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The goal of this paper is to study the existence and the multiplicity of non-trivial weak
solutions for some degenerate nonlinear elliptic equations on the whole space RN . The
solutions will be obtained in a subspace of the Sobolev space W1,p(RN ). The proofs rely
essentially on the Mountain Pass theorem and on Ekeland’s Variational principle.
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1. Introduction

The goal of this paper is to study a nonlinear elliptic equation in which the divergence
form operator −div(a(x,∇u)) is involved. Such operators appear in many nonlinear dif-
fusion problems, in particular in the mathematical modeling of non-Newtonian fluids
(see [5] for a discussion of some physical background). Particularly, the p-Laplacian op-
erator −div(|∇u|p−2∇u) is a special case of the operator −div(a(x,∇u)). Problems in-
volving the p-Laplacian operator have been intensively studied in the last decades. We just
remember the work on that topic of João Marcos B. do Ó [7], Pflüger [12], Rădulescu and
Smets [14] and the references therein. In the case of more general types of operators we
point out the papers of João Marcos B. do Ó [6] and Nápoli and Mariani [4]. On the
other hand, when the operator −div(a(x,∇u)) is of degenerate type we refer to Cı̂rstea
and Rădulescu [15] and Motreanu and Rădulescu [11].

In this paper we study the existence and multiplicity of non-trivial weak solutions to
equations of the type

−div
(
a(x,∇u)

)=�(x,u), x ∈ RN , (1.1)

where the operator div(a(x,∇u)) is nonlinear (and can be also degenerate), N ≥ 3 and
function �(x,u) satisfies several hypotheses. Our goal is to show how variational tech-
niques based on the Mountain Pass theorem (see Ambrosetti and Rabinowitz [2]) and
Ekeland’s Variational principle (see Ekeland [8]) can be used in order to get existence of
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one or two solutions for equations of type (1.1). Results regarding the multiplicity of so-
lutions have been originally proven by Tarantello [16], but in the case of linear equations
and in a different framework. More precisely, Tarantello proved that the equation

−Δu= |u|4/(N−2)u+Γ(x) (1.2)

has at least two distinct solutions, in a bounded domain of RN (N ≥ 3), provided that
Γ �≡ 0 is sufficiently “small” in a suitable sense.

2. Main results

The starting point of our discussion is the equation

−Δv+ b(x)v = f (x,v) x ∈ RN (2.1)

studied by Rabinowitz in [13]. Assuming that function f (x,v) is subcritical and satisfies
a condition of the Ambrosetti-Rabinowitz type (see [2]) and function b(x) is sufficiently
smooth and unbounded at infinity, it is showed in [13] that problem (2.1) has a nontrivial
weak solution in the classical Sobolev space W1,2(RN ).

In the case when b(x) is continuous and nonnegative and f (x,v)= h(x)vα + vβ is such
that h : RN → R is some integrable function and 1 < α < 2 < β < (N + 2)/(N − 2), N ≥ 3,
Gonçalves and Miyagaki proved in [9] that problem (2.1) has at least two nonnegative
solutions in a subspace of W1,2(RN ). In a similar framework, when f (x,v)= λvα + v2�−1

with 0 < α < 1 and 2� = (2N)/(N − 2), N ≥ 3 it is shown in [1] that problem (2.1) has
a nonnegative solution for λ positive and small enough. Furthermore, in [1] it is also
proved that in the case N ≥ 4 and α = 1 problem (2.1) has a nonnegative solution pro-
vided that λ is positive and small enough. For more information and connections on (2.1)
the reader may consult the references in [9].

In this paper our aim is to study the problem

−div
(
a(x,∇u)

)
+ b(x)

∣
∣u
∣
∣p−2

u= f (x,u), x ∈ RN , (2.2)

where N ≥ 3 and 2≤ p < N .
We point out the fact that in the case when a(x,∇u) = |x|α∇u, α ∈ (0,2) and p = 2

problem (2.2) was studied by Mihăilescu and Rădulescu in [10]. In that paper the authors
present the connections between such equations and some Schrödinger equations with
Hardy potential and show that (2.2) has a nontrivial weak solution. A discussion of some
physical applications for equations of type (2.2) and a list of papers devoted with the
study of such problems is also included in [10].

In the following we describe the framework in which we will study (2.2).
Consider a : RN ×RN → RN , a= a(x,ξ), is the continuous derivative with respect to ξ

of the continuous function A : RN ×RN → R, A= A(x,ξ), that is, a(x,ξ)= (d/dξ)A(x,ξ).
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Suppose that a and A satisfy the hypotheses below:
(A1) A(x,0)= 0 for all x ∈ RN ;
(A2) |a(x,ξ)| ≤ c1(θ(x) + |ξ|p−1), for all x,ξ ∈ RN , with c1 a positive constant and

θ : RN → R is a function such that θ(x) ≥ 0 for all x ∈ RN and θ ∈ L∞(RN )∩
Lp/(p−1)(RN );

(A3) there exists k > 0 such that

A
(
x,
ξ +ψ

2

)
≤ 1

2
A(x,ξ) +

1
2
A(x,ψ)− k|ξ −ψ|p (2.3)

for all x,ξ,ψ ∈ RN , that is, A(x,·) is p-uniformly convex;
(A4) 0≤ a(x,ξ) · ξ ≤ pA(x,ξ), for all x,ξ ∈ RN ;
(A5) there exists a constant Λ > 0 such that

A(x,ξ)≥Λ|ξ|p, (2.4)

for all x,ξ ∈ RN .

Examples. (1)A(x,ξ)=(1/p)|ξ|p, a(x,ξ)=|ξ|p−2ξ, with p ≥ 2 and we get the p-Laplacian
operator

div
(|∇u|p−2∇u). (2.5)

(2) A(x,ξ)= (1/p)|ξ|p+θ(x)[(1+|ξ|2)1/2−1], a(x,ξ)=|ξ|p−2ξ+θ(x)(ξ/(1+|ξ|2)1/2),
with p ≥ 2 and θ a function which verifies the conditions from (A2). We get the operator

div
(|∇u|p−2∇u)+ div

⎛

⎝θ(x)
∇u

(
1 + |∇u|2)1/2

⎞

⎠ (2.6)

which can be regarded as the sum between the p-Laplacian operator and a degenerate
form of the mean curvature operator.

(3) A(x,ξ) = (1/p)[(θ(x)2/(p−1) + |ξ|2)p/2 − θ(x)p/(p−1)], a(x,ξ) = (θ(x)2/(p−1) +
|ξ|2)(p−2)/2ξ, with p ≥ 2 and θ a function which verifies the conditions from (A2). We
get the operator

div
((
θ(x)2/(p−1) + |∇u|2)(p−2)/2∇u

)
(2.7)

which is a variant of the generalized mean curvature operator, div((1 + |∇u|2)(p−2)/2∇u).
Assume that function b : RN → R is continuous and verifies the hypotheses:
(B) There exists a positive constant b0 > 0 such that

b(x)≥ b0 > 0, (2.8)

for all x ∈ RN .
In a first instance we assume that function f : RN ×R→ R satisfies the hypotheses:
(F1) f ∈ C1(RN ×R,R), f = f (x,z) and f (x,0)= 0 for all x ∈ RN ;
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(F2) there exist two functions τ1, τ2 : RN → R, τ1(x), τ2(x)≥ 0 for a.e. x ∈ RN and two
constants r, s∈ (p− 1,(Np−N + p)/(N − p)) such that

∣
∣ fz(x,z)

∣
∣≤ τ1(x)|z|r−1 + τ2(x)|z|s−1, (2.9)

for all x ∈ RN and all z ∈ R, where τ1 ∈ Lr0 (RN ) ∩ L∞(RN ), τ2 ∈ Ls0 (RN ) ∩
L∞(RN ), with r0=Np/(Np−(r+1)(N−p)) and s0=Np/(Np−(s+1)(N−p));

(F3) there exists a constant μ > p such that

0 < μF(x,z) := μ
∫ z

0
f (x, t)dt ≤ z f (x,z), (2.10)

for all x ∈ RN and all z ∈ R \ {0}.
Next, we study the problem

−div
(
a(x,∇u)

)
+ b(x)|u|p−2u= h(x)|u|q−1u+ g(x)|u|s−1u, x ∈ RN (2.11)

with 1 < q < p− 1 < s < (Np−N + p)/(N − p) and N ≥ 3.
Our basic assumptions on functions h and g : RN → R are the following:
(H) h(x) ≥ 0 for all x ∈ RN and h ∈ Lq0 (RN )∩ L∞(RN ), where q0 = Np/(Np− (q +

1)(N − p));
(G) g(x) ≥ 0 for all x ∈ RN and g ∈ Ls0 (RN )∩ L∞(RN ), where s0 = Np/(Np− (s +

1)(N − p)).
Let W1,p(RN ) be the usual Sobolev space under the norm

‖u‖1 =
(∫

RN

(|∇u|p + |u|p)dx
)1/p

(2.12)

and consider the subspace of W1,p(RN )

E =
{
u∈W1,p(RN );

∫

RN

(|∇u|p + b(x)|u|p)dx <∞
}
. (2.13)

The Banach space E can be endowed with the norm

‖u‖p =
∫

RN

(|∇u|p + b(x)|u|p)dx. (2.14)

Moreover,

‖u‖ ≥m1/p
0 ‖u‖1, (2.15)

with m0 =min{1,b0}. Thus the continuous embeddings

E W1,p
(

RN
)

Li
(

RN
)
, p ≤ i≤ p�, p� = Np

N−p (2.16)

hold true.
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We say that u∈ E is a weak solution for problem (2.2) if

∫

RN
a(x,∇u) ·∇ϕ dx+

∫

RN
b(x)|u|p−2uϕ dx−

∫

RN
f (x,u)ϕ dx = 0, (2.17)

for all ϕ∈ E.
Similarly, we say that u∈ E is a weak solution for problem (2.11) if

∫

RN
a(x,∇u) ·∇ϕ dx+

∫

RN
b(x)|u|p−2uϕ dx

−
∫

RN
h(x)|u|q−1uϕ dx−

∫

RN
g(x)|u|s−1uϕ dx = 0,

(2.18)

for all ϕ∈ E.
Our main results are given by the following two theorems.

Theorem 2.1. Assuming hypotheses (A1)–(A5), (B) and (F1)–(F3) are fulfilled then prob-
lem (2.2) has at least one non-trivial weak solution.

Theorem 2.2. Assume 1 < q < p − 1 < s < (Np−N + p)/(N − p) and conditions (A1)–
(A5), (B), (H) and (G) are fulfilled. Then problem (2.11) has at least two non-trivial weak

solutions provided that the product ‖h‖(s+1−p)/(s−q)
Lq0 (RN ) · ‖g‖(p−q−1)/(s−q)

Ls0 (RN ) is small enough.

3. Auxiliary results

In this section we study certain properties of functional T : E→ R defined by

T(u)=
∫

RN
A(x,∇u)dx+

1
p

∫

RN
b(x)|u|pdx, (3.1)

for all u∈ E. It is easy to remark that T ∈ C1(E,R) and

〈
T
′
(u),v

〉=
∫

RN
a(x,∇u) ·∇v dx+

∫

RN
b(x)|u|p−2uv dx, (3.2)

for all u, v ∈ E.

Proposition 3.1. Functional T is weakly lower semicontinuous.

Proof. Let u∈ E and ε > 0 be fixed. Using the properties of lower semicontinuous func-
tions (see [3, Section I.3]) is enough to prove that there exists δ > 0 such that

T(v)≥ T(u)− ε, ∀v ∈ E with ‖u− v‖ < δ. (3.3)

We remember Clarkson’s inequality (see [3, page 59])

∣
∣
∣
∣
α+β

2

∣
∣
∣
∣

p

+
∣
∣
∣
∣
α−β

2

∣
∣
∣
∣

p

≤ 1
2

(|α|p + |β|p), ∀α,β ∈ R. (3.4)
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Thus we deduce that

∫

RN
b(x)

∣
∣
∣
∣
u+ v

2

∣
∣
∣
∣

p

dx+
∫

RN
b(x)

∣
∣
∣
∣
u− v

2

∣
∣
∣
∣

p

dx

≤ 1
2

∫

RN
b(x)|u|pdx+

1
2

∫

RN
b(x)|v|pdx, ∀u,v ∈ E.

(3.5)

The above inequality and condition (A3) imply that there exists a positive constant k1 > 0
such that

T
(
u+ v

2

)
≤ 1

2
T(u) +

1
2
T(v)− k1‖u− v‖p, ∀u,v ∈ E, (3.6)

that is, T is p-uniformly convex.
Since T is convex we have

T(v)≥ T(u) +
〈
T
′
(u),v−u〉, ∀v ∈ E. (3.7)

Using condition (A2) and Hölder’s inequality we deduce that there exists a positive con-
stant C > 0 such that

T(v)≥ T(u)−
∫

RN

∣
∣a(x,∇u)

∣
∣ · |∇v−∇u|dx−

∫

RN
b(x)|u|p−1|u− v|dx

≥ T(u)−
∫

RN
c1
(
θ(x) + |∇u|p−1)|∇v−∇u|dx

−
∫

RN
b(x)(p−1)/p|u|p−1b(x)1/p|u− v|dx

≥ T(u)− c1 ·
(
‖θ‖Lp/(p−1)(RN ) +‖∇u‖p−1

Lp(RN )

)
·
(∫

RN
|∇v−∇u|pdx

)1/p

−
(∫

RN
b(x)|u|pdx

)(p−1)/p

·
(∫

RN
b(x)|v−u|pdx

)1/p

≥ T(u)−C‖u− v‖, ∀v ∈ E.

(3.8)

It is clear that taking δ = ε/C relation (3.3) holds true for all v ∈ E with ‖v − u‖ < δ.
Thus we have proved that T is strongly lower semicontinuous. Taking into account the
fact that T is convex then by [3, Corollary III.8] we conclude that T is weakly lower
semicontinuous and the proof of Proposition 3.1 is complete. �

Proposition 3.2. Assume {un}is a subsequence from E which is weakly convergent to u∈ E
and

limsup
n→∞

〈
T
′(
un
)
,un−u

〉≤ 0. (3.9)

Then {un} converges strongly to u in E.

Proof. Since {un} is weakly convergent to u in E it follows that {un} is bounded in E.
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By conditions (A2) and (A3) we have

0≤ A(x,ξ)=
∫ 1

0

d

dt
A(x, tξ)dt =

∫ 1

0
a(x, tξ) · ξ dt

≤ c1

∫ 1

0

(
θ(x) + |ξ|p−1tp−1)dt

≤ c1

(
θ(x)|ξ|+

1
p
|ξ|p

)
, ∀x,ξ ∈ RN .

(3.10)

Thus, there exists a constant c2 > 0 such that

∣
∣A(x,ξ)

∣
∣≤ c2

(
θ(x)|ξ|+ |ξ|p), ∀x,ξ ∈ RN . (3.11)

Relation (3.11) and Hölder’s inequality imply

∫

RN
A
(
x,∇un

)
dx ≤ c2

(∫

RN
θ(x)

∣
∣∇un

∣
∣dx+

∫

RN

∣
∣∇un

∣
∣pdx

)

≤ c2 ·
(
‖θ‖Lp/(p−1)(RN ) ·

∥
∥un

∥
∥+

∥
∥un

∥
∥p
)
.

(3.12)

The above inequality and the fact that {un} is bounded in E show that there exists M1 > 0
such that T(un)≤M1 for all n. Then we may assume that T(un)→ γ. Using Proposition
3.1 we find

T(u)≤ liminf
n→∞ T

(
un
)= γ. (3.13)

Since T is convex the following inequality holds true

T(u)≥ T(un
)

+
〈
T
′(
un
)
,un−u

〉
, ∀n. (3.14)

Relation (3.9) and the above inequality imply T(u)≥ γ and thus T(u)= γ.
We also have (un + u)/2 converges weakly to u in E. Using again Proposition 3.1 we

deduce

γ = T(u)≤ liminf
n→∞ T

(
un +u

2

)
. (3.15)

If we assume by contradiction that ‖un−u‖ does not converge to 0 then there exists ε > 0
such that passing to a subsequence {unm} we have ‖unm−u‖ ≥ ε. That fact and relation
(3.6) imply

1
2
T(u) +

1
2
T
(
unm

)−T
(
u+unm

2

)
≥ k1

∥
∥u−unm

∥
∥p ≥ k1εp. (3.16)

Letting m→∞ we find

limsup
m→∞

T
(
u+unm

2

)
≤ γ− k1εp (3.17)
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and that is a contradiction with (3.15). Thus we have
∥
∥un−u

∥
∥−→ 0. (3.18)

The proof of Proposition 3.2 is complete. �

4. Proof of Theorem 2.1

In order to prove Theorem 2.1 we define the functional

J(u)=
∫

RN
A(x,∇u)dx+

1
p

∫

RN
b(x)|u|pdx−

∫

RN
F(x,u)dx. (4.1)

J : E→ R is well defined and of class C1 with the derivative given by

〈
J
′
(u),ϕ

〉=
∫

RN
a(x,∇u) ·∇ϕ dx+

∫

RN
b(x)|u|p−2uϕ dx−

∫

RN
f (x,u)ϕ dx, (4.2)

for all u, ϕ∈ E. We have denoted by 〈,〉 the duality pairing between E and E�, where E�

is the dual of E.
We remark that the critical points of the functional J correspond to the weak solutions

of (2.2). Thus, our idea is to apply the Mountain Pass theorem (see [2]) in order to obtain
a non-trivial critical point and thus a non-trivial weak solution.

First, we prove a lemma which shows that functional J has a mountain-pass geometry.

Lemma 4.1. (1) There exist ρ > 0 and ρ > 0 such that

J(u)≥ ρ > 0, ∀u∈ E with ‖u‖ = ρ. (4.3)

(2) There exists u0 ∈ E such that

lim
t→∞ J

(
tu0
)=−∞. (4.4)

Proof. (1) By (F2) there exist A1, A2 > 0 two constants such that

0≤ F(x,z)≤A1|z|r+1 +A2|z|s+1. (4.5)

Then we deduce that

lim
|z|→0

F(x,z)
|z|p = 0, lim

|z|→∞
F(x,z)
|z|p� = 0. (4.6)

Then, for a ε > 0 there exist two constants δ1 and δ2 such that

F(x,z) < ε|z|p ∀z with |z| < δ1,

F(x,z) < ε|z|p� ∀z with |z| > δ2.
(4.7)

Relation (4.5) implies that for all z with |z| ∈ [δ1,δ2] there exists a positive constant C > 0
such that

F(x,z) < C. (4.8)
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We obtain that for all ε > 0 there exists Cε > 0 such that

F(x,z)≤ ε|z|p +Cε|z|p� . (4.9)

Relation (4.9), conditions (A5) and (b1) and the Sobolev embedding imply

J(u)=
∫

RN
A(x,∇u)dx+

1
p

∫

RN
b(x)|u|pdx−

∫

RN
F(x,u)dx

≥Λ

∫

RN
|∇u|pdx+

1
p

∫

RN
b(x)|u|pdx− ε

∫

RN
|u|pdx−Cε

∫

RN
|u|p�dx

≥min
{
Λ,

1
p

}
· ‖u‖p− ε

b0

∫

RN
b(x)|u|pdx−Cε

∫

RN
|u|p�dx

≥ ‖u‖p ·
[(

min
{
Λ,

1
p

}
− ε
b0

)
−C′

ε · ‖u‖p
�−p
]
.

(4.10)

Letting ε ∈ (0,min{Λ,1/p} · b0) be fixed, we obtain that the first part of Lemma 4.1 holds
true.

(2) To prove the second part of the lemma, first, we remark that by condition (F3) we
have

F(x,z)≥ λ|z|μ, ∀|z| ≥ η, x ∈ RN , (4.11)

where λ and η are two positive constants.
On the other hand we claim that

A(x,zξ)≤A(x,ξ)zp, ∀z ≥ 1, x,ξ ∈ RN . (4.12)

Indeed, if we put α(t)=A(x, tξ) then by (A1) and (A4) we have

α
′
(t)= a(x, tξ) · ξ = 1

t
a(x, tξ) · (tξ)≤ p

t
A(x, tξ)= p

t
α(t). (4.13)

Hence

α
′
(t)

α(t)
≤ p

t
(4.14)

or

log
(
α(t)

)− log
(
α(1)

)≤ p log(t). (4.15)

We deduce that α(t)/α(1)≤ tp and thus (4.12) holds true.
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Let now u0 ∈ E be such that meas({x ∈ RN ; |u0(x)| ≥ η}) > 0. Using relations (4.11)
and (4.12) we obtain

J
(
tu0
)=

∫

RN

[
A
(
x, t∇u0

)
+

1
p
b(x)tp

∣
∣u0

∣
∣p
]
dx−

∫

RN
F
(
x, tu0

)
dx

≤ tp
∫

RN

[
A
(
x,∇u0

)
+

1
p
b(x)

∣
∣u0

∣
∣p
]
dx−

∫

{x∈RN ;|u0(x)|≥η}
F
(
x, tu0

)
dx

−
∫

{x∈RN ;|u0(x)|≤η}
F
(
x, tu0

)
dx

≤ tp
∫

RN

[
A
(
x,∇u0

)
+

1
p
b(x)

∣
∣u0

∣
∣p
]
dx− tμλ

∫

{x∈RN ;|u0(x)|≥η}

∣
∣u0

∣
∣μdx.

(4.16)

Since μ > p the right-hand side of the above inequality converges to −∞ as t→∞.
The lemma is completely proved. �

Proof of Theorem 2.1. Using Lemma 4.1 we may apply the Mountain Pass theorem (see
[2]) to functional J . We obtain that there exists a sequence {un} in E such that

J
(
un
)−→ c > 0, J

′(
un
)−→ 0 in E�. (4.17)

We prove that {un} is bounded in E. We assume by contradiction that ‖un‖ →∞ as n→
∞. Then, using relation (4.17) and conditions (A4), (A5) and (F3) we deduce that for n
large enough the following inequalities hold

c+ 1 +
∥
∥un

∥
∥≥ J(un

)− 1
μ

〈
J
′(
un
)
,un
〉

=
∫

RN

[
A
(
x,∇un

)− 1
μ
a
(
x,∇un

) ·∇un
]
dx

+
∫

RN

[
1
p
b(x)

∣
∣un

∣
∣p− 1

μ
b(x)

∣
∣un

∣
∣p
]
dx

+
∫

RN

[
1
μ
f
(
x,un

)
un−F

(
x,un

)
]
dx

≥
(

1− p

μ

)∫

RN
A
(
x,∇un

)
dx+

(
1
p
− 1
μ

)∫

RN
b(x)

∣
∣un

∣
∣pdx

≥
(

1− p

μ

)
Λ

∫

RN

∣
∣∇un

∣
∣pdx+

(
1
p
− 1
μ

)∫

RN
b(x)

∣
∣un

∣
∣pdx

≥min
{(

1− p

μ

)
Λ,

1
p
− 1
μ

}
·∥∥un

∥
∥p.

(4.18)

Dividing by ‖un‖ and letting n→∞we obtain a contradiction. Therefore {un} is bounded
in E by a positive constant denoted byM. It follows that there exists u∈ E such that, pass-
ing to a subsequence still denoted by {un}, it converges weakly to u in E and un(x)→ u(x)
a.e. x ∈ RN . Since E is continuously embedded in Lp

�
(RN ) by [17, Theorem 10.36] we de-

duce that un converges weakly to u in Lp
�

(RN ). Then it is clear that |un|r−1un converges
weakly to |u|r−1u in Lp

�/r(RN ).
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Define the operator U : Lp
�/r(RN )→ R by

〈U ,w〉 =
∫

RN
τ1(x)uw dx. (4.19)

We remark that U is linear and continuous provided that τ1 ∈ Lr0 (RN ), u∈ Lp�(RN ) and
1/p� + r/p� + 1/r0 = 1. All the above pieces of information imply

〈
U ,
∣
∣un

∣
∣r−1

un
〉−→ 〈U ,|u|r−1u

〉
, (4.20)

that is,

lim
n→∞

∫

RN
τ1(x)

∣
∣un

∣
∣r−1

unu dx =
∫

RN
τ1(x)|u|r+1dx. (4.21)

With the same arguments we can show that

lim
n→∞

∫

RN
τ2(x)

∣
∣un

∣
∣s−1

unu dx =
∫

RN
τ2(x)|u|s+1dx, (4.22)

lim
n→∞

∫

RN
τ1(x)

∣
∣un

∣
∣r+1

dx =
∫

RN
τ1(x)|u|r+1dx, (4.23)

lim
n→∞

∫

RN
τ2(x)

∣
∣un

∣
∣s+1

dx =
∫

RN
τ2(x)|u|s+1dx. (4.24)

Relations (4.21), (4.23) and the fact that
∫

RN
τ1(x)

∣
∣un

∣
∣r−1

un
(
un−u

)
dx =

∫

RN
τ1(x)

∣
∣un

∣
∣r+1

dx−
∫

RN
τ1(x)|u|r+1dx

+
∫

RN
τ1(x)|u|r+1dx−

∫

RN
τ1(x)

∣
∣un

∣
∣q−1

unu dx
(4.25)

yield

lim
n→∞

∫

RN
τ1(x)

∣
∣un

∣
∣r−1

un
(
un−u

)
dx = 0. (4.26)

Similarly we obtain

lim
n→∞

∫

RN
τ2(x)

∣
∣un

∣
∣s−1

un
(
un−u

)
dx = 0. (4.27)

By (4.26), (4.27) and condition (F2) we get

lim
n→∞

∫

RN
f
(
x,un

)(
un−u

)
dx = 0. (4.28)

On the other hand we have
∫

RN
a
(
x,∇un

) ·∇un dx+
∫

RN
b(x)

∣
∣un

∣
∣p−2

un
(
un−u

)
dx

= 〈J ′(un
)
,un−u

〉
+
∫

RN
f
(
x,un

)(
un−u

)
dx.

(4.29)
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Relations (4.28) and (4.29) imply

lim
n→∞

(∫

RN
a
(
x,∇un

) ·∇(un−u
)
dx+

∫

RN
b(x)

∣
∣un

∣
∣p−2(

un−u
)
dx
)
= 0, (4.30)

that is,

lim
n→∞

〈
T
′(
un
)
,un−u

〉= 0, (4.31)

where T is the functional defined in the above section. Then applying Proposition 3.2 we
deduce that {un} converges strongly to u in E. Since J ∈ C1(E,R) by (4.17) we deduce that
〈J ′(u),ϕ〉 = 0 for all ϕ∈ E, that is, u is a weak solution of problem (2.2). Relation (4.17)
also implies that J(u)= c > 0 and that shows that u is non-trivial.

The proof of Theorem 2.1 is complete. �

5. Proof of Theorem 2.2

We remark that the weak solutions of (2.11) correspond to the critical points of the energy
functional I : E→ R defined as follows

I(u)=
∫

RN
A(x,∇u)dx+

1
p

∫

RN
b(x)|u|pdx− 1

q+ 1

∫

RN
h(x)|u|q+1dx

− 1
s+ 1

∫

RN
g(x)|u|s+1dx, ∀u∈ E.

(5.1)

A simple calculation shows that I is well defined on E and I ∈ C1(E,R) with

〈
I
′
(u),ϕ

〉=
∫

RN
a(x,∇u) ·∇ϕ dx+

∫

RN
b(x)|u|p−2uϕ dx

−
∫

RN
h(x)|u|q−1uϕ dx−

∫

RN
g(x)|u|s−1uϕ dx,

(5.2)

for all u and ϕ∈ E.

Lemma 5.1. The following assertions hold.
(i) There exist ρ > 0 and ρ > 0 such that

I(u)≥ ρ > 0, ∀u∈ E with ‖u‖ = ρ. (5.3)

(ii) There exists ψ ∈ E such that

lim
t→∞I(tψ)=−∞. (5.4)

(iii) There exists ϕ∈ E such that ϕ≥ 0, ϕ �= 0 and

I(tϕ) < 0 (5.5)

for t > 0 small enough.
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Proof. (i) First, let � be the best Sobolev constant of the embedding W1,p(RN )↩
Lp

�
(RN ), that is,

�= inf
u∈W1,p(RN )\{0}

∫
RN |∇u|pdx

(∫
RN |u|p�dx)p/p�

. (5.6)

Thus we obtain

�1/p‖v‖Lp� (RN ) ≤ ‖v‖, ∀v ∈ E. (5.7)

By Hölder’s inequality and relation (5.7) we deduce

∫

RN
h(x)|u|q+1dx ≤ ‖h‖Lq0 (RN ) · ‖u‖q+1

Lp� (RN )

≤ ‖h‖Lq0 (RN ) · 1
�(q+1)/p ·

(
�1/p · ‖u‖Lp� (RN )

)q+1

≤ ‖h‖Lq0 (RN ) · 1
�(q+1)/p · ‖u‖q+1

≤ (q+ 1)μ‖u‖q+1,

(5.8)

where μ= ‖h‖Lq0 (RN )/[(q+ 1)�(q+1)/p]. With similar arguments we have

∫

RN
g(x)|u|s+1dx ≤ (p+ 1)ν‖u‖s+1, (5.9)

where ν= ‖g‖Ls0 (RN )/[(p+ 1)�(s+1)/p].
Thus, we obtain

I(u)≥min
{
Λ,

1
p

}
·∥∥un

∥
∥p−μ · ‖u‖q+1− ν · ‖u‖s+1

= (λ−μ · ‖u‖q+1−p− ν · ‖u‖s+1−p) · ‖u‖p, ∀u∈ E,
(5.10)

where λ=min{Λ,1/p} > 0. We show that there exists t0 > 0 such that

μ · tq+1−p
0 + ν · ts+1−p

0 < λ. (5.11)

To do that we define the function

Q(t)= μ · tq+1−p + ν · ts+1−p, t > 0. (5.12)

Since limt→0Q(t)= limt→∞Q(t)=∞ it follows that Q possesses a positive minimum, say
t0 > 0. In order to find t0 we have to solve equation Q

′
(t0)= 0, where Q

′
(t)= (q+ 1− p) ·

μ · tq−p + (s+ 1− p) · ν · ts−p. A simple computation yields t0 = [((p− q− 1)/(s+ 1− p)) ·
(μ/ν)]1/(s−q). Thus relation (5.11) holds provided that

μ ·
[
p− q− 1
s+ 1− p

· μ
ν

](q+1−p)/(s−q)

+ ν ·
[
p− q− 1
s+ 1− p

· μ
ν

](s+1−p)/(s−q)

< λ. (5.13)
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Since μ= C1 · ‖h‖Lq0 (RN ) and ν= C2 · ‖g‖Ls0 (RN ) with C1,C2 positive constants, we deduce
that (5.13) holds true if and only if the following inequality holds

C3 · ‖h‖(s+1−p)/(s−q)
Lq0 (RN ) · ‖g‖(p−q−1)/(s−q)

Ls0 (RN ) < λ, (5.14)

where C3 is a positive constant. But inequality (5.14) holds provided that product

‖h‖(s+1−p)/(s−q)
Lq0 (RN ) · ‖g‖(p−q−1)/(s−q)

Ls0 (RN ) is small enough.
(ii) Let ψ ∈ C∞0 (RN ), ψ ≥ 0, ψ �= 0. Then using relation (4.12) we have

I(tψ)=
∫

RN
A(x, t∇ψ)dx+

tp

p

∫

RN
b(x)|ψ|pdx

− tq+1

q+ 1

∫

RN
h(x)|ψ|q+1dx− ts+1

s+ 1

∫

RN
g(x)|ψ|s+1dx

≤ tp
∫

RN
A(x,∇ψ)dx+

tp

p

∫

RN
b(x)|ψ|pdx− ts+1

s+ 1

∫

RN
g(x)|ψ|s+1dx.

(5.15)

Thus I(tψ)→−∞ as t→∞ and (ii) is proved.
(iii) Let ϕ∈ C∞0 (RN ), ϕ≥ 0, ϕ �= 0 and t > 0. Then the above inequality implies

I(tϕ)≤ tp
∫

RN
A(x,∇ϕ)dx+

tp

p

∫

RN
b(x)|ϕ|pdx− tq+1

q+ 1

∫

RN
h(x)|ϕ|q+1dx < 0 (5.16)

for t < δ1/(p−q−1) with

δ =
(
1/(q+ 1)

)∫
RN h(x)|ϕ|q+1dx

[∫
RN A(x,∇ϕ)dx+ (1/p)

∫
RN b(x)|ϕ|pdx] . (5.17)

It follows that (iii) holds true.
The proof of Lemma 5.1 is complete. �

Proof of Theorem 2.2. Using Lemma 5.1 and the Mountain Pass theorem we deduce the
existence of a sequence {un} in E such that

I
(
un
)−→ c > 0, I

′(
un
)−→ 0 in E�. (5.18)

We prove that {un} is bounded in E. We assume by contradiction that ‖un‖ →∞ as n→
∞. Using relation (5.18) and conditions (A4) and (A5) we deduce that for n large enough
we obtain

c+ 1 +
∥
∥un

∥
∥≥ I(un

)− 1
s+ 1

〈
I
′(
un
)
,un
〉

=
∫

RN

(
A
(
x,∇un

)− 1
s+ 1

a
(
x,∇un

) ·∇un
)
dx

+
(

1
p
− 1
s+ 1

)∫

RN
b(x)

∣
∣un

∣
∣q+1

dx

− s− q
(q+ 1)(s+ 1)

∫

RN
h(x)

∣
∣un

∣
∣q+1

dx

(5.19)
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or

c+ 1 +
∥
∥un

∥
∥+

s− q
(q+ 1)(s+ 1)

∫

RN
h(x)

∣
∣un

∣
∣q+1

dx

≥
(

1− p

s+ 1

)
Λ

∫

RN

∣
∣∇un

∣
∣pdx

+
(

1
p
− 1
s+ 1

)∫

RN
b(x)

∣
∣un

∣
∣pdx

≥min
{(

1− p

s+ 1

)
Λ,
(

1
p
− 1
s+ 1

)}
·∥∥un

∥
∥p.

(5.20)

By relation (5.8) and the above inequality we obtain

c+ 1 +
∥
∥un

∥
∥+

s− q
(q+ 1)(s+ 1)

· ‖h‖Lq0 (RN ) · 1
�(q+1)/p ·

∥
∥un

∥
∥q+1

≥min
{(

1− p

s+ 1

)
Λ,
(

1
p
− 1
s+ 1

)}
·∥∥un

∥
∥p.

(5.21)

Since 1 < q < p− 1 and ‖un‖→∞, dividing the above inequality by ‖un‖p and passing to
the limit as n→∞ we obtain a contradiction. Thus {un} is bounded in E. It follows that
there exists u1 ∈ E such that passing to a subsequence, still denoted by {un}, it converges
weakly to u1 in E and un(x)→ u1(x) a.e. x ∈ RN . With the same arguments as those used
in the proof of relation (4.29) we can show that

lim
n→∞

〈
T
′(
un
)
,un−u1

〉= 0, (5.22)

where T is the functional defined in the third section.
Then applying Proposition 3.2 we deduce that {un} converges strongly to u1 in E. Since

I ∈ C1(E,R) relation (5.18) implies 〈I ′(u1),ϕ〉 = 0 for all ϕ∈ E, that is, u1 is a weak solu-
tion of problem (2.11). Relation (5.18) also yields I(u1)= c > 0 and thus u1 is non-trivial.

We prove now that there exists a second weak solution u2 ∈ E such that u2 �= u1. By
Lemma 5.1(i) it follows that there exists a ball centered at the origin B ⊂ E, such that

inf
∂B
I > 0. (5.23)

On the other hand, by Lemma 5.1(iii) there exists φ ∈ E such that I(tφ) < 0, for all t > 0
small enough. Recalling that relation (5.10) holds for all u∈ E, that is,

I(u)≥ λ · ‖u‖p−μ · ‖u‖q+1− ν · ‖u‖s+1 (5.24)

we get that

−∞ < c := inf
B
I < 0. (5.25)
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We let now 0 < ε < inf∂B I − infB I . Applying Ekeland’s Variational principle for functional
I : B→ R, (see [8]), there exists uε ∈ B such that

I
(
uε
)
< inf

B
I + ε

I
(
uε
)
< I(u) + ε ·∥∥u−uε

∥
∥, u �= uε.

(5.26)

Since

I
(
uε
)≤ inf

B
I + ε ≤ inf

B
I + ε < inf

∂B
I (5.27)

it follows that uε ∈ B. Now, we define � : B→ R by �(u)= I(u) + ε · ‖u−uε‖. It is clear
that uε is a minimum point of � and thus

�(uε + ζ · v)−�(uε)
ζ

≥ 0 (5.28)

for a small ζ > 0 and v in the unit sphere of E. The above relation yields

I
(
uε + ζ · v)− I(uε

)

ζ
+ ε · ‖v‖ ≥ 0. (5.29)

Letting ζ → 0 it follows that 〈I ′(uε),v〉+ ε · ‖v‖ > 0 and we infer that ‖I ′(uε)‖ ≤ ε. We
deduce that there exists {un} ⊂ B such that I(un) → c and I

′
(un) → 0. Using the same

arguments as in the case of solution u1 we can prove that {un} converges strongly to u2

in E. Moreover, that fact yields that I
′
(u2)= 0. Thus, u2 is a weak solution for (2.11) and

since 0 > c = I(u2) it follows that u2 is non-trivial.
Finally, we point out the fact that u1 �= u2 since

I
(
u1
)= c > 0 > c = I(u2

)
. (5.30)

The proof of Theorem 2.2 is complete. �
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[17] M. Willem, Analyse harmonique réelle, Methods Collection, Hermann, Paris, 1995.
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