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1. Introduction

Let Ω be an open bounded subset of RN , N ≥ 2, let Q be the cylinder Ω× (0,T) with
some given T > 0. Consider the following nonlinear parabolic problem:

∂u

∂t
+A(u)= χ in Q,

u(x, t)= 0 on ∂Ω× (0,T),

u(x,0)= u0 in Ω,

(1.1)

whereA(u)=−div(a(x, t,u,∇u)) is a Leray-Lions operator defined onD(A)⊂W1,x
0 LM(Ω),

with M is an N-function, and χ is a given data.
In the variational case (i.e., where χ ∈W−1,xEM(Ω)), it is well known that the solvabil-

ity of (1.1) is done by Donaldson [2] and Robert [11] when the operator A is monotone,
t2 �M(t), and M satisfies a Δ2 condition, and by finally the recent work [3] for the gen-
eral case.

In the L1 case, an existence theorem is given in [4]. However, the techniques used in
[4] do not allow us to adapt it for parabolic inequalities. It is our purpose in this paper to
solve the obstacle problem associated to (1.1) in the case where χ ∈ L1(Q) +W−1,xEM(Q)
and without assuming any growth restriction on M. The existence of solutions is proved
via a sequence of penalized problems, with solutions un. A priori estimates of the trun-
cation of un are obtained in some suitable Orlicz space. For the passage to the limit, the
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2 Parabolic inequalities in L1

almost everywhere convergence of∇un is proved via new techniques. As operators mod-
els, we can consider slow or fast growth:

A(u)=−div

((
1 + |u|)2∇u log

(
1 + |∇u|)
|∇u|

)
,

A(u)=−div(∇uexp
(|∇u|)).

(1.2)

For some classical and recent results in the setting of Orlicz spaces dealing with elliptic
and parabolic equations, the reader can be referred to [8, 10, 12–14].

2. Preliminaries

2.1. Let M : R+ → R+ be an N-function, that is, M is continous, convex, with M(t) > 0
for t > 0, M(t)/t→ 0 as t→ 0, and M(t)/t→∞ as t→∞.

Equivalently,M admits the representationM(t)= ∫ t
0 a(s)ds, where a :R+ →R+ is non-

decreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0, and a(t) tends to ∞ as
t→∞.

The N-function M conjugate to M is defined by M(t)= ∫ t
0 ā(s)ds, where a : R+ → R+

is given by ā(t)= sup{s : a(s)≤ t} (see [1]).
The N-function is said to satisfy the Δ2 condion if, for some k > 0,

M(2t)≤ kM(t), ∀t ≥ 0, (2.1)

when (2.1) holds only for t ≥ some t0 > 0, then M is said to satisfy the Δ2 condition near
infinity.

We will extend these N-functions into even functions on all R.
Let P and Q be two N-functions. P� Q means that P grows essentially less rapidly

than Q, that is, for each ε > 0, P(t)/Q(εt)→ 0 as t →∞. This is the case if and only if
limt→∞(Q−1(t))/(P−1(t))= 0.

2.2. Let Ω be an open subset of RN . The Orlicz class KM(Ω) (resp., the Orlicz space
LM(Ω)) is defined as the set of (equivalence classes of) real-valued measurable functions
u on Ω such that∫

Ω
M

(
u(x)

)
dx < +∞

(
resp.,

∫
Ω
M

(
u(x)
λ

)
dx < +∞ for some λ > 0

)
. (2.2)

LM(Ω) is a Banach space under the norm

‖u‖M,Ω = inf
{
λ > 0 :

∫
Ω
M

(
u(x)
λ

)
dx ≤ 1

}
(2.3)

and KM(Ω) is a convex subset of LM(Ω).
The closure in LM(Ω) of the set of bounded measurable functions with compact sup-

port in Ω is denoted by EM(Ω).
The equality EM(Ω)= LM(Ω) holds if and only if M satisfies the Δ2 condition, for all t

or for t large, according to whether Ω has infinite measure or not.
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The dual of EM(Ω) can be identified with LM(Ω) by means of the pairing
∫
Ωuvdx, and

the dual norm of LM(Ω) is equivalent to ‖ · ‖M,Ω.
The space LM(Ω) is reflexive if and only if M and M satisfy the Δ2 condition, for all t

or for t large, according to whether Ω has infinite measure or not.

2.3. We now turn to the Orlicz-Sobolev space, W1LM(Ω) (resp., W1EM(Ω)) is the space
of all functions u such that u and its distributional derivatives up to order 1 lie in LM(Ω)
(resp., EM(Ω)). It is a Banach space under the norm

‖u‖1,M =
∑
|α|≤1

∥∥Dαu
∥∥
M. (2.4)

Thus, W1LM(Ω) and W1EM(Ω) can be identified with subspaces of product of N +1
copies of LM(Ω). Denoting this product by

∏
LM , we will use the weak topologies σ(

∏
LM ,∏

EM) and σ(
∏
LM ,

∏
LM).

The space W1
0EM(Ω) is defined as the (norm) closure of the Schwartz space D(Ω) in

W1EM(Ω) and the space W1
0LM(Ω) as the σ(

∏
LM ,

∏
EM) closure of D(Ω) in W1LM(Ω).

We say that un converges to u for the modular convergence inW1LM(Ω) if for some λ > 0,∫
Ω
M

(
Dαun−Dαu

λ

)
dx −→ 0, ∀|α| ≤ 1. (2.5)

This implies convergence for σ(
∏
LM ,

∏
LM). If M satisfies the Δ2 condition on R+, then

modular convergence coincides with norm convergence.

2.4. Let W−1LM(Ω) (resp., W−1EM(Ω)) denote the space of distributions on Ω which
can be written as sums of derivatives of order ≤ 1 of functions in LM (resp., EM(Ω)). It is
a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space D(Ω) is dense in W1
0LM(Ω)

for the modular convergence and thus for the topology σ(
∏
LM ,

∏
LM) (cf. [6, 7]). Con-

sequently, the action of a distribution in W−1LM(Ω) on an element of W1
0LM(Ω) is well

defined.

2.5. Let Ω be a bounded open subset of RN , T > 0, and set Q =Ω× (0,T). Let M be an
N-function. For each α∈NN , denote byDα

x the distributional derivatives onQ of order α
with respect to the variable x ∈RN . The inhomogeneous Orlicz-Sobolev spaces of order
1 are defined as follows:

W1,xLM(Q)= {
u∈ LM(Q) :Dα

xu∈ LM(Q), ∀|α| ≤ 1
}

,

W1,xEM(Q)= {
u∈ EM(Q) :Dα

xu∈ EM(Q), ∀|α| ≤ 1
}
.

(2.6)

The latest space is a subset of the first one. They are Banach spaces under the norm

‖u‖ =
∑
|α|=1

∥∥Dα
xu

∥∥
M,Q. (2.7)

We can easily show that they form a complementary system when Ω satisfies the seg-
ment property.These spaces are considered as subspaces of the product spaces

∏
LM(Q)
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which has N + 1 copies. We will also consider the weak topologies σ(
∏
LM ,

∏
EM) and

σ(
∏
LM ,

∏
LM). If u ∈W1,xLM(Q), then the function t → u(t) = u(·, t) is defined on

(0,T) with values in W1LM(Ω). If, further, u ∈W1,xEM(Q), then u(t) is W1EM(Ω)-
valued and is strongly measurable. Furthermore, the following continuous imbedding
holds: W1,xEM(Q) ⊂ L1(0,T ;W1EM(Ω)). The space W1,xLM(Q) is not in general sepa-
rable, if u ∈W1,xLM(Q), we cannot conclude that the function u(t) is measurable from
(0,T) into W1LM(Ω). However, the scalar function t→‖Dα

xu(t)‖M,Ω is in L1(0,T) for all
|α| ≤ 1.

2.6. The space W1,x
0 EM(Q) is defined as the (norm) closure in W1,xEM(Q) of D(Q).

We can easily show as in [7] that when Ω has the segment property, then for all u ∈
D(Q)

σ(
∏
LM ,

∏
EM)

there exist some λ > 0 and a sequence (un) ⊂ D(Q) such that for all

|α| ≤ 1,
∫
ΩM((Dα

xun−Dα
xu)/λ)dx → 0 when n→∞. Consequently, D(Q)

σ(
∏
LM ,

∏
EM) =

D(Q)
σ(

∏
LM ,

∏
LM)

, this space will be denoted by W1,x
0 LM(Q). Furthermore, W1,x

0 EM(Q) =
W1,x

0 LM(Q)∩∏
EM . Poincaré’s inequality also holds in W1,x

0 LM(Q) and then there is a
constant C > 0 such that for all u∈W1,x

0 LM(Q), one has
∑
|α|≤1

∥∥Dα
xu

∥∥
M,Q ≤ C

∑
|α|=1

∥∥Dα
xu

∥∥
M,Q, (2.8)

thus both sides of the last inequality are equivalent norms on W1,x
0 LM(Q). We have then

the following complementary system:

(
W1,x

0 LM(Q) F

W1,x
0 EM(Q) F0

)
, (2.9)

F being the dual space of W1,x
0 EM(Q). It is also, up to an isomorphism, the quotient of∏

LM by the polar set W1,x
0 EM(Q)⊥, and will be denoted by F =W−1,xLM(Q) and it is

shown that

W−1,xLM(Q)=
{
f =

∑
|α|≤1

Dα
x fα : fα ∈ LM(Q)

}
. (2.10)

This space will be equipped with the usual quotient norm:

‖ f ‖ = inf
∑
|α|≤1

∥∥ fα∥∥M,Q, (2.11)

where the inf is taken on all possible decompositions f = ∑
|α|≤1D

α
x fα, fα ∈ LM(Q).

The space F0 is then given by F0 = { f =
∑
|α|≤1D

α
x fα : fα ∈ EM(Q)} and is denoted by

F0 =W−1,xEM(Q).

Defintion 2.1. We say that un → u in W−1,xLM(Q) + L1(Q) for the modular convergence
if we can write

un =
∑
|α|≤1

Dα
xu

α
n +u0

n, u=
∑
|α|≤1

Dα
xu

α +u0 (2.12)
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with uαn → uα in LM(Q) for the modular convergence for all |α| ≤ 1 and u0
n→ u0 strongly

in L1(Q).

We will give the following approximation theorem which plays a crucial role when
proving the existence result of solutions for parabolic inequalities.

Theorem 2.2. Let φ ∈ W1,x
0 EM(Q) ∩ L∞(Q) and consider the convex set �φ = {v ∈

W1,x
0 LM(Q) : v ≥ φ a.e. in Q}. Then for every u ∈ �φ ∩ L∞(Q) such that ∂u/∂t ∈

W−1,xLM(Q) +L1(Q), there exists vj ∈�φ∩D(Q) such that

vj −→ u in W1,xLM(Q),

∂vj
∂t
−→ ∂u

∂t
in W−1,xLM(Q) +L1(Q)

(2.13)

for the modular convergence.

Proof. It is easily adapted from that given in [4, Theorem 3] and the approximation tech-
niques of [9]. �

Remark 2.3. The result is still true for φ ∈W1,xEM(Q)∩L∞(Q), when Ω is more regular
(see [9]).

In order to deal with the time derivative, we introduce a time mollification of a func-
tion v ∈ LM(Q). Thus, we define, for all μ > 0 and all (x, t)∈Q,

vμ(x, t)= μ
∫ t

−∞
ṽ(x,s)exp

(
μ(s− t))ds, (2.14)

where ṽ(x,s)= v(x,s)χ(0,T)(s) is the zero extension of v. The following proposition is fun-
damental in the sequel.

Proposition 2.4 [5]. If v ∈ LM(Q), then vμ is measurable in Q, ∂vμ/∂t = μ(v− vμ) and

∫
Q
M

(
vμ

)
dxdt ≤

∫
Q
M(v)dxdt. (2.15)

Recall now the following compactness result which is proved in [5].

Proposition 2.5. Assume that (un)n is a bounded sequence in W1
0LM(Q) such that ∂un/∂t

is bounded in W−1,xLM(Q) +L1(Q), then un is relatively compact in L1(Q).

3. The main result

Let Ω be an open bounded subset of RN , N ≥ 2, with the segment property. Let P and M
be twoN-functions such that P�M. Consider now the operatorA :D(A)⊂W1,x

0 LM(Q)
→W−1LM(Q) in divergence form A(u) = −div(a(x, t,u,∇u)), where a : Ω×R×R×
RN → RN is a Carathéodory function satisfying for a.e. x ∈ Ω and for all ζ ,ζ ′ ∈ RN ,
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(ζ �= ζ ′) and all s, t ∈R:

∣∣a(x, t,s,ζ)
∣∣≤ h(x, t) + k1P

−1
M

(
k2|s|

)
+ k3M

−1
M

(
k4|ζ|

)
,(

a(x, t,s,ζ)− a(x, t,s,ζ ′
))(

ζ − ζ ′) > 0,

a(x, t,s,ζ)ζ ≥ αM(|ζ|)−d(x, t),

(3.1)

with d ∈ L1(Q), α,k1,k2,k3,k4 > 0, and h∈ EM(Q). Let

ψ ∈W1
0EM(Ω)∩L∞(Ω). (3.2)

Finally, consider

f ∈ L1(Q). (3.3)

We define for all t ∈R, k ≥ 0, Tk(t)=max(−k,min(k, t)), and Sk(t)= ∫ t
0 Tk(η)dη.

We will prove the following existence theorem.

Theorem 3.1. Let u0 ∈ L1(Ω) such that u0 ≥ 0. Assume that (3.1)–(3.3) hold true. Then
there exists at least one solution u∈ C([0,T];L1(Ω)) such that u(x,0)= u0 a.e. and for all
τ ∈]0,T],

u≥ ψ a.e. in Q,

Tk(u)∈W1,x
0 LM(Q),∫

Ω
Sk

(
u(τ)− v(τ)

)
dx+

〈
∂v

∂t
,Tk(u− v)

�
Qτ

+
∫
Qτ

a(x, t,u,∇u)∇Tk(u− v)dxdt

≤
∫
Qτ

f Tk(u− v)dxdt+
∫
Ω
Sk

(
u0− v(x,0)

)
dx,

∀k > 0 and∀v ∈�ψ ∩L∞(Q) such that
∂v

∂t
∈W−1,xLM(Q) +L1(Q),

(pψ)

where Qτ =Ω×]0,τ[.

Remark 3.2. Since {v ∈�ψ ∩ L∞(Q) : ∂v/∂t ∈W−1,xLM(Q) +L1(Q)} ⊂ C([0,T],L1(Ω)),
(see [4]), the first and the latest terms of problem (pψ) are well defined.

Proof
Step 1. A priori estimates.

For the sake of simplicity, we assume that d(x, t)= 0.
Consider the approximate equations

∂un
∂t
−div

(
a
(
x, t,un,∇un

))−nTn(un−ψ)− = fn,

un ∈W1,x
0 LM(Q), un(x,0)= un0,

(Pn)
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where fn → f strongly in L1(Q) and un0 → u0 strongly in L1(Ω). Thanks to [3, Theo-
rem 3.1], there exists at least one solution un of problem (Pn). By choosing Tk(un −
Th(un)),h≥ ‖ψ‖∞ as test function in (Pn), we get

〈
∂un
∂t

,Tk
(
un−Th

(
un

))�
+
∫
h≤|un|≤h+k

a
(
un,∇un

)∇undxdt
−

∫
Q
nTn

(
un−ψ

)−
Tk

(
un−Th

(
un

))
dxdt =

∫
Q
fnTk

(
un−Th

(
un

))
dxdt.

(3.4)

On the one hand, we have

〈
∂un
∂t

,Tk
(
un−Th

(
un

))�=
∫
Ω
Shk

(
un(T)

)
dx−

∫
Ω
Shk

(
u0
n

)
dx, (3.5)

where Shk(s)= ∫ s
0 Tk(q−Th(q))dq, and by using the fact that

∫
Ω S

h
k(un(T))dx ≥ 0 and |∫Ω Shk

(u0
n)| ≤ k‖u0

n‖1, we get

α
∫
h≤|un|≤h+k

M
(∣∣∇un∣∣)dxdt−

∫
Q
nTn

(
un−ψ)−Tk

(
un−Th

(
un

))
dxdt ≤ Ck, ∀n∈N,

(3.6)

so that

−
∫
Q
nTn

(
un−ψ

)−Tk(un−Th(un))
k

dxdt ≤ C. (3.7)

Since −nTn(un − ψ)−Tk(un − Th(un)) ≥ 0, for every h ≥ ‖ψ‖∞, we deduce by Fatou’s
lemma as k→ 0 that

∫
Q
nTn

(
un−ψ

)− ≤ C. (3.8)

Using in (Pn) the test function Tk(un)χ(0,τ), we get for every τ ∈ (0,T),

∫
Ω
Sk

(
un(τ)

)
dx+

∫
Qτ

a
(
x, t,Tk

(
un

)
,∇Tk

(
un

))∇Tk(un)dxdt
+
∫
Qτ

nTn
((
un−ψ

)−)
Tk

(
un

)
dxdt ≤ Ck

(3.9)

which gives thanks to (3.8)

∫
Ω
Sk

(
un(τ)

)
dx+

∫
Qτ

a
(
x, t,Tk

(
un

)
,∇Tk

(
un

))∇Tk(un)dxdt ≤ Ck, (3.10)

∫
Q
M

(∣∣∇Tk(un)∣∣)dxdt ≤ Ck. (3.11)
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On the other hand, by using [6, Lemma 5.7], there exist two positive constants μ1 and μ2

such that
∫
Q
M

(
Tk

(
un

)
μ1

)
dxdt ≤ μ2

∫
Q
M

(∣∣∇Tk(un)∣∣)dxdt (3.12)

which implies, by using (3.11), that

meas
{∣∣un∣∣ > k}≤ μ2Ck

M
(
k/μ1

) (3.13)

so that

lim
k→∞

meas
{∣∣un∣∣ > k}= 0 uniformly with respect to n. (3.14)

Take now a nondecreasing function θk ∈ C2(R) such that θk(s) = s for |s| ≤ k/2 and
θk(s)= k sign(s) for |s| > k. By multiplying the approximate equation by θ

′
k(un), we get

∂θk
(
un

)
∂t

−div
(
a
(
x, t,un,∇un

)
θ
′(
un

))
+ a

(
x, t,un,∇un

)∇unθ′′(un)
−nTn

(
un−ψ

)−
θ
′
k

(
un

)= fnθ
′
k

(
un

)
,

(3.15)

which implies that ∂θk(un)/∂t is bounded inW−1,xLM(Q) +L1(Q). Since θk(un) is bound-
ed in W1,x

0 LM(Q), we have by Proposition 2.5 that θk(un) is relatively compact in L1(Q)
and so that un→ u a.e. in Q, and from (3.8) by using Fatou’s lemma, we get u≥ ψ a.e. in
Q. Consequently,

Tk
(
un

)−→ Tk(u) weakly in W1,x
0 LM(Q) (3.16)

for the topology σ(
∏
LM ,

∏
EM).

Step 2. Almost everywhere convergence of the gradients.
Since Tk(u) ∈W1,x

0 LM(Q), then there exists a sequence (αkj ) ⊂ D(Q) such that αkj →
Tk(u) for the modular convergence in W1,x

0 LM(Q). In the sequel and throughout the pa-
per, χj,s and χs will denote, respectively, the characteristic functions of the sets Qj,s =
{(x, t) ∈ Ω : |∇Tk(αkj )| ≤ s} and Qs = {(x, t) ∈ Ω : |∇Tk(u)| ≤ s}. For the sake of sim-
plicity, we will write only ε(n, j,μ,s) to mean all quantities (possibly different) such that
lims→∞ limμ→∞ lim j→∞ limn→∞ ε(n, j,μ,s)= 0.

Taking now Tη(un−Tk(αkj )μ), η > 0 as test function in (Pn), we get

〈
∂un
∂t

,Tη
(
un−Tk

(
αkj

)
μ

)�
+
∫
Q
a
(
x,un,∇un

)∇Tη(un−Tk(αkj)μ
)

−
∫
Q
nTn

((
un−ψ

)−)
Tη

(
un−Tk

(
αkj

)
μ

)
dxdt ≤ Cη,

(3.17)

and by using (3.8), we get
〈
∂un
∂t

,Tη
(
un−Tk

(
αkj

)
μ

)�
+
∫
Q
a
(
un,∇un

)∇Tη(un−Tk(αkj)μ
)
≤ Cη. (3.18)
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The first term of the left-hand side of the last equality reads as

〈
∂un
∂t

,Tη
(
un−Tk

(
αkj

)
μ

)�
=

〈
∂un
∂t
−
∂Tk

(
αkj

)
μ

∂t
,Tη

(
un−Tk

(
αkj

)
μ

)〉

+

〈
∂Tk

(
αkj

)
μ

∂t
,Tη

(
un−Tk

(
αkj

)
μ

)〉
.

(3.19)

The second term of the last equality can be written as

〈
∂un
∂t
−
∂Tk

(
αkj

)
μ

∂t
,Tη

(
un−Tk

(
αkj

)
μ

)〉

=
∫
Ω
Sη

(
un(T)−Tk

(
αkj

)
μ(T)

)
dx−

∫
Ω
Sη

(
un0

)
dx ≥−η

∫
Ω

∣∣un0∣∣dx ≥−ηC,

(3.20)

the third term can be written as

〈
∂Tk

(
αkj

)
μ

∂t
,Tη

(
un−Tk

(
αkj

)
μ

)〉
= μ

∫
Q

(
Tk

(
αkj

)−Tk(αkj )μ
)(
Tη

(
un−Tk

(
αkj

)
μ

))
,

(3.21)

thus by letting n, j →∞ and since αkj → Tk(u) a.e. in Q and by using Lebesgue theorem,

∫
Q

(
Tk

(
αkj

)−Tk(αkj )μ
)(
Tη

(
un−Tk

(
αkj

)
μ

))
dxdt

=
∫
Q

(
Tk(u)−Tk(u)μ

)(
Tη

(
u−Tk(u)μ

))
dxdt+ ε(n, j).

(3.22)

Consequently,

〈
∂un
∂t

,Tη
(
Tk

(
un−Tk

(
αkj

)
μ

))�
≥ ε(n, j)−ηC. (3.23)

On the other hand,
∫
Q
a
(
un,∇un

)∇Tη(un−Tk(αkj)μ
)
dxdt

=
∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
Tk

(
un

)
,∇Tk

(
un

))∇Tk(un)−∇Tk(αkj)μχj,sdxdt
+
∫
{k<|un|}∩{|un−Tk(αkj )μ|<η}

a
(
un,∇un

)∇undxdt
−

∫
{k<|un|}∩{|un−Tk(αkj )μ|<η}

a
(
un,∇un

)∇Tk(αkj)μχ{|∇Tk(αkj )|>s}dxdt

(3.24)
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which implies, by using the fact that
∫
{k<|un|}∩{|un−Tk(αkj )μ|<η} a(un,∇un)∇undxdt ≥ 0, that

∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
un,∇un

)∇Tk(un)−∇Tk(αkj )μχj,sdxdt
≤ Cη+

∫
{k<|un|}∩{|un−Tk(αkj )μ|<η}

a
(
un,∇un

)∇Tk(αkj )μχ{|∇Tk(αkj )|>s}dxdt.
(3.25)

Since a(Tk+η(un),∇Tk+η(un)) is bounded in (LM(Q))N , there exists some hk+η∈(LM(Q))N

such that

a
(
Tk+η

(
un

)
,∇Tk+η

(
un

))
hk+η weakly in

(
LM(Q)

)N
for σ

(∏
LM ,

∏
EM

)
.

(3.26)

Consequently,

∫
{k<|un|}∩{|un−Tk(αkj )μ|<η}

a
(
un,∇un

)∇Tk(αkj )μχ{|∇Tk(αkj )|>s}dxdt

=
∫
{k<|u|}∩{|u−Tk(αkj )μ|<η}

hk+η∇Tk
(
αkj

)
μχ{|∇Tk(αkj )|>s}dxdt+ ε(n),

(3.27)

where we have used the fact that ∇Tk(αkj )μχ{k<|un|}∩{|un−Tk(αkj )μ|<η} tends strongly to

∇Tk(αkj )μχ{k<|u|}∩{|u−Tk(αkj )μ|<η} in (EM(Q))N . Letting j →∞, we obtain

∫
{k<|un|}∩{|un−Tk(αkj )μ|<η}

a
(
un,∇un

)∇Tk(αkj)μχ{|∇Tk(αkj )|>s}dxdt

=
∫
{k<|u|}∩{|u−Tk(u)μ|<η}

hk+η∇Tk(u)μχ{|∇Tk(u)|>s}dxdt+ ε(n, j).

(3.28)

Thanks to Proposition 2.4, one easily has

∫
{k<|u|}∩{|u−Tk(u)μ|<η}

hk+η∇Tk(u)μχ{|∇Tk(u)|>s}dxdt

=
∫
{k<|u|}∩{|u−Tk(u)|<η}

hk+η∇Tk(u)χ{|∇Tk(u)|>s}dxdt+ ε(μ)= ε(μ,s).

(3.29)

Hence

∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
Tk

(
un

)
,∇Tk

(
un

))∇Tk(un)−∇Tk(αkj)μχj,sdxdt ≤ Cη+ ε(n, j,μ,s).

(3.30)
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On the other hand, note that∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
Tk

(
un

)
,∇Tk

(
un

))∇Tk(un)−∇Tk(αkj )μχj,sdxdt
=

∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
Tk

(
un

)
,∇Tk

(
un

))∇Tk(un)−∇Tk(αkj )χj,sdxdt
+
∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
Tk

(
un

)
,∇Tk

(
un

))[∇Tk(αkj )χj,s−∇Tk(αkj )μχj,s
]
dxdt.

(3.31)

The latest integral tends to 0 as n and j go to∞. Indeed, we have that

∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
Tk

(
un

)
,∇Tk

(
un

))[∇Tk(αkj)χj,s−∇Tk(αkj )μχj,s
]
dxdt (3.32)

tends to ∫
{|Tk(u)−Tk(αkj )μ|<η}

hk
[
∇Tk

(
αkj

)
χj,s−∇Tk

(
αkj

)
μχj,s

]
dxdt (3.33)

as n→∞, since

a
(
Tk

(
un

)
,∇Tk

(
un

))
hk weakly in

(
LM(Q)

)N
for σ

(∏
LM ,

∏
EM

)
(3.34)

while∇Tk(αkj )χj,s−∇Tk(αkj )μχj,s ∈ (EM(Q))N . It is obvious that

∫
{Tk(u)−Tk(αkj )μ|<η}

hk
[
∇Tk

(
αkj

)
χj,s−∇Tk

(
αkj

)
μχj,s

]
dxdt (3.35)

goes to 0 as j →∞ by using Lebesgue theorem. We deduce then that

∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
Tk

(
un

)
,∇Tk

(
un

))∇Tk(un)−∇Tk(αkj )χj,sdxdt ≤ Cη+ ε(n, j,μ,s).

(3.36)

Let now 0 < δ < 1. We have∫
Qr

[
a
(
Tk

(
un

)
,∇Tk

(
un

))− a(Tk(un),∇Tk(u)
)][∇Tk(un)−∇Tk(u)

]δ
dxdt

≤ Cmeas
{∣∣∣Tk(un)−Tk(αkj)μ

∣∣∣ > η}δ

+C
[∫

{|Tk(un)−Tk(αkj )μ|<η}∩Qr

[
a
(
Tk

(
un

)
,∇Tk

(
un

))− a(Tk(un),∇Tk(u)
)]

×[∇Tk(un)−∇Tk(u)
]
dxdt

]δ
.

(3.37)
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On the other hand, we have for every s≥ r, r > 0,

∫
{|Tk(un)−Tk(αkj )μ|<η∩Qr}

[
a
(
Tk

(
un

)
,∇Tk

(
un

))−a(Tk(un),∇Tk(u)
)][∇Tk(un)−∇Tk(u)

]
dxdt

≤
∫
{|Tk(un)−Tk(αkj )μ|<η}

[
a
(
Tk

(
un

)
,∇Tk

(
un

))− a(Tk(un),∇Tk(u)χs
)]

× [∇Tk(un)−∇Tk(u)χs
]
dxdt

≤
∫
{|Tk(un)−Tk(αkj )μ|<η}

[
a
(
Tk

(
un

)
,∇Tk

(
un

))− a(Tk(un),∇Tk(αkj )χj,s
)]

× [∇Tk(un)−∇Tk(αkj)χj,s]dxdt
+
∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
Tk

(
un

)
,∇Tk

(
un

))[∇Tk(αkj )χj,s−∇Tk(u)χs
]
dxdt

+
∫
{|Tk(un)−Tk(αkj )μ|<η}

[
a
(
Tk

(
un

)
,∇Tk

(
αkj

)
χj,s

)−a(Tk(un),∇Tk(u)χs
)]∇Tk(un)dxdt

−
∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
Tk

(
un

)
,∇Tk

(
αkj

)
χj,s

)∇Tk(αkj )χj,sdxdt
+
∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
Tk

(
un

)
,∇Tk(u)χs

)∇Tk(u)χsdxdt

≤ I1(n, j,μ,s) + I2(n, j,μ,s) + I3(n, j,μ,s) + I4(n, j,μ,s) + I5(n, j,μ,s).
(3.38)

We will go to the limit as n, j, μ, and s→∞ in the last fifth integrals of the last side.
Starting with I1, we have

I1(n, j,μ,s)≤ Cη+ ε(n, j,μ,s)

−
∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
Tk

(
un

)
,∇Tk

(
αkj

)
χj,s

)∇Tk(un)−∇Tk(αkj )χj,sdxdt
(3.39)

since

a
(
Tk

(
un

)
,∇Tk

(
αkj

)
χj,s

)
χ{|Tk(u)−Tk(αkj )μ|<η}

−→ a
(
Tk(u),∇Tk

(
αkj

)
χj,s

)
χ{|Tk(u)−Tk(αkj )μ|<η} in

(
EM(Q)

)N
,

(3.40)

while

∇Tk
(
un

) ∇Tk(u) weakly in
(
LM(Ω)

)N
. (3.41)
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We deduce then that∫
{|Tk(un)−Tk(αkj )μ|<η}

a
(
Tk

(
un

)
,∇Tk

(
αkj

)
χj,s

)∇Tk(un)−∇Tk(αkj )χj,sdxdt
=

∫
{|Tk(u)−Tk(αkj )μ|<η}

a
(
Tk(u),∇Tk

(
αkj

)
χj,s

)∇Tk(u)−∇Tk
(
αkj

)
χj,sdxdt+ ε(n)

(3.42)

which gives by letting j →∞ and using the modular convergence of∇Tk(αkj ), that

∫
{|Tk(u)−Tk(αkj )μ|<η}

a
(
Tk(u),∇Tk

(
αkj

)
χj,s

)∇Tk(u)−∇Tk
(
αkj

)
χj,sdxdt

=
∫
Q
a
(
Tk(u),∇Tk(u)χs

)∇Tk(u)−∇Tk(u)χsdxdt+ ε( j)= ε( j).

(3.43)

Finally,

I1(n, j,μ,s)≤ Cη+ ε(n, j,μ,s) + ε(n, j)= ε(n, j,μ,s,η). (3.44)

For what concerns I2, by letting n→∞, we have

I2(n, j,μ,s)=
∫
{|Tk(u)−Tk(αkj )μ|<η}

hk
[∇Tk(αkj)χj,s−∇Tk(u)χs

]
dxdt+ ε(n) (3.45)

since

a
(
Tk

(
un

)
,∇Tk

(
un

))
χ{|Tk(un)−Tk(αkj )μ|<η} hk weakly in

(
LM(Q)

)N
for σ

(∏
LM ,

∏
EM

)
,

(3.46)

while

χ{|Tk(un)−Tk(αkj )μ|<η}
[∇Tk(αkj)χj,s−∇Tk(u)χs

]−→χ{|Tk(u)−Tk(αkj )μ|<η}∇Tk
(
αkj

)
χj,s−∇Tk(u)χs

(3.47)

strongly in (EM(Q))N . By letting now j →∞, and using Lebesgue theorem, we deduce
then that

I2(n, j,μ,s)= ε(n, j). (3.48)

Similar tools as above give

I3(n, j,μ,s)= ε(n, j),

I4(n, j,μ,s)=
∫
Q
a
(
Tk(u),∇Tk(u)

)∇Tk(u) + ε(n, j,μ,s),

I5(n, j,μ,s)=
∫
Q
a
(
Tk(u),∇Tk(u)

)∇Tk(u) + ε(n, j,μ,s).

(3.49)
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Combining (3.37)–(3.48) and (3.49), we get

∫
Qr

[
a
(
Tk

(
un

)
,∇Tk

(
un

))− a(Tk(un),∇Tk(u)
)][∇Tk(un)−∇Tk(u)

]δ
dxdt

≤ Cmeas
{∣∣∣Tk(un)−Tk(αkj )μ

∣∣∣ < η}δ +C
(
ε(n, j,s,μ,η)

)1−δ
,

(3.50)

and by passing to the limit sup over n, j, μ, s, and, η

lim
n→∞

∫
Qr

[
a
(
Tk

(
un

)
,∇Tk

(
un

))− a(Tk(un),∇Tk(u)
)][∇Tk(un)−∇Tk(u)

]δ
dxdt = 0,

(3.51)

and thus there exists a subsequence also denoted by (un) such that

∇un −→∇u a.e. in Qr , (3.52)

and since r is arbitrary, we obtain

∇un −→∇u a.e. in Q. (3.53)

Step 3. Passage to the limit.
Let φ ∈�ψ ∩D(Q). Choosing now Tk(un−φ)χ(0,τ) as test function in (Pn), we get

〈
∂un
∂t

,Tk
(
un−φ

)�
Qτ

+
∫
Qτ

a
(
x, t,un,∇un

)∇Tk(un−φ)dxdt
−

∫
Qτ

nTn
(
un−ψ

)−
Tk

(
un−φ

)
dxdt =

∫
Qτ

fnTk
(
un−φ

)
dxdt

(3.54)

which gives, by −∫
Qτ
nTn(un−ψ)−Tk(un−φ)dxdt ≥ 0,

∫
Ω
Sk

(
un(τ)−φ(τ)

)
dx+

〈
∂φ

∂t
,Tk

(
un−φ

)�
Qτ

+
∫
Qτ

a
(
x, t,un,∇un

)∇Tk(un−φ)dxdt
≤

∫
Qτ

fnTk
(
un−φ

)
dxdt+

∫
Ω
Sk

(
un(0)−φ(0)

)
dx.

(3.55)

We will show that

un −→ u in C
(
[0,T],L1(Ω)

)
. (3.56)

Since Tk(u) ∈�ψ , for every k ≥ ‖ψ‖∞, there exists a sequence (wj) in D(Q)∩�φ such
that

wj −→ Tk(u) in W1,x
0 LM(Q) (3.57)
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for the modular convergence. Choosing now Φi,l
j,μ = Tl(wj)μ + e−μtTl(ηi), with ηi ≥ 0 con-

verges to u0 in L1(Ω), as test function in (3.55),

〈
∂un
∂t

,Tk
(
un−Φi,l

j,μ

)�
Qτ

+
∫
Qτ

a
(
x, t,un,∇un

)∇Tk(un−Φi,l
j,μ

)
dxdt

−
∫
Qτ

nTn
(
un−ψ)−Tk

(
un−Φi,l

j,μ

)
dxdt =

∫
Qτ

fnTk
(
un−Φi,l

j,μ

)
dxdt.

(3.58)

On the one hand, we have

〈(
Φi,l

j,μ

)′
,Tk

(
un−Φi,l

j,μ

)�
Qτ

= μ
∫
Qτ

(
Tl

(
wj

)−Φi,l
j,μ

)
Tk

(
un−Φi,l

j,μ

)
dxdt ≥ ε(n, j,μ, l);

(3.59)

on the other hand, by using the monotonicity of a and the fact that −∫
Qτ
nTn(un −

ψ)−Tk(un−Φi,l
j,μ)dxdt ≥ 0, we deduce that

〈
∂un
∂t

,Tk
(
un−Φi,l

j,μ

)�
Qτ

+
∫
Qτ

a
(
x, t,un,∇Φi,l

j,μ

)∇Tk(un−Φi,l
j,μ

)
dxdt

≤
∫
Qτ

fnTk
(
un−Φi,l

j,μ

)
dxdt.

(3.60)

Since, for every ε > 0,

∣∣χQτ a
(
x, t,un,∇Φi,l

j,μ

)∇Tk(un−Φi,l
j,μ

)∣∣

≤ εM(
a
(
x, t,Tk+‖l‖∞

(
un

)
,∇Φi,l

j,μ

))
+M

(∣∣∇Tk(un−Φi,l
j,μ

)∣∣
ε

)
,

(3.61)

we have by using Vitali’s theorem

limsup
l→∞

limsup
i→∞

limsup
μ→∞

limsup
j→∞

limsup
n→∞

〈
∂un
∂t

,Tk
(
un−Φi,l

j,μ

)�
Qτ

≤ 0 (3.62)

uniformly on τ. Therefore, by writing

∫
Ω
Sk

(
un(τ)−Φi,l

j,μ

)
dx =

〈
∂un
∂t

,Tk
(
un−Φi,l

j,μ

)�
Qτ

−
〈(

Φi,l
j,μ

)′
,Tk

(
un−Φi,l

j,μ

)�
Qτ

+
∫
Ω
Sk

(
u0−Tl

(
ηi
))
dx

(3.63)

and using (3.55) and (3.59), we see that

∫
Ω
Sk

(
un(τ)−Φi,l

j,μ

)
dx ≤ ε(n, j,μ, i, l) (3.64)
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which implies, by writing

∫
Ω
Sk

(
un(τ)−um(τ)

2

)
dx ≤ 1

2

(∫
Ω
Sk

(
un(τ)−Φi,l

j,μ

)
dx+

∫
Ω
Sk

(
um(τ)−Φi,l

j,μ

)
dx

)
,

(3.65)

that

∫
Ω
Sk

(
un(τ)−um(τ)

2

)
dx ≤ ε1(n,m), (3.66)

we deduce then that

∫
Ω

∣∣un(τ)−um(τ)
∣∣dx ≤ ε2(n,m), not depending on τ, (3.67)

and thus (un) is a Cauchy sequence in C([0,T],L1(Ω)), and since un → u, a.e. in Q, we
deduce that

un −→ u in C
(
[0,T],L1(Ω)

)
. (3.68)

Go back now to (3.48) and pass to the limit to obtain

∫
Ω
Sk

(
u(τ)−φ(τ)

)
dx+

〈
∂φ

∂t
,Tk(u−φ)

�
Qτ

+
∫
Qτ

a
(
x, t,u,∇u)∇Tk(u−φ)dxdt

≤
∫
Qτ

f Tk(u−φ)dxdt+
∫
Ω
Sk

(
u(0)−φ(0)

)
dx

(3.69)

since for every v ∈�ψ ∩L∞(Q), there exists vj ∈�ψ ∩D(Q) such that

vj −→ v for the modular convergence in W1,x
0 LM(Q),

∂vj
∂t
−→ ∂v

∂t
for the modular in W−1,xLM(Q) +L1(Q),

(3.70)

we deduce then that

∫
Ω
Sk

(
u(τ)− v(τ)

)
dx+

〈
∂v

∂t
,Tk(u− v)

�
Qτ

+
∫
Qτ

a
(
x, t,u,∇u)∇Tk(u− v)dxdt

≤
∫
Qτ

f Tk(u− v)dxdt+
∫
Ω
Sk

(
u(0)− v(0)

)
dx

(3.71)

which completes the proof. �
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Remark 3.3. A similar result can be proved when dealing with the right-hand side in
L1(Q) +W−1,xEM(Q) or replacing the assumption (3.1) by the general one:

∣∣a(x, t,s,ζ)
∣∣≤ b(|s|)(h(x, t) +M

−1
M

(
k4|ζ|

))
, (3.72)

where b :R+ →R+ is an increasing continuous function. Indeed, we consider the follow-
ing approximate problems:

∂un
∂t
−div

(
a
(
x, t,Tn

(
un

)
,∇un

))−nTn(un−ψ)− = fn,

un ∈W1,x
0 LM(Q), un(x,0)= un0,

(Pn)

and we conclude by adapting the same steps.
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