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The method of generalized quasilinearization for second-order boundary value prob-
lems has been extended when the forcing function is the sum of 2-hyperconvex and
2-hyperconcave functions. We develop two sequences under suitable conditions which
converge to the unique solution of the boundary value problem. Furthermore, the con-
vergence is of order 3. Finally, we provide numerical examples to show the application
of the generalized quasilinearization method developed here for second-order boundary
value problems.
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1. Introduction

The method of quasilinearization [1, 2] combined with the technique of upper and lower
solutions is an effective and fruitful technique for solving a wide variety of nonlinear
problems. It has been referred to as a generalized quasilinearization method. See [9] for
details. The method is extremely useful in scientific computations due to its accelerated
rate of convergence as in [10, 11].

In [4, 13], the authors have obtained a higher order of convergence (an order more
than 2) for initial value problems. They have considered situations when the forcing func-
tion is either hyperconvex or hyperconcave. In [12], we have obtained the results of higher
order of convergence for first order initial value problems when the forcing function is
the sum of hyperconvex and hyperconcave functions with natural and coupled lower and
upper solutions. In this paper we extend the result to the second-order boundary value
problems when the forcing function is a sum of 2-hyperconvex and 2-hyperconcave func-
tions. We have proved the existence of the unique solution of the nonlinear problem using
natural upper and lower solutions. We demonstrate the iterates converge cubically to the
unique solution of the nonlinear problem. We merely state the result related to coupled
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lower and upper solutions without proof due to monotony. Finally, we present two nu-
merical applications of our theoretical results developed in our main result. We note that
the monotone iterates may not converge linearly or quadratically in general. See [4, 8] for
examples. However in our result we have provided sufficient conditions for cubic conver-
gence. For real world applications see [5].

For this purpose, consider the following second-order boundary value problem (BVP
for short):

−u′′ = f (t,u) + g(t,u), Bu(μ)= bμ, μ= 0,1, t ∈ J ≡ [0,1], (1.1)

where Bu(μ)= τμu(μ) + (−1)μ+1νμu′(μ)= bμ, τ0,τ1 ≥ 0, τ0 + τ1 > 0, ν0,ν1 > 0, bμ ∈ R and
f ,g ∈ C[J ×R,R].

Here we provide the definition of natural lower and upper solutions of (1.1). One can
define coupled lower and upper solutions of the other types in the same manner. See for
[14, 15] details.

Definition 1.1. The functions α0,β0 ∈ C2[J ,R] are said to be natural lower and upper
solutions if

−α′′0 ≤ f
(
t,α0

)
+ g
(
t,α0

)
, Bα0(μ)≤ bμ on J ,

−β′′0 ≥ f
(
t,β0

)
+ g
(
t,β0

)
, Bβ0(μ)≥ bμ on J.

(1.2)

In order to facilitate later explanations, we will need the following definition.

Definition 1.2. A function h : A→ B, A,B ⊂ R is called m-hyperconvex, m ≥ 0, if h ∈
Cm+1[A,B] and dm+1h/dum+1 ≥ 0 for u∈ A; h is called m-hyperconcave if the inequality
is reversed.

In this paper, we use the maximum norm of u over J , that is,

‖u‖ =max
t∈J

|u|. (1.3)

Also throughout this paper we use the notation

∂k f (t,u)
∂uk

= f (k)(t,u) (1.4)

for any function f (t,u) and for k = 0,1,2.
In view of natural upper and lower solutions of (1.1), we will develop results when f

is 2-hyperconvex and g is 2-hyperconcave. Furthermore, we show that these iterates con-
verge uniformly and monotonically to the unique solution of (1.1), and the convergence
is of order 3.
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2. Preliminaries

In this section, we recall some well known theorems and corollaries which we need in our
main results relative to the BVP

−u′′ = f (t,u,u′), Bu(μ)= bμ, μ= 0,1, t ∈ J ≡ [0,1], (2.1)

where Bu(μ)= τμu(μ) + (−1)μ+1νμu′(μ)= bμ, τ0,τ1 ≥ 0, τ0 + τ1 > 0, ν0,ν1 > 0, bμ ∈ R and
f ∈ C[J ×R×R,R]. For details see [3, 6, 7].

Theorem 2.1. Assume that
(i) α0,β0 ∈ C2[J ,R] are lower and upper solutions of (2.1).

(ii) fu, fu′ exist, continuous, fu < 0 and fu 
≡ 0 on Ω= [(t,u,u) : t ∈ [0,1], β0 ≤ u≤ α0]
and u= α′0(t)= β′0(t).

Then we have α0(t)≤ β0(t) on J .

Next we present a special case of the above theorem which is known as the maximum
principle, when u′ term is missing.

Corollary 2.2. Let q,r ∈ C[I ,R] with r(t)≥ 0 on J . Suppose further that p ∈ C2[I ,R] and

−p′′ ≤ −r p, Bp(μ)≤ 0. (2.2)

Then p(t)≤ 0 on J . If the inequalities are reversed, then p(t)≥ 0 on J .

The next corollary is a special case of [9, Theorem 3.1.3].

Corollary 2.3. Assume that α0, β0 are lower and upper solutions of (1.1) respectively such
that α0(t) ≤ β0(t) on J . Then there exists a solution u for the BVP (1.1) such that α0(t) ≤
u(t)≤ β0(t) on J .

3. Main results

In this section, we consider the BVP

−u′′ = f (t,u) + g(t,u), Bu(μ)= bμ, μ= 0,1, t ∈ J ≡ [0,1], (3.1)

where Bu(μ) = τμu(μ) + (−1)μ+1νμu′(μ) = bμ, τ0,τ1 ≥ 0, τ0 + τ1 > 0, ν0,ν1 > 0, bμ ∈ R,
f ,g ∈ C[Ω,R], Ω= [(t,u) : α0(t)≤ u(t)≤ β0(t), t ∈ J], and α0,β0 ∈ C2[J ,R] with α0(t)≤
β0(t) on J .

Here, we state the inequalities satisfied by f (t,u) and g(t,u) when f (t,u) is 2-hyper-
convex in u and g(t,u) is 2-hyperconcave in u. We need these inequalities for our first
main result.

Suppose that f (t,u) is 2-hyperconvex in u, then we have the following inequalities,

f (t,η)≥
2∑

i=0

f (i)(t,ξ)(η− ξ)i

i!
, η ≥ ξ, (3.2)

f (t,η)≤
2∑

i=0

f (i)(t,ξ)(η− ξ)i

i!
, η ≤ ξ. (3.3)
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Similarly, when g(t,u) is 2-hyperconcave in u, we have the following inequalities:

g(t,η)≥
1∑

i=0

g(i)(t,ξ)(η− ξ)i

i!
+
g(2)(t,η)(η− ξ)2

(2)!
, η ≥ ξ, (3.4)

g(t,η)≤
1∑

i=0

g(i)(t,ξ)(η− ξ)i

i!
+
g(2)(t,η)(η− ξ)2

(2)!
, η ≤ ξ. (3.5)

Based on these inequalities, relative to the natural upper and lower solutions, we de-
velop two monotone sequences which converge uniformly and monotonically to the
unique solution of (3.1) and the order of convergence is 3.

Theorem 3.1. Assume that
(i) α0,β0 ∈ C2[J ,R] are lower and upper solutions with α0(t)≤ β0(t) on J .

(ii) f ,g ∈ C3[Ω,R] such that f (t,u) is 2-hyperconvex in u on J [i.e., f (3)(t,u) ≥ 0 for
(t,u) ∈ Ω], g(t,u) is 2-hyperconcave in u on J [i.e., g(3)(t,u) ≤ 0 for (t,u) ∈ Ω],
f (t,u) is nondecreasing, g(t,u) is nonincreasing and fu + gu < 0 on Ω.

Then there exist monotone sequences {αn(t)} and {βn(t)}, n≥ 0 which converge uniformly
and monotonically to the unique solution of (3.1) and the convergence is of order 3.

Proof. The assumptions f (3)(t,u)≥0, g(3)(t,u)≤ 0 yield the inequalities (3.2), (3.3), (3.4),
and (3.5) whenever α0 ≤ η, ξ ≤ β0. Let us first consider the following BVPs:

−w′′ = F̃(t,α,β;w)

=
2∑

i=0

f (i)(t,α)(w−α)i

i!
+

1∑

i=0

g(i)(t,α)(w−α)i

i!
+
g(2)(t,β)(w−α)2

2!
,

Bw(μ)= bμ on J ;

(3.6)

−v′′ = G̃(t,α,β;v)

=
2∑

i=0

f (i)(t,β)(v−β)i

i!
+

1∑

i=0

g(i)(t,β)(v−β)i

i!
+
g(2)(t,α)(v−β)2

2!
,

Bv(μ)= bμ on J.

(3.7)

We develop the sequences {αn(t)} and {βn(t)} using the above BVPs (3.6) and (3.7)
respectively. Initially, we prove (α0,β0) are lower and upper solutions of (3.6) and (3.7)
respectively. To begin, we will consider natural lower and upper solutions of the equation
(3.1):

−α′′0 ≤ f
(
t,α0

)
+ g
(
t,α0

)
, Bα0(μ)≤ bμ,

−β′′0 ≥ f
(
t,β0

)
+ g
(
t,β0

)
, Bβ0(μ)≥ bμ,

(3.8)
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where α0(t)≤ β0(t). The inequalities (3.2) and (3.4), and (3.8) imply

−α′′0 ≤ f
(
t,α0

)
+ g
(
t,α0

)

= F̃
(
t,α0,β0;α0

)
, Bα0(μ)≤ bμ,

−β′′0 ≥ f
(
t,β0

)
+ g
(
t,β0

)

≥
2∑

i=0

f (i)
(
t,α0

)(
β0−α0

)i

i!
+

1∑

i=0

g(i)
(
t,α0

)(
β0−α0

)i

i!
+
g(2)
(
t,β0

)(
β0−α0

)2

2!

= F̃
(
t,α0,β0;β0

)
, Bβ0(μ)≥ bμ.

(3.9)

We can apply Corollary 2.3 together with (3.9) conclude that there exists a solution α1(t)
of (3.6) with α= α0 and β = β0 such that α0 ≤ α1 ≤ β0 on J .

Using the inequalities (3.3), (3.5), and (3.8) on the same lines, we can get

−β′′0 ≥ f
(
t,β0

)
+ g
(
t,β0

)= G̃
(
t,α0,β0;β0

)
, Bβ0(μ)≥ bμ, (3.10)

−α′′0 ≤ f
(
t,α0

)
+ g
(
t,α0

)≤
2∑

i=0

f (i)
(
t,β0

)(
α0−β0

)i

i!

+
1∑

i=0

g(i)
(
t,β0

)(
α0−β0

)i

i!
+
g(2)
(
t,α0

)(
α0−β0

)2

2!

= G̃
(
t,α0,β0;α0

)
, Bα0(μ)≤ bμ.

(3.11)

Hence α0, β0 are lower and upper solutions of (3.7) with α0 ≤ β0. Applying Corollary 2.3,
we obtain that there exists a solution β1(t) of (3.7) with α = α0 and β = β0 such that
α0 ≤ β1 ≤ β0 on J .

Now we will prove that α1 is a unique solution of (3.6). For this purpose we need
to prove that ∂F̃(t,α0,β0;α1)/∂α1 < 0. Since f (t,u) is 2-hyperconvex in u and g(t,u) is
2-hyperconcave in u on J with fu + gu < 0 on Ω, we get

∂F̃
(
t,α0,β0;α1

)

∂α1
= f (1)(t,α1

)
+ g(1)(t,α1

)− f (3)
(
t,ξ1

)(
α1−α0

)2

(2)!

+ g(3)(t,η1
)(
α1−α0

)(
β0− ξ2

)

≤ f (1)(t,α1
)

+ g(1)(t,α1
)
< 0,

(3.12)

where α0 ≤ ξ1, ξ2 ≤ α1 and ξ2 ≤ η1 ≤ β0. Hence by the special case of Theorem 2.1 with
u′-term missing, we can conclude that α1 is the unique solution of (3.6). Similarly we can
prove that β1 is the unique solution of (3.7).
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Using the nonincreasing property of g(2)(t,u), (3.2), (3.3), (3.4), (3.5) with α0 ≤ α1 ≤
β0, α0 ≤ β1 ≤ β0 we have

−α′′1 = F̃
(
t,α0,β0;α1

)

=
2∑

i=0

f (i)
(
t,α0

)(
α1−α0

)i

i!

+
1∑

i=0

g(i)
(
t,α0

)(
α1−α0

)i

i!
+
g(2)
(
t,β0

)(
α1−α0

)2

2!

≤ f
(
t,α1

)
+ g
(
t,α1

)
, Bα1(μ)≤ bμ;

(3.13)

−β′′1 = G̃
(
t,α0,β0;β1

)

=
2∑

i=0

f (i)
(
t,β0

)(
β1−β0

)i

i!

+
1∑

i=0

g(i)
(
t,β0

)(
β1−β0

)i

i!
+
g(2)
(
t,α0

)(
β1−β0

)2

2!

≥ f
(
t,β1

)
+ g
(
t,β1

)
, Bβ1(μ)≥ bμ.

(3.14)

Since α1, β1 are lower and upper solutions of (3.1), we can apply the special case of
Theorem 2.1 to obtain α1 ≤ β1 on J . Thus we have α0 ≤ α1 ≤ β1 ≤ β0 on J .

Assume now that αn and βn are solutions of BVPs (3.6) and (3.7), respectively, with
α= αn−1 and β = βn−1 such that αn−1 ≤ αn ≤ βn ≤ βn−1 on J and

−α′′n ≤ f
(
t,αn

)
+ g
(
t,αn

)
, Bαn(μ)≤ bμ,

−β′′n ≥ f
(
t,βn

)
+ g
(
t,βn

)
, Bβn(μ)≥ bμ,

(3.15)

Certainly this is true for n= 1.
We need to show that αn ≤ αn+1 ≤ βn+1 ≤ βn on J , where αn+1 and βn+1 are solutions of

BVPs (3.6) and (3.7), respectively, with α= αn and β = βn.
The inequalities (3.2) and (3.4), and (3.15) imply

−α′′n ≤ f
(
t,αn

)
+ g
(
t,αn

)

= F̃
(
t,αn,βn;αn

)
, Bαn(μ)≤ bμ,

−β′′n ≥ f
(
t,βn

)
+ g
(
t,βn

)

≥
2∑

i=0

f (i)
(
t,αn

)(
βn−αn

)i

i!

+
1∑

i=0

g(i)
(
t,αn

)(
βn−αn

)i

i!
+
g(2)
(
t,βn

)(
βn−αn

)2

2!

= F̃
(
t,αn,βn;βn

)
, Bβn(μ)≥ bμ.

(3.16)
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This proves that αn, βn are lower and upper solutions of (3.6) with α = αn and β = βn.
Hence using (3.16) and Corollary 2.3 we can conclude that there exists a solution αn+1(t)
of (3.6) with α= αn and β = βn such that αn ≤ αn+1 ≤ βn on J .

The inequalities (3.3) and (3.5), and (3.15) imply

−β′′n ≥ f
(
t,βn

)
+ g
(
t,βn

)= G̃
(
t,αn,βn;βn

)
, Bβn(μ)≥ bμ, (3.17)

−α′′n ≤ f
(
t,αn

)
+ g
(
t,αn

)

≤
2∑

i=0

f (i)
(
t,βn

)(
αn−βn

)i

i!

+
1∑

i=0

g(i)
(
t,βn

)(
αn−βn

)i

i!
+
g(2)
(
t,αn

)(
αn−βn

)2

2!

= G̃
(
t,αn,βn;αn

)
, Bαn(μ)≤ bμ.

(3.18)

Hence αn, βn are lower and upper solutions of (3.7) with α = αn and β = βn. Applying
Corollary 2.3 we can show that there exists a solution βn+1(t) of (3.7) with α = αn and
β = βn such that αn ≤ βn+1 ≤ βn on J . In view of assumptions on f and g, αn+1, βn+1 are
unique by the special case of Theorem 2.1.

Furthermore, by (3.2), (3.3), (3.4), (3.5) with αn ≤ αn+1 ≤ βn, αn ≤ βn+1 ≤ βn, and
g(2)(t,u) nonincreasing u, we get

−α′′n+1 = F̃
(
t,αn,βn;αn+1

)

=
2∑

i=0

f (i)
(
t,αn

)(
αn+1−αn

)i

i!

+
1∑

i=0

g(i)
(
t,αn

)(
αn+1−αn

)i

i!
+
g(2)
(
t,βn

)(
αn+1−αn

)2

2!

≤ f
(
t,αn+1

)
+ g
(
t,αn+1

)
, Bαn+1(μ)≤ bμ;

−β′′n+1 = G̃
(
t,αn,βn;βn+1

)

=
2∑

i=0

f (i)
(
t,βn

)(
βn+1−βn

)i

i!

+
1∑

i=0

g(i)
(
t,βn

)(
βn+1−βn

)i

i!
+
g(2)
(
t,αn

)(
βn+1−βn

)2

2!

≥ f
(
t,βn+1

)
+ g
(
t,βn+1

)
, Bβn+1(μ)≥ bμ.

(3.19)

Since αn+1, βn+1 are lower and upper solutions of (3.1) we can apply the special case of
Theorem 2.1 and get αn+1 ≤ βn+1 on J . This proves αn ≤ αn+1 ≤ βn+1 ≤ βn on J . Hence by
induction, we have

α0 ≤ α1 ≤ ··· ≤ αn ≤ βn ≤ ··· ≤ β1 ≤ β0. (3.20)
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By the fact that αn, βn are lower and upper solutions of (3.1) with αn≤βn and Corollary 2.3
we can conclude that there exists a solution u(t) of (3.1) such that αn ≤ u≤ βn on J . From
this we can obtain that

α0 ≤ α1 ≤ ··· ≤ αn ≤ u≤ βn ≤ ··· ≤ β1 ≤ β0. (3.21)

Using Green’s function, we can write αn(t) and βn(t) as follows:

αn(t)=
∫ 1

0
K(t,s)F̃

(
s,αn−1(s),βn−1(s);αn(s)

)
ds,

βn(t)=
∫ 1

0
K(t,s)G̃

(
s,αn−1(s),βn−1(s);βn(s)

)
ds.

(3.22)

Here K(t,s) is the Green’s function given by

K(t,s)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
c
x(s)y(t), 0≤ s≤ t ≤ 1,

1
c
x(t)y(s), 0≤ t ≤ s≤ 1,

(3.23)

where x(t)= (τ0/ν0)t+ 1, y(t)= (τ1/ν1)(1− t) + 1 are two linearly independent solutions
of −u′′ = 0 and c = x(t)y′(t)− x′(t)y(t). We can prove that the sequences {αn(t)} and
{βn(t)} are equicontinuous and uniformly bounded. Now applying Ascoli-Arzela’s theo-
rem, we can show that there exist subsequences {αn, j(t)}, {βn, j(t)} such that αn, j(t)→ ρ(t)
and βn, j(t) → r(t) with ρ(t) ≤ u ≤ r(t) on J . Since the sequences {αn(t)}, {βn(t)} are
monotone, we have αn(t)→ ρ(t) and βn(t)→ r(t). Taking the limit as n→∞, we get

lim
n→∞αn(t)= ρ(t)≤ u≤ r(t)= lim

n→∞βn(t). (3.24)

Next we show that ρ(t)≥ r(t). From BVPs (3.6) and (3.7) we get

−ρ′′(t)= f (t,ρ) + g(t,ρ), Bρ(μ)= b(μ),

−r′′(t)= f (t,r) + g(t,r), Br(μ)= b(μ).
(3.25)

Set p(t)= r− ρ and note that Bp(μ)= 0. We have

−p′′ = −r′′(t)− (− ρ′′(t)
)= f (t,r) + g(t,r)− f (t,ρ)− g(t,ρ)

= fu(t,ξ)(r− ρ) + gu(t,η)(r− ρ)= ( fu(t,ξ) + gu(t,η)
)
p,

(3.26)

where ξ, η are between ρ and r. This implies that −p′′ ≤ −kp, where fu + gu ≤ −k < 0.
Now applying Corollary 2.2 we get p ≤ 0 or r(t) ≤ ρ(t) on J . This proves r(t) = ρ(t) =
u(t). Hence {αn(t)} and {βn(t)} converge uniformly and monotonically to the unique
solution of (3.1).
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Let us consider the order of convergence of {αn(t)} and {βn(t)} to the unique solution
u(t) of (3.1). To do this, set

pn(t)= u(t)−αn(t)≥ 0,

qn(t)= βn(t)−u(t)≥ 0,
(3.27)

for t ∈ J with Bpn(μ)= Bqn(μ)= 0.
Therefore we can write

pn+1 =
∫ 1

0
K(t,s)

[
f (s,u) + g(s,u)− F̃

(
s,αn,βn;αn+1

)]
ds, (3.28)

where K(t,s) is the Green’s function given by (3.23).
Now using the Taylor series expansion with Lagrange remainder, and the mean value

theorem together with (ii) of the hypothesis, we obtain

0≤ pn+1

=
∫ 1

0
K(t,s)

{

f (s,u) + g(s,u)

−
[ 2∑

i=0

f (i)
(
s,αn

)(
αn+1−αn

)i

i!

+
1∑

i=0

g(i)
(
s,αn

)(
αn+1−αn

)i

i!
+
g(2)
(
s,βn

)(
αn+1−αn

)2

2!

]}

ds

=
∫ 1

0
K(t,s)

{

f (s,u) + g(s,u)

−
[

f
(
s,αn+1

)− f (3)
(
s,ξ1

)(
αn+1−αn

)3

(3)!
+ g
(
s,αn+1

)

− g(2)
(
s,ξ2

)(
αn+1−αn

)2

2!
+
g(2)
(
s,βn

)(
αn+1−αn

)2

2!

]}

ds

≤
∫ 1

0
K(t,s)

[

fu
(
s,η1

)(
u−αn+1

)
+ gu

(
s,η2

)(
u−αn+1

)

+
f (3)
(
s,ξ1

)(
u−αn

)3

(3)!
− g(3)

(
s,η3

)(
βn− ξ2

)(
u−αn

)2

2

]

ds

=
∫ 1

0
K(t,s)

{
[
fu
(
s,η1

)
+ gu

(
s,η2

)]
pn+1

+
f (3)
(
s,ξ1

)
p3
n

(3)!
− g(3)

(
s,η2

)
p2
n

(
qn + pn

)

2

}

ds,

(3.29)
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where αn ≤ ξ1, ξ2 ≤ αn+1 ≤ η1, η2 ≤ u, and ξ2 ≤ η3 ≤ βn. Let |K(t,s)| ≤ A1, | fu(t,u) +
gu(t,ν)| ≤ A2, | f (3)(t,u)/3!| ≤ A3, and |g(3)(t,u)/2| ≤ A4. Then we have

∥
∥pn+1

∥
∥≤ k1

∥
∥pn

∥
∥3

+ k2
∥
∥pn

∥
∥2(∥∥qn

∥
∥+

∥
∥pn

∥
∥), (3.30)

where k1 = A1A3/(1−A1A2) and k2 = A1A4/(1−A1A2).
Similarly, we can write

qn+1 =
∫ 1

0
K(t,s)

[
G̃
(
s,αn,βn;βn+1

)− f (s,u)− g(s,u)
]
ds, (3.31)

where K(t,s) is the Green’s function given by (3.23).
Using the Taylor series expansion with Lagrange remainder, and the mean value theo-

rem together with (ii), we can show

∥
∥qn+1

∥
∥≤ k1

∥
∥qn

∥
∥3

+ k2
∥
∥qn

∥
∥2(∥∥qn

∥
∥+

∥
∥pn

∥
∥), (3.32)

where k1 = A1A3/(1−A1A2) and k2 = A1A4/(1−A1A2).
Hence combining (3.30) and (3.32) we obtain

max
t∈J

∣
∣u(t)−αn+1(t)

∣
∣+ max

t∈J
∣
∣βn+1(t)−u(t)

∣
∣

≤ C
[

max
t∈J

∣
∣u(t)−αn(t)

∣
∣+ max

t∈J
∣
∣βn(t)−u(t)

∣
∣
]3

,
(3.33)

where C is an appropriate positive constant.
This completes the proof. �

We note that the unique solution we have obtained is the unique solution of (3.1) in
the sector determined by the lower and upper solutions.

Next we merely state a result without proof using coupled lower and upper solutions of
(3.1). However, in order to show the existence of the unique solution of the iterates, we use
the existence result [7, Theorem 2.4.1]. for systems and a special case of the comparison
theorem of [7].

Theorem 3.2. Assume that
(i) α0,β0 ∈ C2[J ,R] are coupled lower and upper solutions of (3.1) with α0(t) ≤ β0(t)

on J such that

−α′′0 ≤ f
(
t,β0

)
+ g
(
t,α0

)
, Bα0(μ)≤ bμ on J ,

−β′′0 ≥ f
(
t,α0

)
+ g
(
t,β0

)
, Bβ0(μ)≥ bμ on J ;

(3.34)
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(ii) f ,g ∈ C3[Ω,R] such that f (t,u) is 2-hyperconvex in u on J [i.e., f (3)(t,u) ≥ 0 for
(t,u) ∈ Ω], g(t,u) is 2-hyperconcave in u on J [i.e., g(3)(t,u) ≤ 0 for (t,u) ∈ Ω],
f (t,u), g(t,u) are nonincreasing with fu− gu > 0 and

fu(t,u)≤−max
Ω

[
f (3)(t,u)

](
β0−α0

)2 ≤ 0 on Ω. (3.35)

Then there exist monotone sequences {αn(t)} and {βn(t)}, n≥ 0 such that

−α′′n =
1∑

i=0

f (i)
(
t,βn−1

)(
βn−βn−1

)i

i!
+

f (2)
(
t,αn−1

)(
βn−βn−1

)2

(2)!

+
1∑

i=0

g(i)
(
t,αn−1

)(
αn−αn−1

)i

i!
+
g(2)
(
t,βn−1

)(
αn−αn−1

)2

(2)!
,

Bαn(μ)= bμ on J ;

−β′′n =
1∑

i=0

f (i)
(
t,αn−1

)(
αn−αn−1

)i

i!
+

f (2)
(
t,βn−1

)(
αn−αn−1

)2

(2)!

+
1∑

i=0

g(i)
(
t,βn−1

)(
βn−βn−1

)i

i!
+
g(2)
(
t,αn−1

)(
βn−βn−1

)2

(2)!
,

Bβn(μ)= bμ on J ,

(3.36)

which converge uniformly and monotonically to the unique solution of (3.1) and the conver-
gence is of order 3.

Remark 3.3. Similar results can be obtained for the other two coupled upper and lower
solutions of (3.1) and the numerical applications of these results can be demonstrated.

4. Numerical results

Next we will provide an example which satisfies all the hypotheses of Theorem 3.1 which
demonstrates the application of Theorem 3.1.

Example 4.1. Let us consider the following BVP:

−u′′ = u3− 2u4− 0.1u+ 0.4,

u(0)= 0, u(1)= 1.
(4.1)

It is easy to check that α0(t) ≡ 0 and β0(t) ≡ 1 are natural lower and upper solutions
for (4.1), respectively. Let H(t,u) denote the right-hand side of (4.1) and split it into
nonincreasing and nondecreasing functions as H(t,u)= f (t,u) + g(t,u) where

f (t,u)= u3,

g(t,u)=−2u4− 0.1u+ 0.4.
(4.2)
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Table 4.1. Table of three α,β-iterates of (4.1).

t α1(t) α2(t) α3(t) β3(t) β2(t) β1(t)

0.1 0.071613 0.105795 0.114155 0.115155 0.121882 0.211998

0.2 0.139816 0.207722 0.224408 0.226396 0.239650 0.372556

0.3 0.206071 0.305997 0.330820 0.333780 0.352693 0.497196

0.4 0.272568 0.401158 0.433435 0.437334 0.460118 0.596776

0.5 0.342305 0.494293 0.532364 0.537104 0.561279 0.679076

0.6 0.419460 0.587139 0.627930 0.633249 0.656144 0.749881

0.7 0.510237 0.681965 0.720845 0.726212 0.745445 0.813727

0.8 0.624444 0.781200 0.812382 0.816952 0.830723 0.874419

0.9 0.778369 0.886852 0.904514 0.907236 0.914404 0.935401

1

0.8

0.6

0.4

0.2

u

0.2 0.4 0.6 0.8 1

t

Figure 4.1

It is easy to show that

fuuu = 6 > 0,

guuu =−48u≤ 0
(4.3)

for 0≤ u≤ 1. Hence f is a 2-hyperconvex function and g is a 2-hyperconcave function.
Now we need to check the following conditions in order to use Theorem 3.1:

fu(t,u)= 3u2 ≥ 0,

gu(t,u)=−8u3− 0.1≤ 0,

fu(t,u) + gu(t,u)= 3u2− 8u3− 0.1 < 0,

(4.4)

whenever 0≤ u≤ 1. Hence we can apply the iterates of Theorem 3.1. Using the nonlinear
finite-difference methods for BVPs and Mathematica we can find the α,β-iterates as given
in Table 4.1.

The α-iterates (with broken line) and the β-iterates (with unbroken line) can be seen
on Figure 4.1.
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Given the specific finite difference scheme, we can apply it to obtain lower and upper
solutions. Then, we can make the difference between upper and lower solutions arbitrar-
ily small. The obtained numerical solution however, will be close to the actual solution
of the nonlinear problem (4.1) only within the truncation error of the finite difference
scheme chosen.

Now we will provide a numerical example to show the usefulness of Theorem 3.2.

Example 4.2. Let us discuss the following second-order BVP:

−u′′ = 3cosu− 27eu/3 + 25.5, u(0.1)= 0.1, u(0.5)= 0.5. (4.5)

Denote the right-hand side of (4.5) by H(t,u). We can split the forcing function into two
functions as H(t,u)= f (t,u) + g(t,u) where

f (t,u)= 3cosu,

g(t,u)=−27eu/3 + 25.5.
(4.6)

If we choose α0(t)≡ 0.1, β0(t)≡ 0.5, and 0.1≤ t ≤ 0.5 we get

0≤ 3cos0.5− 27e0.1/3 + 25.5= 0.21758,

0≥ 3cos0.1− 27e0.5/3 + 25.5=−3.41172,

0.1≤ 0.1, 0.5≥ 0.5.

(4.7)

Thus α0(t) ≡ 0.1 and β0(t) ≡ 0.5 are coupled lower and upper solutions for (4.5) of the
type defined in Theorem 3.2.

Next we can show that

fuuu = 3sinu > 0,

guuu =−eu/3 < 0
(4.8)

for 0.1≤ u≤ 0.5. Hence f is 2-hyperconvex function and g is 2-hyperconcave function.
Now we need to check the following conditions in order to apply Theorem 3.2:

fu(t,u)=−3sinu < 0,

gu(t,u)=−9eu/3 < 0,

fu(t,u)− gu(t,u)= eu +u2 > 0,

−3sin0.1≤−3sin0.5(0.5− 0.1)2 ≤ 0,

(4.9)

whenever 0.1≤ u≤ 0.5. Hence all the hypotheses of Theorem 3.2 are satisfied and we can
apply the given iterates. Now using the nonlinear finite-difference methods for BVPs and
Mathematica we can derive the α,β-iterates in Table 4.2.

The graph on Figure 4.2 shows α-iterates (with broken line) and the β-iterates (with
unbroken line).
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Table 4.2. Table of three α,β-iterates of (4.5).

t α1(t) α2(t) α3(t) β3(t) β2(t) β1(t)

0.10 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000

0.15 0.141017 0.141551 0.141573 0.141646 0.142080 0.145352

0.20 0.182354 0.182909 0.182942 0.183077 0.183878 0.189605

0.25 0.225015 0.225334 0.225365 0.225541 0.226590 0.233909

0.30 0.270074 0.270116 0.270138 0.270329 0.271473 0.279436

0.35 0.318505 0.318582 0.318595 0.318773 0.319842 0.327418

0.40 0.372012 0.372103 0.372110 0.372247 0.373077 0.379177

0.45 0.432077 0.432091 0.432095 0.432169 0.432624 0.436164

0.50 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

0.5

0.4

0.3

0.2

0.1

u

0.1 0.2 0.3 0.4 0.5 0.6

t

Figure 4.2

Remark 4.3. Note that the interval in the above example is due to the fact that f and g
satisfies the hypothesis of Theorem 3.2 on the specific interval chosen.

5. Conclusion

We have used iterates of nonlinearity of order 2 when the forcing function is the sum of
2-hyperconvex and 2-hyperconcave. We develop two sequences depending on the type of
the lower and upper solutions, which converge rapidly (order 3) to the unique solution
of (3.1). We demonstrate the application of the results with numerical applications.
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[6] S. Heikkilä and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear
Differential Equations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 181,
Marcel Dekker, New York, 1994.

[7] G. S. Ladde, V. Lakshmikantham, and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear
Differential Equations, Monographs, Advanced Texts and Surveys in Pure and Applied Mathe-
matics, vol. 27, Pitman, Massachusetts, 1985.

[8] V. Lakshmikantham and J. J. Nieto, Generalized quasilinearization iterative method for initial
value problems, Nonlinear Studies 2 (1995), 1–9.

[9] V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems,
Mathematics and Its Applications, vol. 440, Kluwer Academic, Dordrecht, 1998.

[10] V. B. Mandelzweig, Quasilinearization method and its verification on exactly solvable models in
quantum mechanics, Journal of Mathematical Physics 40 (1999), no. 12, 6266–6291.

[11] V. B. Mandelzweig and F. Tabakin, Quasilinearization approach to nonlinear problems in physics
with application to nonlinear ODEs, Computer Physics Communications 141 (2001), no. 2, 268–
281.

[12] T. Melton and A. S. Vatsala, Generalized quasilinearization and higher order of convergence for first
order initial value problems, to appear in Dynamic Systems & Applications.

[13] R. N. Mohapatra, K. Vajravelu, and Y. Yin, Extension of the method of quasilinearization and rapid
convergence, Journal of Optimization Theory and Applications 96 (1998), no. 3, 667–682.

[14] M. Sokol and A. S. Vatsala, A unified exhaustive study of monotone iterative method for initial
value problems, Nonlinear Studies 8 (2001), no. 4, 429–438.

[15] I. H. West and A. S. Vatsala, Generalized monotone iterative method for initial value problems,
Applied Mathematics Letters 17 (2004), no. 11, 1231–1237.

Tanya G. Melton: Department of Mathematics, University of Louisiana at Lafayette, Lafayette,
LA 70504-1010, USA
E-mail address: tmelton@lsua.edu

A. S. Vatsala: Department of Mathematics, University of Louisiana at Lafayette, Lafayette,
LA 70504-1010, USA
E-mail address: vatsala@louisiana.edu

mailto:tmelton@lsua.edu
mailto:vatsala@louisiana.edu

	1. Introduction
	2. Preliminaries
	3. Main results
	4. Numerical results
	5. Conclusion
	References

