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By a variant version of mountain pass theorem, the existence and multiplicity of solu-
tions are obtained for a class of superlinear p-Laplacian equations: −Δpu = f (x,u). In
this paper, we suppose neither f satisfies the superquadratic condition in Ambrosetti-
Rabinowitz sense nor f (x, t)/|t|p−1 is nondecreasing with respect to |t|.
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1. Introduction and main results

In this paper, we consider the following superlinear p-Laplacian equations with Dirichlet
boundary value condition:

−�pu= f (x,u), x ∈Ω, u= 0, x ∈ ∂Ω, (1.1)

where�pu is the p-Laplacian operator:�pu= div(|∇u|p−2∇u) with p > 1,Ω is a bound-
ed domain in RN (N ≥ 1) with smooth boundary ∂Ω, f ∈ C(Ω×R,R) is subcritical in t,
that is, there is a q ∈ (p,np/(n− p)) when N > p; q ∈ (p,+∞) when N ≤ p such that

lim
t→∞

f (x, t)
|t|q−1 = 0 (1.2)

uniformly in a.e. x ∈Ω. We are interested in the case that f is superlinear in t at infinity,
that is,

lim
|t|→∞

f (x, t)t
|t|p = +∞. (1.3)

Ambrosetti and Rabinowitz have got the solutions of problem (1.1) by a very famous
mountain pass theorem in [1]. But they supposed the well-known (AR) condition holds,
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2 A class of superlinear p-Laplacian equations

that is, for some μ > p, M > 0,

0 < μF(x,s)≤ f (x,s)s ∀|s| ≥M, x ∈Ω. (AR)

It is easy to see that the (AR) implies (1.3). This (AR) condition usually plays a very im-
portant role in verifying that the functional corresponding to problem has a Mountain-
Pass geometry and shows that a related (PS)c sequence is bounded (see [1, 2, 5, 12]). But
there are always many functions that do not satisfy (AR) condition. Many efforts have
been made to overcome the difficulties brought by the absence of the (AR) (see [3, 6, 8–
11, 14, 15, 18–20]). To the authors’ knowledge, the following Assumption 1.1 is widely
used (see [8, 18–20]).

Assumption 1.1. f (x, t)/|t|p−1 is nondecreasing with respect to |t|.
In this paper, we will get the existence of at least two nontrivial solutions of problem

(1.1) where the nonlinearity f (x, t) satisfies neither the classic (AR) nor Assumption 1.1,
instead, we suppose that an assumption weaker than Assumption 1.1 holds.

Assumption 1.2. There exists θ ≥ 1 such that θG(x, t)≥ G(x,st) for all x ∈Ω, t ∈ R, and
s∈ [0,1], where G(x, t)= f (x, t)t− pF(x, t) and F(x, t)= ∫ t0 f (x,s)ds.

Then our main results are the following two theorems.

Theorem 1.3. Suppose f (x, t) is subcritical in t and satisfies Assumption 1.2 and the fol-
lowing conditions hold:

(f1) f (x, t)≥ 0 for all t ≥ 0, x ∈Ω and f (x, t)≡ 0 for all t ≤ 0, x ∈Ω;
(f2) limsupt→0+ ( f (x, t)/tp−1)= a(x) and limt→+∞( f (x, t)/tp−1)= +∞ uniformly in a.e.

x ∈ Ω, where a ∈ L∞(Ω) satisfies a(x) ≤ λ1 for all x ∈ Ω and a(x) < λ1 on some
Ω′ ⊂Ω with |Ω′| > 0, λ1 is the first eigenvalue of−Δp and |Ω′| is the measure of Ω′.

Then problem (1.1) has at least one solution u > 0.
If we consider a more general situation, we can get the following theorem.

Theorem 1.4. Suppose f (x, t) is subcritical in t and satisfies Assumption 1.2 and the fol-
lowing conditions hold:

(f3) f (x, t)t ≥ 0 for all t ∈ R, x ∈Ω;
(f4) limsupt→0( f (x, t)t/|t|p)= c(x) and lim|t|→∞( f (x, t)t/|t|p)= +∞ uniformly in a.e.

x ∈ Ω, where c ∈ L∞(Ω) satisfies c(x) ≤ λ1 for all x ∈ Ω and c(x) < λ1 on some
Ω0 ⊂Ω with |Ω0| > 0.

Then problem (1.1) has at least two nontrivial solutions in which one is positive and
the other is negative.

Remark 1.5. Assumption 1.2 was first introduced by Jeanjean in [6] for p = 2, and re-
cently by Liu and Li in [9] for general p > 1. We can easily prove that Assumption 1.2 is
equivalent to Assumption 1.1 when θ = 1 and Assumption 1.2 gives some general sense
of monotony when θ > 1. Liu and Li in [9] has proved that Assumption 1.1 implies
Assumption 1.2 when p>1. Moreover, we can find some examples that satisfy Assumption
1.2 but not Assumption 1.1.
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Example 1.6. Set p = 2,

f (x, t)= 5t ln
(
1 + t2)+ 9sin t, (1.4)

it follows that

G(x, t)= 9(t sin t+ 2cos t− 2) + 5
(
t2− ln

(
1 + t2)). (1.5)

Let θ = 100, we can prove by some simple computation that G satisfies Assumption 1.2
but does not satisfy Assumption 1.1 any more.

Remark 1.7. We only consider the solutions of problem (1.1) in superlinear case. Recently,
Zhou has got a positive solution of problem (1.1) for p = 2 in [18] (see [18, Corollary
2.3]) and [19] (see [19, Theorem 1.2]). Then Li and Zhou extend the results to p > 1 in
[8] (see [8, Remark 1.2]). But in their discussion, they suppose (f1), Assumption 1.1, and
the following condition hold:

(f5) limt→0+ ( f (x, t)/tp−1)= p(x) and limt→+∞( f (x, t)/tp−1)= +∞ uniformly in a.e. x ∈
Ω, where p(x)≡ l ∈ [0,λ1) (in [8, 18]) or p ∈ L∞(Ω) with ‖p‖∞ < λ1 (in [19]).

We can see that we extend the results of [8, 18, 19] in superlinear case on two hands.
On one hand, our condition (f2) is weaker than (f5), we do not need limt→0+ ( f (x, t)/tp−1)
exist but only suppose limsupt→0+ ( f (x, t)/tp−1)= a(x)≤ λ1 and a(x) < λ1 on some Ω′ ⊂
Ω with positive measure, so we extend the range of the nonlinearity largely. On the other
hand, from Remark 1.5 we can see that our Assumption 1.2 is weaker than Assumption
1.1 and we believe that Assumption 1.2 can take the place of Assumption 1.1 in many
discussions of superlinear p-Laplacian problem. So our results are even new when p = 2,
we extend the results of [8, 18, 19] in superlinear case for general p > 1.

Remark 1.8. Liu and Li in [9] has got infinitely many solutions of problem (1.1) by the
fountain theorem. But in their discussion, they supposed that f (x, t) is odd with respect
to t. In our discussion, we do not suppose f (x, t) is odd any more. We will get the existence
and multiplicity of solutions for problem (1.1) by a variant version of mountain pass
theorem (introduced in [13] and used in [4], see also Lemma 2.1). So our results are
different from those in [9].

Remark 1.9. Schechter and Zou have got a nontrivial solution of problem (1.1) for p = 2
in [14] under the following superquadratic conditions (a1) together with (a2) or (a′2):

(a1) either
F(x, t)
t2

−→∞ as t −→∞, (1.6)

or
F(x, t)
t2

−→∞ as t −→−∞; (1.7)

(a2) there are constants μ1 > 2, r > 0, and C > 0 such that

μ1F(x, t)− t f (x, t)≤ C
(
t2 + 1

)
, |t| ≥ r; (1.8)

(a′2) the function G(x, t)= f (x, t)t− 2F(x, t) is convex in t.
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It is easy to see that the function f in Example 1.6 satisfies our Assumption 1.2 and
(a1), but not satisfies (a2) nor (a′2). In fact, if G(x, t) > 0 for all t �= 0, we can get
Assumption 1.2 from (a1) and (a′2). So our results are different from those of [14].

2. Some important lemmas

To look for a nontrivial solution of (1.1), we need the following version of the mountain
pass theorem.

Lemma 2.1 (Schechter [13]). Let E be a real Banach space with its dual space E∗ and sup-
pose that J ∈ C1(E,R) satisfies the condition

max
{
J(0), J

(
u1
)}≤ α < β ≤ inf

‖u‖=ρ
J(u) (2.1)

for some α < β, ρ > 0 and u1 ∈ E with ‖u1‖ > ρ. Let c be characterized by

c = inf
γ∈Γ

max
0≤τ≤1

J
(
γ(τ)

)
, (2.2)

where Γ = {γ ∈ C([0,1],E) : γ(0) = 0; γ(1) = u1} is the set of continuous paths joining 0
and u1. Then there exists a sequence {un} ⊂ E such that

J
(
un
)−→ c ≥ β (n−→ +∞),

(
1 +

∥
∥un

∥
∥)
∥
∥J ′
(
un
)∥∥

E∗ −→ 0 (n−→ +∞).
(2.3)

In the proof of the theorems we will use the following lemma to prove the geometric
condition of the mountain pass theorem.

Lemma 2.2. If (f2) holds, there exits a positive constant α < 1 such that

∫

Ω
a(x)|u|pdx < α

∫

Ω
|∇u|pdx (2.4)

for all u∈W
1,p
0 (Ω).

Proof. Let us prove it by contradiction. Otherwise, there exists a sequence {un}⊂W
1,p
0 (Ω)

such that
∫

Ω
a(x)

∣
∣un

∣
∣pdx ≥

(
1− 1

n

)∫

Ω

∣
∣∇un

∣
∣pdx. (2.5)

Set vn = un/‖un‖, it follows that
∫

Ω
a(x)

∣
∣vn

∣
∣pdx ≥ 1− 1

n
. (2.6)

Then by (f2) and the Poincare inequality, we have

∫

Ω
a(x)

∣
∣vn

∣
∣pdx ≤ λ1

∫

Ω

∣
∣vn

∣
∣pdx ≤

∫

Ω

∣
∣∇vn

∣
∣pdx = ∥∥vn

∥
∥p = 1. (2.7)
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Therefore, we obtain

1− 1
n
≤
∫

Ω
a(x)

∣
∣vn

∣
∣pdx ≤ λ1

∫

Ω

∣
∣vn

∣
∣pdx ≤

∫

Ω

∣
∣∇vn

∣
∣pdx = 1. (2.8)

For {vn} is bounded in W
1,p
0 (Ω), then there exists v ∈W

1,p
0 (Ω) such that

vn v weakly in W
1,p
0 (Ω),

vn −→ v in Lp(Ω).
(2.9)

Let n→∞ in (2.8), one gets

λ1

∫

Ω
|v|pdx = lim

n→∞

∫

Ω

∣
∣∇vn

∣
∣pdx = 1, (2.10)

∫

Ω

(
a(x)− λ1

)|v|pdx = 0. (2.11)

By (2.10), the weakly lower semicontinuity of ‖ · ‖p and the Poincare inequality we have

1= liminf
n→∞

∫

Ω

∣
∣∇vn

∣
∣pdx ≥

∫

Ω
|∇v|pdx ≥ λ1

∫

Ω
|v|pdx = 1, (2.12)

it follows that

λ1

∫

Ω
|v|pdx =

∫

Ω
|∇v|pdx = 1. (2.13)

From (2.13), we can see that v is in fact the eigenfunction corresponding to the first
eigenvalue of the following problem:

−�pu= λ|u|p−2u. (2.14)

Then from the results for p-Laplacian, we have v �= 0, so (2.11) implies that a(x)= λ1 a.e.
on Ω, but this is impossible by (f2). Hence, Lemma 2.2 holds.

To see that a nonnegative solution of problem (1.1) is in fact a positive solution in Ω,
we need the following strong maximum principle for p-Laplacian. �

Lemma 2.3 (Vázquez [17]). Let u∈C1(Ω) be such that �pu∈L2
loc(Ω), u≥ 0 a.e. on Ω,

�pu≤ β(u) a.e. with β : [0,∞]→ R continuous nondecreasing, β(0)= 0 and either β(s)= 0
for some s > 0 or β(s) > 0 for all s > 0, but

∫ 1

0
j(s)−1/pds=∞, where j(s)=

∫ s

0
β(t)dt, (2.15)

holds. Then if u does not vanish identically of Ω, it is positive everywhere in Ω.
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3. Proof of the theorems

Proof of Theorem 1.3. It is well known that to seek a nontrivial weak solution of problem
(1.1) is equivalent to finding a nonzero critical point of the C1-function:

J(u)= 1
p

∫

Ω
|∇u|pdx−

∫

Ω
F(x,u)dx. (3.1)

In the following proof, we will find the critical points of J(u) in three steps.

Step 1. There exist some ρ,β > 0, such that J(u)≥ β for all u∈W
1,p
0 (Ω) with ‖u‖ = ρ.

In fact, by Lemma 2.2, let ε > 0 be small enough such that α+ ε/λ1 < 1. Since f (x, t) is
subcritical and (f2) holds, there exist δ1,δ2 > 0 and M > 0 for the above ε, such that

F(x,s)≤ 1
p

(
a(x) + ε

)|s|p ∀|s| < δ1, x ∈Ω,

F(x,s)≤ 1
p
ε|s|q ∀|s| > δ2, x ∈Ω,

F(x,s)≤M|s|p ≤ M

δ
q−p
1

|s|q ∀δ1 ≤ |s| ≤ δ2, x ∈Ω,

(3.2)

where q is the same as in (1.2). Set A=max{(1/p)ε,M/δ
q−p
1 } > 0, then we have

F(x,s)≤ 1
p

(
a(x) + ε

)|s|p +A|s|q (3.3)

for all (x,s)∈Ω×R. By the Poincare inequality and Sobolev inequality, one obtains

J(u)≥ 1
p
‖u‖p− 1

p

∫

Ω

(
a(x) + ε

)|u|pdx−A
∫

Ω
|u|qdx

≥ 1
p
‖u‖p− 1

p

∫

Ω

(
α+

ε

λ1

)
|∇u|pdx−C‖u‖q

= 1
p

(
1−α− ε

λ1

)
‖u‖p−C‖u‖q,

(3.4)

where C > 0 is a constant. Since 1− α− ε/λ1 > 0 and p < q, let ρ be small enough such
that

β
�= 1

p

(
1−α− ε

λ1

)
ρp−Cρq > 0, (3.5)

so we have J|∂Bρ ≥ β > 0.

Step 2. There exists e ∈W
1,p
0 (Ω) with ‖e‖ > ρ such that J(e) < 0.

Since limt→+∞( f (x, t)/tp−1) = +∞ by (f2), then for any ε > 0, there exists M > 0 such
that f (x, t)/tp−1 ≥ 1/ε for all t > M and x ∈Ω. Set c(ε)= (1/ε)Mp−1, consequently,

f (x, t)≥ 1
ε
tp−1− c(ε) (3.6)
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for all t ≥ 0 and x ∈Ω, which implies that

f (x,st)t ≥ 1
ε
sp−1tp− c(ε)t (3.7)

for all x ∈Ω, t ≥ 0, and 0≤ s≤ 1. Integrating both sides of the inequality (3.7) on [0,1]
with respect to s, we obtain

F(x, t)≥ 1
pε

tp− c(ε)t (3.8)

for all t ≥ 0. It follows from (3.8) that

F
(
x, tϕ1

)≥ 1
pε

tpϕ
p
1 − c(ε)tϕ1. (3.9)

Dividing by tp, one has

F
(
x, tϕ1

)

tp
≥ 1

pε
ϕ
p
1 −

c(ε)ϕ1

tp−1 , (3.10)

thus we have
∫

Ω

F
(
x, tϕ1

)

tp
dx ≥

∫

Ω

(
1
pε

ϕ
p
1 −

c(ε)ϕ1

tp−1

)
dx. (3.11)

Let t→∞ in (3.11), it follows that

liminf
t→+∞

∫

Ω

F
(
x, tϕ1

)

tp
dx ≥

∫

Ω

1
pε

ϕ
p
1dx (3.12)

for all ε > 0. For ε > 0 is arbitrary, let ε→ 0, then one obtains

lim
t→+∞

∫

Ω

F
(
x, tϕ1

)

tp
dx = +∞. (3.13)

Consequently,

J
(
tϕ1
)

tp
= 1

p

∥
∥ϕ1

∥
∥p−

∫

Ω

F
(
x, tϕ1

)

tp
dx −→−∞ (t −→ +∞). (3.14)

Hence, let t0 be big enough and e = t0ϕ1, then we have J(e) < 0.
Define

Γ= {γ ∈ C
(
[0,1],W

1,p
0 (Ω)

)
: γ(0)= 0; γ(1)= e

}
, c = inf

γ∈Γ
max
0≤τ≤1

(
γ(τ)

)
, (3.15)

then c ≥ β > 0. By Lemma 2.1, there exists a sequence {un} ⊂W
1,p
0 (Ω), such that

J
(
un
)= 1

p

∫

Ω

∣
∣∇un

∣
∣pdx−

∫

Ω
F
(
x,un

)
dx −→ c (n−→∞), (3.16)

(
1 +

∥
∥un

∥
∥)
∥
∥J ′
(
un
)∥∥−→ 0 (n−→∞). (3.17)
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Combining (3.16) and (3.17), we obtain

∫

Ω

(
1
p
f
(
x,un

)
un−F

(
x,un

)
)
dx = c+ o(1). (3.18)

Step 3. Let us prove that the sequence {un} is bounded.
Otherwise, there is a subsequence of {un} (still denoted by {un}) satisfying ‖un‖→∞

as n→∞. Set wn = un/‖un‖, then wn is bounded. So we may assume that for some w ∈
W

1,p
0 (Ω) there is a subsequence of {wn} (still denoted by {wn}) such that

wn w weakly in W
1,p
0 (Ω),

wn −→w in Lr(Ω)
(
1≤ r < p∗

)
,

wn(x)−→w(x) a.e. x ∈Ω,

(3.19)

as n→∞. It is easy to see that w+
n and w−n have the same convergence which is similar to

(3.19) where u+ =max{u,0} and u− =min{u,0} for u∈W
1,p
0 (Ω).

On one hand, we claim that w+ ≡ 0. Otherwise, set Ω1 = {x ∈Ω : w+(x) = 0}, Ω2 =
{x ∈Ω : w+(x) > 0}. Since ‖un‖→ +∞, we have u+

n → +∞ as n→∞ for a.e. x ∈Ω2. Since

lim
t→+∞

f (x, t)
|t|p−1 = +∞, (3.20)

we have

lim
n→+∞

f
(
x,u+

n

)

(
u+
n

)p−1 = +∞ a.e. on Ω2. (3.21)

If |Ω2| > 0, one obtains

o(1)= 〈J ′(un
)
,un
〉=

∫

Ω

∣
∣∇un

∣
∣pdx−

∫

Ω
f
(
x,un

)
undx

≤ ∥∥un
∥
∥p−

∫

Ω2

f
(
x,u+

n

)
u+
ndx =

∥
∥un

∥
∥p
(

1−
∫

Ω2

f
(
x,u+

n

)

(
u+
n

)p−1

(
w+
n

)p
)

dx.
(3.22)

So it follows that

o(1)≤ 1−
∫

Ω2

f
(
x,u+

n

)
u+
n

(
u+
n

)p−1

(
w+
n

)p
dx. (3.23)

By Fatou’s lemma, we have

1≥ liminf
n→∞

∫

Ω2

f
(
x,u+

n

)

(
u+
n

)p−1

(
w+
n

)p
dx = +∞, (3.24)

which is a contradiction, so |Ω2| = 0 and w+ ≡ 0 .
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On the other hand, if w+ ≡ 0, set a sequence {tn} of real numbers such that J(tnun)=
maxt∈[0,1] J(tun). For any integer m> 0, set wm

n = (2pm)1/pwn. By (f2), (3.3), and the con-
vergence of w+

n , one has

limsup
n→∞

∫

Ω
F
(
x,wm

n

)
dx = limsup

n→∞

∫

Ω
F
(
x, (2pm)1/pw+

n

)
dx

≤ limsup
n→∞

(∫

Ω
2m
(
λ1 + ε

)(
w+
n

)p
dx+

∫

Ω
A(2pm)q/p(w+

n )qdx
)

= limsup
n→∞

(
C1
∥
∥w+

n

∥
∥p
p +C2

∥
∥w+

n

∥
∥q
q

)

= C1
∥
∥w+

∥
∥p
p +C2

∥
∥w+

∥
∥q
q = 0,

(3.25)

where C1,C2 > 0 are constants. Since ‖un‖→ +∞ as n→∞, one has 0≤ (2pm)1/p/‖un‖ ≤
1 when n is big enough. By the definition of tn, we obtain

J
(
tnun

)≥ J
(
wm
n

)≥ 2m−
∫

Ω
F
(
x,wm

n

)
dx ≥m, (3.26)

which implies that

J
(
tnun

)→ +∞ (n−→∞). (3.27)

Noting that J(0)= 0 and J(un)→ c, so 0 < tn < 1 when n is big enough. It follows that

∫

Ω

∣
∣∇(tnun

)∣∣pdx−
∫

Ω
f
(
x, tnun

)
tnundx =

〈
J ′
(
tnun

)
, tnun

〉= tn
dJ
(
tun
)

dt

∣
∣
∣
∣
t=tn

= 0.

(3.28)

But for 0 ≤ tn ≤ 1, we have θG(x,un) ≥ G(x, tnun) by Assumption 1.2, then (3.27) and
(3.28) imply that

∫

Ω

(
1
p
f
(
x,un

)
un−F

(
x,un

)
)
dx = 1

p

∫

Ω
G
(
x,un

)
dx ≥ 1

pθ

∫

Ω
G
(
x, tnun

)
dx

= 1
θ

∫

Ω

(
1
p
f
(
x, tnun

)
tnun−F

(
x, tnun

)
)
dx

= 1
θ

∫

Ω

(
1
p

∣
∣∇tnun

∣
∣p−F

(
x, tnun

)
)
dx

= 1
θ
J
(
tnun

)−→ +∞ (n−→∞).

(3.29)

which contradicts (3.18), so {un} is bounded.
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By the compactness of Sobolev embedding and the standard procedures, we know that

{un} has a subsequence which converges to a weak solution u∈W
1,p
0 (Ω) of (1.1). By (f1),

we must have u ≥ 0. By the regularity results of Ladyzhenskaya and Ural’tseva (see [7]),
u∈ L∞ and hence u∈ C1,α

loc (Ω) ⊂ C1(Ω) (see [16]). Since u∈ L∞(Ω), it is easy to see that
�pu=− f (x,u)∈ L2

loc(Ω). Moreover, we have− f (x,u)≤ 0 by (f1). Hence by Lemma 2.3
with β(u)= 0, one has u > 0 a.e. on Ω. Then Theorem 1.3 is proved. �

Proof of Theorem 1.4. First, let us consider the following truncated problem:

−�pu= f1(x,u), x ∈Ω, u= 0, x ∈ ∂Ω, (3.30)

where

f1(x, t)=
⎧
⎨

⎩
f (x, t), t ≥ 0,

0, t ≤ 0.
(3.31)

For this problem (3.30), it is easy to see that f1(x, t) satisfies the conditions of Theorem
1.3. So by Theorem 1.3, there is a positive solution u > 0 of problem (3.30) and it is also a
solution of problem (1.1) by the definition of f1.

Next, let us see another truncated problem:

−�pu= f2(x,u), x ∈Ω, u= 0, x ∈ ∂Ω, (3.32)

where

f2(x, t)=
⎧
⎨

⎩
f (x, t), t ≤ 0,

0, t ≥ 0.
(3.33)

In order to find a solution of problem (3.32), set v = −u, g(x, t) = − f2(x,−t), then
problem (3.32) is equivalent to the following problem:

−�pv = g(x,v), x ∈Ω, v = 0, x ∈ ∂Ω. (3.34)

It is easy to see that if v is a solution of problem (3.34), then u = −v is a solution of
problem (3.32). Since f (x, t) satisfies the conditions in Theorem 1.4, g(x, t) satisfies all
the conditions in Theorem 1.3. Then by Theorem 1.3, there is a positive solution v > 0 of
problem (3.34), so u=−v < 0 is a solution to problem (3.32) and it is also a solution of
problem (1.1).

From the above discussion, we can deduce that there exist at least a positive solution
and a negative solution of problem (1.1). Then problem (1.1) has at least two nontrivial
solutions. �
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