), (1. j), j = 4,6,8.
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Theorem 3.3. Assume (A), (B), and (C) are satisfied. Then solutions of (1.1), (1.4) are
unique when they exist.

Proof. Suppose (1.1), (1.4) has two solutions y(x) and z(x), and let us say

z
(
x1
)= y

(
x1
)
, z′

(
x1
)= y′

(
x1
)
,

z
(
x2
)= y

(
x2
)
, z

(
x3
)− z

(
x4
)= y

(
x3
)− y

(
x4
)
,

(3.4)

for some a < x1 < x2 < x3 < x4 < b. By uniqueness of 2-point conjugate boundary value
problems for (1.1), z′′(x1) �= y′′(x1) and z′(x2) �= y′(x2).

Without loss of generality, we assume y(x) > z(x) on (a,x2)\{x1}. Then y(x) < z(x) on
(x2,b). Fix a < τ < x1. By Theorem 3.2, for ε > 0 sufficiently small, there exist a δ > 0 and
a solution zδ(x) of (1.1) satisfying

zδ(τ)= z(τ), zδ
(
x1
)= z

(
x1
)

+ δ,

zδ
(
x2
)= z

(
x2
)= y

(
x2
)
,

zδ
(
x3
)− zδ

(
x4
)= z

(
x3
)− z

(
x4
)= y

(
x3
)− y

(
x4
)
,

(3.5)

and |z(i−1)
δ (x)− z(i−1)(x)| < ε, i= 1,2,3,4, on [τ,x4]. For ε small, there exists τ < σ1 < x1 <

σ2 < x2 so that

zδ
(
σ1
)= y

(
σ1
)
, zδ

(
σ2
)= y

(
σ2
)
,

zδ
(
x2
)= y

(
x2
)
, zδ

(
x3
)− zδ

(
x4
)= y

(
x3
)− y

(
x4
)
.

(3.6)

By assumption (C), zδ(x) = y(x) on (a,b). However, zδ(x1) = z(x1) + δ = y(x1) + δ >
y(x1), which is a contradiction.

So solutions of (1.1), (1.4) are unique. �

Remark 3.4. In view of Theorem 3.3, we remark that, as in Theorem 3.2, solutions of the
nonlocal problem (1.1), (1.4) depend continuously on 4-point nonlocal boundary con-
ditions. This type of remark will hold true following each of the subsequent uniqueness
results.

Theorem 3.5. Assume (A), (B), and (C) are satisfied. Then solutions of (1.1), (1.6) are
unique when they exist.

Proof. Suppose (1.1), (1.6) has two solutions y(x) and z(x), and let us say

z
(
x1
)= y

(
x1
)
, z

(
x2
)= y

(
x2
)
,

z′
(
x2
)= y′

(
x2
)
, z

(
x3
)− z

(
x4
)= y

(
x3
)− y

(
x4
)
,

(3.7)

for some a < x1 < x2 < x3 < x4 < b. By uniqueness of solutions of 2-point conjugate
boundary value problems for (1.1), z′(x1) �= y′(x1) and z′′(x2) �= y′′(x2).

Without loss of generality, we assume y(x) > z(x) on (x1,b)\{x2}. Then y(x) < z(x)
on (a,x1). Fix x1 < τ < x2. By Theorem 3.2, for ε > 0 sufficiently small, there exists a δ > 0
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and a solution zδ(x) of (1.1) satisfying

zδ
(
x1
)= z

(
x1
)= y

(
x1
)
, zδ(τ)= z(τ), zδ

(
x2
)= z

(
x2
)

+ δ,

zδ
(
x3
)− zδ

(
x4
)= z

(
x3
)− z

(
x4
)= y

(
x3
)− y

(
x4
)
,

(3.8)

and |z(i−1)
δ (x)− z(i−1)(x)| < ε, i = 1,2,3,4, on [τ,x4]. For ε small, there exists x1 < σ1 <

x2 < σ2 < x4 so that

zδ
(
x1
)= y

(
x1
)
, zδ

(
σ1
)= y

(
σ1
)
,

zδ
(
σ2
)= y

(
σ2
)
, zδ

(
x3
)− zδ

(
x4
)= y

(
x3
)− y

(
x4
)
.

(3.9)

By assumption (C), zδ(x) = y(x) on (a,b). However, zδ(x2) = z(x2) + δ = y(x2) + δ >
y(x2), which is a contradiction.

So solutions of (1.1), (1.6) are unique. �

Theorem 3.6. Assume (A), (B), and (C) are satisfied. Then solutions of (1.1), (1.8) are
unique when they exist.

Proof. Suppose (1.1), (1.8) has two solutions y(x) and z(x) satisfying

y
(
x1
)= z

(
x1
)
, y′

(
x1
)= z′

(
x1
)
,

y′′
(
x1
)= z′′

(
x1
)
, y

(
x2
)− y

(
x3
)= z

(
x2
)− z

(
x3
)
,

(3.10)

for some a < x1 < x2 < x3 < b. Now y′′′(x1) �= z′′′(x1), and we may assume y′′′(x1) >
z′′′(x1).

By the last remark above, solutions of (1.1), (1.4) depend continuously on their
boundary conditions. Fix x1<ρ<x2. For ε>0 small, there is a δ >0 and a solution zδ(x)
satisfying

zδ
(
x1
)= z

(
x1
)= y

(
x1
)
, z′δ

(
x1
)= z′

(
x1
)

+ δ, zδ(ρ)= z(ρ),

zδ
(
x2
)− zδ

(
x3
)= z

(
x2
)− z

(
x3
)= y

(
x2
)− y

(
x3
)
,

(3.11)

and |y(i−1)(x)− z(i−1)(x)| < ε, i= 1,2,3,4, on [x1,x3]. For ε sufficiently small, there exist
points a < τ1 < x1 < τ2 < ρ, which are in a neighborhood of x1, such that y(x) and zδ(x)
both satisfy

zδ
(
τ1
)= y

(
τ1
)
, zδ

(
x1
)= y

(
x1
)
,

zδ
(
τ2
)= y

(
τ2
)
, zδ

(
x2
)− zδ

(
x3
)= y

(
x2
)− y

(
x3
)
.

(3.12)

So we have zδ(x)= y(x) on (a,b) by hypothesis (C). But

z′δ
(
x1
)= z′

(
x1
)

+ δ = y′
(
x1
)

+ δ > y′
(
x1
)
. (3.13)

This is a contradiction. So (1.1), (1.8) has at most one solution. �
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Of course, in terms of the uniqueness condition (D), there are dual uniqueness results,
which we now state as one theorem.

Theorem 3.7. Assume (A), (B), and (D) are satisfied. Then solutions of (1.1), (1. j), j =
5,7,9, are unique when they exist.

4. Uniqueness of 4-point and 3-point implies uniqueness of 5-point

In this section, our consideration is with a question converse to the uniqueness results of
Section 3. In particular, we assume that solutions of 4-point and 3-point nonlocal bound-
ary value problems for (1.1) are unique. It is then established that solutions of both (1.1),
(1.2) and (1.1), (1.3) are also unique. Fundamental to our arguments is a Kamke type of
convergence result for boundary value problems due to Vidossich [42], as well as a pre-
compactness condition on bounded sequences of solutions of (1.1) due to Jackson and
Schrader; see Agarwal [1]. We state both of those results at the outset of the section.

Theorem 4.1 (Vidossich). For each n > 0, let gn : [c,d]×RN → R be continuous, let Ln :
C([c,d]×RN ,R)→RN be continuous, and let rn ∈RN . Assume that

(a) limn rn = r0,
(b) limn gn = g0 and limn Ln = L0 uniformly on compact subsets of [c,d]×RN , respec-

tively,
(c) each initial value problem,

x′ = gn(t,x), x(a)= u, (4.1)

has at most one local solution for u∈RN ,
(d) the functional boundary value problem,

x′ = g0(t,x), L0(x)= r, (4.2)

has at most one solution for each r ∈RN .
Let x0 be the solution to x′ = g0(t,x), L0(x) = r0. Then for each ε > 0, there exists nε such
that the functional boundary value problem,

x′ = gn(t,x), Ln(x)= rn, (4.3)

has a solution xn, for n > nε, satisfying the condition
∥
∥x0− xn

∥
∥∞ < ε. (4.4)

Theorem 4.2 (Jackson-Schrader). Assume that, with respect to (1.1), conditions (A) and
(B) hold. In addition, assume that solutions of 4-point conjugate boundary value problems
are unique. If {yk(x)} is a sequence of solutions of (1.1) for which there exists an interval
[c,d]⊂ (a,b) and there exists an M > 0 such that |yk(x)| <M, for all x ∈ [c,d] and for all

k ∈N, then there exists a subsequence {ykj (x)} such that, for i= 0,1,2,3, {y(i)
kj

(x)} converges
uniformly on each compact subinterval of (a,b).

Remark 4.3. We remark that if solutions of (1.1) satisfying each of the nonlocal boundary
conditions (1. j), j = 4, . . . ,9, are unique, when they exist, then solutions of 2-point and
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3-point conjugate boundary value problems for (1.1) are unique. As a consequence of
Theorems 2.1 and 2.2, it would follow that if (A) and (B) are also assumed, then each
k-point conjugate boundary value problem for (1.1) has a solution which is unique, k =
2,3,4.

We now provide a type of converse to the results of Section 3.

Theorem 4.4. Assume (A) and (B) are satisfied. Assume solutions of (1.1) satisfying any of
(1. j), j = 4, . . . ,9 are unique when they exist. Then solutions of both (1.1), (1.2) and (1.1),
(1.3) are unique when they exist.

Proof. We establish the result for only (1.1), (1.2). Suppose (1.1), (1.2) has two distinct
solutions y(x) and z(x), for some a < x1 < x2 < x3 < x4 < x5 < b and some y1, y2, y3, y4 ∈
R. That is,

y
(
xi
)= z

(
xi
)
, i= 1,2,3,

y
(
x4
)− y

(
x5
)= z

(
x4
)− z

(
x5
)
.

(4.5)

By assumptions (A) and (B) and uniqueness of solutions of 4-point and 3-point non-
local boundary value problems, we know from the remark preceding the proof of this
theorem that solutions of all conjugate boundary problems for (1.1) exist and are unique.

For each n ≥ 1, let yn(x) be the solution of the boundary value problems for (1.1)
satisfying the 3-point conjugate boundary conditions:

yn
(
x3
)= y

(
x3
)= z

(
x3
)
, y′n

(
x3
)= y′

(
x3
)−n,

yn
(
x4
)= y

(
x4
)
, yn

(
x5
)= y

(
x5
)
.

(4.6)

It follows from uniqueness of solutions of 4-point conjugate problems that, for n≥ 1,

y(x) < yn(x) < yn+1(x) (4.7)

on (a,x3).
For each n≥ 1, let

En =
{
x : x1 ≤ x ≤ x2 |where yn(x)≤ z(x)

}
. (4.8)

We claim that En �= ∅, for each n≥ 1. In that direction, suppose there exists n0 so that
En0 =∅. Then yn0 (x) > z(x) on [x1,x2].

Next, for all ε ≥ 0, let yε be the solution of (1.1) satisfying the 3-point conjugate
boundary conditions:

yε
(
x3
)= y

(
x3
)= z

(
x3
)
, y′ε

(
x3
)= y′

(
x3
)− ε,

yε
(
x4
)= y

(
x4
)
, yε

(
x5
)= y

(
x5
)
.

(4.9)

Note when ε = 0, yε(x)= y(x).
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Define

S= {ε ≥ 0 | for some x1 ≤ x ≤ x2, yε(x)≤ z(x)
}

, (4.10)

S �= ∅ since 0∈ S. Now since En0 =∅, S is bounded above.
Let ε0 = supS, and consider the solution yε0 (x) of (1.1). We claim that there exists τ ∈

(x1,x2) so that yε0 (τ)≤ z(τ). If not, then yε0 (x) > z(x), for all x1 ≤ x ≤ x2. By continuous
dependence of solutions of (1.1) on 3-point conjugate boundary conditions, there exists
0 < ε1 < ε0, so that yε1 (x) > z(x) for all x1 ≤ x ≤ x2. Therefore ε1 is an upper bound of
S. But by assumption ε0 = supS, whereas 0 < ε1 < ε0. This is a contradiction. Therefore
there exists τ ∈ (x1,x2) so that yε0 (τ)≤ z(τ).

Next, if yε0 (τ) < z(τ), then by continuity, there exists an interval [τ − ρ,τ + ρ] so that
yε0 (x) < z(x) on [τ − ρ,τ + ρ]. So there exists ε0 < ε2 so that yε2 (x)≤ z(x) on some inter-
val [τ − η,τ + η] ⊂ [τ − ρ,τ + ρ] ⊂ [x1,x2]. So ε2 ∈ S. But ε2 > ε0, and so we contradict
that ε0 is the least upper bound of S.

Now for this τ ∈ (x1,x2), yε0 (τ)= z(τ), and yε0 (x)≥ z(x) for all x ∈ [x1,x2]\{τ}.
In particular,

yε0 (τ)= z(τ), y′ε0
(τ)= z′(τ),

yε0

(
x3
)= z

(
x3
)
, yε0

(
x4
)− yε0

(
x5
)= z

(
x4
)− z

(
x5
)
.

(4.11)

By the uniqueness of solutions of 4-point nonlocal boundary value problems, we reach a
contradiction. So En �= ∅, for all n≥ 1.

Thus, En+1 ⊂ En ⊂ (x1,x2), for each n≥ 1, and each En is also compact. Hence,

∞⋂

n=1

En := E �= ∅. (4.12)

Next, we observe that the set E consists of a single point {x0} with x1 < x0 < x2. To see
this, suppose there are points t1, t2 ∈ E with x1 < t1 < t2 < x2.

We claim that the interval [t1, t2] ⊆ E. Suppose to the contrary that there exists τ ∈
(t1, t2) such that τ /∈ E. Then, there exists an N ∈ N such that, for each n ≥ N , yn(τ) >
z(τ). By continuity, there exists a λ > 0 such that, for each n≥N ,

z(x) < yn(x) < yn+1(x), x ∈ [τ − λ,τ + λ]. (4.13)

With the solution yε(x) of (1.1) as defined above, we define a new set:

S′ = {ε ≥ 0 | for some τ − λ≤ x ≤ τ − λ, yε(x)≤ z(x)
}
. (4.14)

Again 0 ∈ S′, and so S′ �= ∅. In this case N is an upper bound of S′. We reach the same
contradiction as above in showing the foregoing sets En are nonnull. We conclude that
the interval [t1, t2]⊆ E, and the claim is verified.

However, [t1, t2]⊆E implies that the sequence {yn(x)} is uniformly bounded on [t1, t2].
It follows from Theorem 4.2 that there is a subsequence {ynj (x)} such that for each
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i = 0,1,2,3, {y(i)
nj (x)} converges uniformly on each compact subinterval of (a,b). How-

ever,

lim
j→∞

y′nj

(
x3
)= lim

j→∞
y′
(
x3
)−nj =−∞; (4.15)

this is a contraction.
Thus we conclude that

E = {x0
}

, (4.16)

with x1 < x0 < x2, and we also have

lim
n→∞ yn

(
x0
)≤ z

(
x0
)
. (4.17)

Now, let y0(x) be the solution of the 4-point conjugate boundary value problem for
(1.1) satisfying

lim
n→∞ yn

(
x0
)= y0

(
x0
)
, y0

(
x3
)= y

(
x3
)= z

(
x3
)
,

y0
(
x4
)= y

(
x4
)
, y0

(
x5
)= y

(
x5
)
.

(4.18)

By Theorem 4.1, {y(i)
n (x)} converges to y(i)

0 (x), i= 0,1,2,3, on each compact subinterval
of (a,b).

So y0(x0)≤ z(x0), which we claim that it leads to contradictions. There are two cases
to resolve. First, assume y0(x0) = z(x0). Then we have two solutions y0(x) and z(x) of
(1.1) satisfying

y0
(
x0
)= z

(
x0
)
, y′0

(
x0
)= z′

(
x0
)
, y0

(
x3
)= z

(
x3
)
,

y0
(
x4
)− y0

(
x5
)= y

(
x4
)− y

(
x5
)= z

(
x4
)− z

(
x5
)
,

(4.19)

and so by uniqueness of solutions 4-point nonlocal boundary value problems (1.1), (1.4),
y0(x)≡ z(x) on (a,b). This is a contradiction. So limn→∞ yn(x0) �= z(x0).

The remaining case is that y0(x0) < z(x0). In this case, by the continuity of y0(x), there
exists δ > 0 with [x0− δ,x0 + δ]⊂ (x1,x2) on which y0(x) < z(x). Since limn y(x)= y0(x)
uniformly on each compact subinterval of (a,b), it follows that [x0− δ,x0 + δ]⊂ E. This
is a contradiction.

From this final contradiction, we conclude that y0(x0)≤ z(x0) is impossible. This re-
solves all situations, and we conclude that solutions of (1.1), (1.2) are unique. Of course,
completely symmetric arguments yield that solutions of (1.1), (1.3) are also unique. �

As a final statement, we present a theorem summarizing the results of this paper.

Theorem 4.5. Assume conditions (A) and (B) are satisfied. Then solutions of both (1.1),
(1.2) and (1.1), (1.3) are unique when they exist, if and only if solutions of (1.1) satisfying
each of (1. j), j = 4, . . . ,9, are unique when they exist.
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