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1. Introduction

Throughout the paper L1[a,b] denotes the set of integrable functions on [a,b], L1
loc(a,b]

the set of functions x : (a,b]→ R which are integrable on [a− ε,b] for arbitrary small
ε > 0, AC[a,b] is the set of absolutely continuous function on [a,b], and ACloc(a,b] is the
set of functions x : (a,b]→ R which are absolutely continuous on [a− ε,b] for arbitrary
small ε > 0.

Let T be a positive number. If G⊂R j ( j = 1,2) then Car([0,T]×G) stands for the set
of functions h : [0,T]×G→R satisfying the local Carathéodory conditions on [0,T]×G,
that is, (j) for each z ∈ G, the function h(·,z) : [0,T]→ R is measurable; (jj) for a.e. t ∈
[0,T], the function h(t,·) : G→R is continuous; (jjj) for each compact set M ⊂ G, there
exists δM ∈ L1[0,T] such that |h(t,z)| ≤ δM(t) for a.e. t ∈ [0,T] and all z ∈M. We will
write h∈ Car((0,T]×G) if h∈ Car([a,T]×G) for each a∈ (0,T].

We consider the singular boundary value problem

(
φ
(
u′(t)

))′
+ f
(
t,u′(t)

)= λg(t,u(t),u′(t)
)
, λ > 0, (1.1)

u′(0)= 0, βu′(T) +αu(T)= A, β ≥ 0, α,A > 0, (1.2)
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depending on the positive parameter λ. Here φ ∈ C0[0,∞), f ∈ Car((0,T]× [0,∞)) is
nonnegative, f (t,0) = 0 for a.e. t ∈ [0,T], g ∈ Car([0,T]×D) is positive, where D =
(0,A/α]× [0,∞) and g is singular at the value 0 of its first space variable. We say that g is
singular at the value 0 of its first space variable provided

lim
x→0+

g(t,x, y)=∞ for a.e. t ∈ [0,T] and each y ∈ [0,∞). (1.3)

A function u ∈ C1[0,T] is called a positive solution of problem (1.1), (1.2) if u > 0 on
[0,T], φ(u′)∈ ACloc(0,T], u satisfies (1.2), and (1.1) holds for a.e. t ∈ [0,T]. We say that
u ∈ C1[0,T] satisfying (1.2) is a dead core solution of problem (1.1), (1.2) if there exists
t0 ∈ (0,T) such that u = 0 on [0, t0], u > 0 on (t0,T], φ(u′) ∈ AC[t0,T] and (1.1) holds
for a.e. [t0,T]. The interval [0, t0] is called the dead core of u. If u(0)= 0, u > 0 on (0,T],
φ(u′)∈ ACloc(0,T], u satisfies (1.2) and (1.1) a.e. on [0,T], then u is called a pseudo dead
core solution of problem (1.1), (1.2).

The aim of this paper is to discuss the existence of positive solutions, dead core solu-
tions, and pseudo dead core solutions to problem (1.1), (1.2). Although problem (1.1),
(1.2) is singular, all types of solutions are considered in the space C1[0,T].

The study of problem (1.1), (1.2) was motivated from the paper by Baxley and Gers-
dorff [2]. Here the singular reaction-diffusion boundary value problem

u′′ + f1(t,u′)= λg1(t,u),

u′(a)= 0, βu′(b) +αu(b)= A, β ≥ 0, α,A > 0
(1.4)

is considered with f1 ∈ C0((a,b]× [0,∞)) nonnegative, f1(t,0) = 0 for t ∈ (a,b], and
g1 ∈ C0([a,b]× (0,A/α]) positive. The authors presented conditions guaranteeing that
for sufficiently small positive λ problem, (1.4) has a positive solution and for sufficiently
large λ, it has a dead core solution (see [2, Theorem 17]). We notice that the inspiration
for paper [2] were the results by Bobisud [3] dealing with the Robin problem

u′′ = λg2(u),

−u′(−1) +αu(−1)= A, u′(1) +αu(1)= A, α,A > 0,
(1.5)

where g2 ∈ C1(0,A/α] is positive. Bobisud proved that if g2 ∈ L1[0,A/α], then for λ suffi-
ciently large problem (1.5) has a dead core solution. In [1] the authors considered positive
and dead core solutions of the Dirichlet problem

(
φ(u′)

)′ = λ f2(t,u,u′),

u(0)= A, u(T)= A, A > 0.
(1.6)

Here f2 ∈ Car([0,T]× (0,A)× (R \ {0})) and f2 is singular at the value 0 of its first space
variable and admits singularity at the value A of its first one and at the value 0 of its
second one.

The results presented in this paper improve and extend the corresponding results in
[2].
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In this paper, we work with the following conditions on the functions φ, f , and g in
the differential equation (1.1).

(H1) φ∈ C0[0,∞) is increasing, limx→∞φ(x)=∞, and φ(0)= 0.
(H2) f ∈ Car((0,T]× [0,∞)) is nonnegative and f (t,0)= 0 for a.e. t ∈ [0,T].
(H3) g ∈ Car([0,T]×D), D = (0,A/α]× [0,∞), g(t,x, y) is positive on [0,T]×D and

singular at x = 0,

g(t,x, y)≤ p(x)ω(y) for a.e. t ∈ [0,T] and all (x, y)∈D (1.7)

with p : (0,A/α]→ (0,∞) nonincreasing, p ∈ L1[0,A/α],ω : [0,∞)→ (0,∞) non-
decreasing and

∫∞

0

φ−1(s)
ω
(
φ−1(s)

)ds=∞. (1.8)

(H4) For each B > 0, there exists a positive constant mB such that mB ≤ g(t,x, y) for
a.e. t ∈ [0,T] and all (x, y)∈ (0,A/α]× [0,B].

Define φ∗ ∈ C0(R), f ∗ ∈ Car((0,T]×R), and gn ∈ Car([0,T]×R2), n ∈ N, by the
formulas

φ∗(x)=
⎧
⎨

⎩
φ(x) for x ∈ [0,∞),

−φ(−x) for x ∈ (−∞,0),

f ∗(t, y)=
⎧
⎨

⎩
f (t, y) for t ∈ (0,T], y ∈ [0,∞),

y for t ∈ (0,T], y ∈ (−∞,0),

gn(t,x, y)=
⎧
⎨

⎩
g∗n (t,x, y) for t ∈ [0,T], (x, y)∈R× [0,∞),

g∗n (t,x,0) for t ∈ [0,T], (x, y)∈R× (−∞,0),

(1.9)

where

g∗n (t,x, y)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
(
t,
A

α
, y
)

for t ∈ [0,T], (x, y)∈
(
A

α
,∞
)
× [0,∞),

g(t,x, y) for t∈[0,T], (x, y)∈
[
A

2nα
,
A

α

]
×[0,∞),

[
φ
(
A

2nα

)]−1

φ(x)g
(
t,

A

2nα
, y
)

for t ∈ [0,T], (x, y)∈
[

0,
A

2nα

)
× [0,∞),

0 for t ∈ [0,T], (x, y)∈ (−∞,0)× [0,∞).
(1.10)
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We have due to (H3),

0 < gn(t,x, y)≤ p(x)ω(y) for a.e. t ∈ [0,T] and each (x, y)∈
(

0,
A

α

]
× [0,∞),

(1.11)

and due to (H4),

for each B > 0, there exists a positive constant mB such that

mB ≤ gn(t,x, y) for a.e. t ∈ [0,T] and all (x, y)∈
[
A

2nα
,
A

α

]
× [0,B], n∈N.

(1.12)

Since f ∗(t,0)= 0 for a.e. t ∈ [0,T], gn(t,x, y)= 0 for a.e. t ∈ [0,T] and each (x, y)∈
(−∞,0]×R and limn→∞ gn(t,x, y)= g(t,x, y) for a.e. t∈ [0,T] and each (x, y)∈ (0,A/α]×
[0,∞), we consider the existence of positive solutions, pseudo dead core solutions and
dead core solutions of problem (1.1), (1.2) by considering solutions of the sequence of
auxiliary regular problems

(
φ∗
(
u′(t)

))′
+ f ∗

(
t,u′(t)

)= λgn
(
t,u(t),u′(t)

)
, λ > 0, (1.13)

u′
(

1
n

)
= 0, βu′(T) +αu(T)=A, β ≥ 0, α,A > 0. (1.14)

We may assume without loss of generality that 1/n < T for all n∈N, otherwise we con-
sider n∈N′ where N′ = {n∈N : 1/n < T}. A function u∈ C1[1/n,T] is called a solution
of problem (1.13), (1.14) if φ(u′)∈AC[1/n,T], u satisfies (1.14) and (1.13) holds for a.e.
t ∈ [1/n,T].

We introduce also the notion of a sequential solution of problem (1.1), (1.2). We say
that u ∈ C0[0,T] is a sequential solution of problem (1.1), (1.2) if there exists a subse-

quence {kn} such that limn→∞u
( j)
kn

(t) = u( j)(t) locally uniformly on (0,T] for j = 0,1,
where ukn is a solution of problem (1.13), (1.14) with kn instead of n. In Section 3 (see
Theorem 3.1), we show that any sequential solution of problem (1.1), (1.2) is either a
positive solution or a pseudo dead core solution or a dead core solution of this problem.
Our results are proved by a combination of the method of lower and upper functions
with regularization and sequential techniques.

The next part of our paper is divided into two sections. In Section 2, we discuss exis-
tence and properties of solutions to the auxiliary regular problem (1.13), (1.14). The main
results are given in Section 3. Under assumptions (H1)–(H3), for each λ > 0, problem
(1.1), (1.2) has a sequential solution and any sequential solution is either a positive solu-
tion or a pseudo dead core solution or a dead core solution (Theorem 3.1). Corollary 3.2
shows that for sufficiently small λ, all sequential solutions of problem (1.1), (1.2) are
positive solutions and under the additional assumption (H4) all sequential solutions are
dead core solutions if λ is sufficiently large by Corollary 3.3. Finally, Corollary 3.4 states
a relation between sequential solutions of problem (1.1), (1.2) with distinct values of pa-
rameter λ. An example demonstrates the application of our results.
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2. Auxiliary regular problems

The properties of solutions of problem (1.13), (1.14) are presented in the following
lemma.

Lemma 2.1. Let (H1)–(H3) hold and let un be a solution of problem (1.13), (1.14). Then

0 < un(t)≤ A

α
for t ∈

[
1
n

,T
]

, (2.1)

and there exists a positive constant S independent of n (and depending on λ) such that

0≤ u′n(t) < S for t ∈
[

1
n

,T
]
. (2.2)

Proof. We start by showing that u′n ≥ 0 on [1/n,T]. Suppose that min{u′n(t) : 1/n ≤ t ≤
T} = u′n(t1) < 0. Since u′n(1/n)= 0 by (1.14), there exists ξ ∈ [1/n, t1) such that u′n(ξ)= 0
and u′n < 0 on (ξ, t1]. Consequently,

(
φ∗
(
u′n(t)

))′ = λgn
(
t,un(t),u′n(t)

)−u′n(t) > 0 for a.e. t ∈ [ξ, t1
]
. (2.3)

Integrating (φ∗(u′n(t)))′ > 0 over [ξ, t]⊂ [ξ, t1] yields φ∗(u′n(t)) > 0 for t ∈ (ξ, t1]. Hence
u′n > 0 on (ξ, t1], which is impossible. We have shown that

u′n(t)≥ 0 for t ∈
[

1
n

,T
]

, (2.4)

and consequently, un(1/n) = min{un(t) : 1/n ≤ t ≤ T}. We claim that un(1/n) > 0 and
so un > 0 on [1/n,T]. Suppose un(1/n) ≤ 0. Put τ =max{t ∈ [1/n,T] : un(s) ≤ 0 for s ∈
[1/n, t]}. We can see that τ ≥ 1/n. If τ = 1/n, then un(τ) = 0 and, by (1.14), u′n(τ) = 0.
Let τ > 1/n. Then (φ∗(u′n(t)))′ = − f (t,u′n(t)) ≤ 0 for a.e. t ∈ [1/n,τ] and integrating
(φ∗(u′n(t)))′ ≤ 0 over [1/n, t]⊂ [1/n,τ] gives φ∗(u′n(t))≤ 0 on [1/n,τ]. Hence u′n ≤ 0 on
[1/n,τ], which combining with (2.4) yields u′n(t) = 0 for t ∈ [1/n,τ]. If τ = T , we have
un(T) = un(1/n) and therefore, A = αun(1/n) by (1.14), contrary to un(1/n) ≤ 0. It fol-
lows that τ < T . Then un(τ)= 0 and u′n(τ)= 0. We have proved that τ ∈ [1/n,T), un(τ)=
0, u′n(τ)= 0, and, by the definition of τ, un > 0 on (τ,T]. Put v(t)=max{u′n(s) : τ ≤ s≤ t}
for t ∈ [τ,T]. Then v is continuous and nondecreasing on [τ,T], v(τ)= 0, and v > 0 on
(τ,T]. Let t∗ ∈ (τ,τ + 1]∩ (τ,T] be such that 0≤ un(t)≤A/2nα for t ∈ [τ, t∗]. Then

(
φ
(
u′n(t)

))′ = − f (t,u′n(t)
)

+ λgn
(
t,un(t),u′n(t)

)≤ Bφ(un(t)
)
r(t) (2.5)

for a.e. t ∈ [τ, t∗], where B = λ[φ(A/2nα)]−1 and r(t) = g(t,A/2nα,u′n(t)). Clearly, r ∈
L1[τ, t∗] and r > 0 a.e. on [τ, t∗]. Integrating (φ(u′n(t)))′ ≤ Bφ(un(t))r(t) over [τ, t] yields

φ
(
u′n(t)

)≤ B
∫ t

τ
φ
(
un(s)

)
r(s)ds≤ Bφ(un(t)

)
∫ t

τ
r(s)ds, (2.6)

and using un(t)= ∫ tτ u′n(s)ds≤ v(t)(t− τ)≤ v(t), we get

φ
(
u′n(t)

)≤ Bφ(v(t)
)
∫ t

τ
r(s)ds, t ∈ [τ, t∗

]
. (2.7)
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Hence u′n(t)≤ φ−1(Bφ(v(t))
∫ t
τ r(s)ds) and therefore

v(t)=max
{
u′n(s) : τ ≤ s≤ t}≤max

{
φ−1(Bφ

(
v(s)

)
∫ s

τ
r(z)dz

)
: τ ≤ s≤ t

}

= φ−1
(
Bφ
(
v(t)

)
∫ t

τ
r(s)ds

)
,

(2.8)

which gives

φ
(
v(t)

)≤ Bφ(v(t)
)
∫ t

τ
r(s)ds, t ∈ [τ, t∗

]
. (2.9)

Since we know that v > 0 on (τ, t∗], it follows that 1≤ B
∫ t
τ r(s)ds for t ∈ (τ, t∗], which is

impossible. Hence un > 0 on [1/n,T]. We conclude from the last inequality, from (2.4)
and from un(T)= 1/α(A−βu′n(T))≤A/α that un fulfils inequality (2.1).

It remains to verify (2.2) with a positive constant S. By (1.11),

(
φ
(
u′n(t)

))′ = − f (t,u′n(t)
)

+ λgn
(
t,un(t),u′n(t)

)≤ λgn
(
t,un(t),u′n(t)

)

≤ λp(un(t)
)
ω
(
u′n(t)

) (2.10)

and therefore
(
φ
(
u′n(t)

))′
u′n(t)

ω
(
u′n(t)

) ≤ λp(un(t)
)
u′n(t) (2.11)

for a.e. t ∈ [1/n,T]. Integrating (2.11) from 1/n to T yields (see (2.1))

∫ φ
(
u′n(t)

)

0

φ−1(s)
ω
(
φ−1(s)

)ds≤ λ
∫ un(t)

un(1/n)
p(s)ds≤ λ

∫ A/α

0
p(s)ds (2.12)

for t ∈ [1/n,T]. By (H3), there exists a positive constant S1 independent of n such that

∫ v

0

φ−1(s)
ω
(
φ−1(s)

)ds > λ
∫ A/α

0
p(s)ds, (2.13)

whenever v ≥ S1. Hence (2.12) shows that u′n < S on [1/n,T], where S= φ−1(S1). �

In order to prove the existence of a solution of problem (1.13), (1.14), we use the
method of lower and upper functions. Let a∈ (0,T), h∈ Car([a,T]×R2), and let φ∗ be
given in (1.9) where φ satisfies (H1). Consider the boundary value problem

(
φ∗
(
u′(t)

))′ = h(t,u(t),u′(t)
)
,

u′(a)= 0, βu′(T) +αu(T)=A, β ≥ 0, α,A > 0.
(2.14)

We say that v ∈ C1[a,T] is a lower function of problem (2.14) if φ∗(v′) ∈ AC[a,T],
(φ∗(v′(t)))′ ≥ h(t,v(t),v′(t)) for a.e. t ∈ [a,T], v′(a)≥ 0, βv′(T) + αv(T) ≤ A. If the re-
verse inequalities hold, we say that v is an upper function of problem (2.14).

For the solvability of problem (2.14), the following result (which is a special case of
the general existence principle by Cabada and Pouso [4, page 230]) holds.
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Proposition 2.2. If there exists a lower function v and an upper function z of problem
(2.14), v(t)≤ z(t) for t ∈ [a,T] and there exists q ∈ L1[a,T] such that

∣
∣h(t,x, y)

∣
∣≤ q(t) for a.e. t ∈ [a,T] and all v(t)≤ x ≤ z(t), y ∈R, (2.15)

then problem (2.14) has a solution u and v(t)≤ u(t)≤ z(t) for t ∈ [a,T].

We are now in a position to give the existence result for problem (1.13), (1.14).

Lemma 2.3. Let (H1)–(H3) hold. Then problem (1.13), (1.14) has a solution and any so-
lution un satisfies inequalities (2.1) and (2.2), where S is a positive constant independent
of n.

Proof. Let S be the positive constant in Lemma 2.1. Put

h(t,x, y)= χ(y)
[− f ∗(t, y) + λgn(t,x, y)

]
for t ∈

[
1
n

,T
]

, (x, y)∈R2, (2.16)

where

χ(y)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for |y| ≤ S,

2− |y|
S

for S < |y| ≤ 2S,

0 for |y| > 2S.

(2.17)

Since h(t,0,0) = 0 and h(t,A/α,0) = λgn(t,A/α,0) ≥ 0 for a.e. t ∈ [1/n,T], we see that
v = 0 and z = A/α is a lower and an upper function of problem (2.14) with a = 1/n. It
follows from f ∗ ∈ Car([1/n,T]×R) and gn ∈ Car([0,T]×R2) that

∣
∣h(t,x, y)

∣
∣≤ q(t) for a.e. t ∈

[
1
n

,T
]

and all 0≤ x ≤ A

α
, y ∈R, (2.18)

where q ∈ L1[1/n,T]. Hence Proposition 2.2 guarantees the existence of a solution un of
problem (2.14) satisfying 0≤ un(t)≤ A/α for t ∈ [1/n,T]. If min{u′n(t) : 1/n≤ t ≤ T} =
u′n(t1) < 0, we can prove as in the first part of the proof of Lemma 2.1 that there exists
ξ ∈ [1/n, t1) such that u′n(ξ)= 0 and u′n < 0 on (ξ, t1]. We now deduce from the equality

(
φ∗
(
u′n(t)

))′
+ χ
(
u′n(t)

)
f ∗
(
t,u′n(t)

)= λχ(u′n(t)
)
gn
(
t,un(t),u′n(t)

)
(2.19)

for a.e. t ∈ [1/n,T] that (φ∗(u′n(t)))′ ≥ −u′n(t)χ(u′n(t))≥ 0 for a.e. t ∈ [ξ, t1]. Integrating
(φ∗(u′n(t)))′ ≥ 0 over [ξ, t] gives φ∗(u′n(t))≥ 0 for t ∈ [ξ, t1], contrary to u′n < 0 on (ξ, t1].
Consequently, u′n ≥ 0 on [1/n,T] and

(
φ
(
u′n(t)

))′ = (φ∗(u′n(t)
))′ ≤ λχ(u′n(t)

)
gn
(
t,un(t),u′n(t)

)≤ λp(un(t)
)
ω
(
u′n(t)

)
(2.20)

for a.e. t ∈ [1/n,T]. Now the second part of the proof of Lemma 2.1 (see (2.11)) shows
that u′n < S on [1/n,T]. Hence h(t,un(t),u′n(t)) = − f ∗(t,u′n(t)) + λgn(t,un(t),u′n(t)) for
t ∈ [1/n,T] and un is a solution of problem (1.13), (1.14). The fact that any solution un
of problem (1.13), (1.14) satisfies inequalities (2.1) and (2.2) follows immediately from
Lemma 2.1. �
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The next two results will be used for the proof of the existence of positive solutions of
problem (1.1), (1.2).

Lemma 2.4. Let (H1)–(H3) hold. Then there exists a nonincreasing function Λ : (0,∞)→
(0,∞) such that for all λ > 0, n ∈ N, and each solution un of problem (1.13), (1.14), the
estimate

un(T)≥Λ(λ) (2.21)

is true.

Proof. If β = 0, then un(T)= A/α for all solution un of problem (1.13), (1.14). Let β > 0.
By (H3), p ∈ L1[0,A/α], and therefore there exists a nonincreasing function ρ : (0,∞)→
(0,∞) such that for any interval [c,d]⊂ [0,A/α], we have

∫ d

c
p(s)ds <

1
λ

∫ φ(A/(2β))

0

φ−1

ω
(
φ−1(s)

)ds (2.22)

provided d− c < ρ(λ). We claim that

un(T)≥min
{
A

2α
,ρ(λ)

}
for n∈N, (2.23)

where un is a solution of problem (1.13), (1.14). If un(T) ≥ A/2α for n∈N, then (2.23)
is true. If not, un0 (T) < A/2α for some n0 ∈N. Then βu′n0

(T)=A−αun0 (T) > A/2 and so
u′n0

(T) > A/2β. Hence (see (2.12) with n= n0 and t = T)

∫ φ(A/(2β))

0

φ−1(s)
ω
(
φ−1(s)

)ds <
∫ φ(u′n0

(T))

0

φ−1(s)
ω
(
φ−1(s)

)ds≤ λ
∫ un0 (T)

un0 (1/n0)
p(s)ds (2.24)

and on account of (2.22), we get un0 (T)−un0 (1/n0)≥ ρ(λ). Therefore, un0 (T)≥ ρ(λ) and
un0 (T) ≥min{A/2α,ρ(λ)}. We have proved that (2.23) holds. Consequently, inequality
(2.21) is satisfied with the nonincreasing function Λ(λ)=min{A/2α,ρ(λ)} for λ∈ (0,∞).

�

Lemma 2.5. Let (H1)–(H3) hold. Then there exist λ0 > 0 and d > 0 such that for all λ ∈
(0,λ0], t ∈ [1/n,T], n∈N, and each solution un of problem (1.13), (1.14), the estimate

un(t) > d (2.25)

is true.

Proof. Let Λ be the function in Lemma 2.4. Notice that Λ is positive and nonincreasing
on (0,∞). Put

λ0 =min
{

1,
[∫ A/α

0
p(s)ds

]−1∫ φ[Λ(1)/(2T)]

0

φ−1(s)
ω
(
φ−1(s)

)ds
}
. (2.26)
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Let λ ∈ (0,λ0] be arbitrary but fixed and let un be a solution of problem (1.13), (1.14).
Then (see (2.12))

∫ φ(u′n(t))

0

φ−1(s)
ω
(
φ−1(s)

)ds≤ λ
∫ A/α

0
p(s)ds≤ λ0

∫ A/α

0
p(s)ds

≤
∫ φ[Λ(1)/(2T)]

0

φ−1(s)
ω
(
φ−1(s)

)ds

(2.27)

for t ∈ [1/n,T] and therefore u′n ≤ Λ(1)/2T on this interval. Whence un(T)− un(1/n)=
u′n(ξ)(T − 1/n) ≤ Λ(1)/2T(T − 1/n), where ξ ∈ (1/n,T). Since, by Lemma 2.4, un(T) ≥
Λ(λ) and Λ(λ) ≥ Λ(λ0) ≥ Λ(1), we have un(1/n) ≥ un(T)−Λ(1)/2T(T − 1/n) > Λ(1)/2.
Since u′n ≥ 0 on [1/n,T], inequality (2.25) holds with d =Λ(1)/2. �

The following results will be needed for the existence of dead core solutions of problem
(1.1), (1.2).

Lemma 2.6. Let (H1)–(H4) hold. Then for every c ∈ (0,T), there exists λc > 0 such that for
all λ > λc and each solution un of problem (1.13), (1.14), the equality

lim
n→∞un(c)= 0 (2.28)

is true.

Proof. Fix c ∈ (0,T), choose ε ∈ (0,A/α) and set B = 3A/α(T − c). Due to (H2) and (H4)
(see (1.12)), there exist ϕ∈ L1[c,T] and mB > 0 such that

0≤ f (t, y)≤ ϕ(t) for a.e. t ∈ [c,T] and all y ∈ [0,B],

mB ≤ gn(t,x, y) for a.e. t ∈ [c,T] and all (x, y)∈
[
A

2nα
,
A

α

]
× [0,B].

(2.29)

Put

λc = 3
(
φ(B) +‖ϕ‖∗

)

mB(T − c) , (2.30)

where ‖ϕ‖∗ =
∫ T
c ϕ(s)ds. We claim that if λ > λc in (1.13), then

un(c) < ε for n≥max
{

1
c

,
A

2αε

}
, (2.31)

where un is a solution of (1.13), (1.14). If not, there exists λ0>λc and n0≥max{1/c,A/2αε}
such that un0 (c) ≥ ε, where un0 is a solution of problem (1.13), (1.14) with λ = λ0

and n= n0. Since u′n0
≥ 0 on [1/n0,T], we have un0 ≥ ε(≥ A/2αn0) on [c,T]. We now show

that u′n0
(c1) > B for some c1 ∈ [c, (2c+T)/3]. Assuming the contrary, then u′n0

≤ B on
[c, (2c+T)/3] and consequently, gn0 (t,un0 (t),u′n0

(t))≥mB and f (t,u′n0
(t))≤ ϕ(t) for a.e.
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t ∈ [c, (2c+T)/3]. Hence

φ
(
u′n0

(
2c+T

3

))
−φ(u′n0

(c)
)=

∫ (2c+T)/3

c

(
φ
(
u′n0

(t)
))′
dt

=
∫ (2c+T)/3

c

[− f
(
t,u′n0

(t)
)

+ λ0gn0

(
t,un0 (t),u′n0

(t)
)]
dt

≥
∫ (2c+T)/3

c

[−ϕ(t) + λ0mB
]
dt

>−‖ϕ‖∗ + λcmB
T − c

3
= φ(B).

(2.32)

Therefore u′n0
((2c+T)/3) > B, which is impossible. It follows that u′n0

(c1) > B for some
c1 ∈ [c, (2c+T)/3]. If u′n0

≥ B on [c1,T], then

un0 (T)≥ un0 (T)−un0

(
c1
)=

∫ T

c1

u′n0
(t)dt ≥ B(T − c1

)= 3A
(
T − c1

)

α(T − c) ≥ 2A
α

, (2.33)

contrary to un0 (T) ≤ A/α. Therefore u′n0
≥ B on [c1,T] is false. Set � = {t ∈ [c1,T] :

u′n0
(t) < B}. Then � is an open and nonempty set, and as a consequence, � is the union

of at most countable set J of mutually disjoint intervals (ak,bk), � =∑k∈J(ak,bk). Since
φ(u′n0

) ∈ AC[c,T] and φ(u′n0
(bk))−φ(u′n0

(ak))= 0 for all k ∈ J with at most one excep-
tion when the difference is negative, we have

∫

�

(
φ
(
u′n0

(t)
))′
dt ≤ 0. (2.34)

Denoting the characteristic function of the set � by χ� and the Lebesgue measure of �
by meas(�), we have

0≥
∫ T

c1

(
φ
(
u′n0

(t)
))′
χ�(t)dt ≥

∫

�

(−ϕ(t) + λ0mB
)
dt

>−‖ϕ‖∗ + λcmB meas (�)

=−‖ϕ‖∗ + meas (�)
(
φ(B) +‖ϕ‖∗

) 3
T − c .

(2.35)

In particular, meas(�) < (T − c)/3. Hence u′n0
≥ B on the measurable set [c1,T] \� and

meas([c1,T] \�) > (T − c)/3. Then

un0 (T)−un0

(
c1
)=

∫ T

c1

u′n0
(t)dt ≥

∫

[c1,T]\�
u′n0

(t)dt >
B(T − c)

3
= A

α
(2.36)

and un0 (T) > A/α, which is impossible. It follows that (2.31) is true.
We have proved that for each λ > λc in (1.13) and for each ε > 0, there exists nε ∈ N

such that (0≤)un(c) < ε for all n≥ nε which proves that (2.28) is true. �

Our next result concerns sequences of solutions of problem (1.13), (1.14).
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Lemma 2.7. Let (H1)–(H3) hold. Let un be a solution of problem, (1.13), (1.14) and let m∈
N. Then the sequence {un}n≥m ⊂ C1[1/m,T] is equicontinuous on the interval [1/m,T].

Proof. First we define functions H ∈ C0[0,∞) and P ∈AC[0,A/α] by the formulas

H(v)=
∫ φ(v)

0
φ−1(s)ds for v ∈ [0,∞),

P(v)=
∫ v

0
p(s)ds for v ∈

[
0,
A

α

]
.

(2.37)

By Lemma 2.1, un satisfies inequalities (2.1) and (2.2), where S is a positive constant.
Hence {un}n≥m is equicontinuous on [1/m,T] and so is {P(un)}n≥m. It follows from (H2)
that 0≤ f (t, y)≤ ρ(t) for a.e. t ∈ [1/m,T] and each y ∈ [0,S], where ρ∈ L1[1/m,T] and
consequently,

0≤ f
(
t,u′n(t)

)≤ ρ(t) for a.e. t ∈
[

1
m

,T
]

and all n≥m. (2.38)

Let us choose an arbitrary ε > 0. Then there exists ν > 0 such that

0≤ P(un
(
t2
))−P(un

(
t1
))
< ε, 0≤

∫ t2

t1
ρ(t)dt < ε, (2.39)

whenever 1/m≤ t1 < t2 ≤ T and t2− t1 < ν. From the inequalities (for n≥m)

(
φ
(
u′n(t)

))′
u′n(t)≥− f (t,u′n(t)

)
u′n(t)≥−Sρ(t),

(
φ
(
u′n(t)

))′
u′n(t)≤ λgn

(
t,un(t),u′n(t)

)≤ λω(S)p
(
un(t)

)
u′n(t)

(2.40)

for a.e. t ∈ [1m,T], we obtain

(
φ
(
u′n(t)

))′
u′n(t)≥−Sρ(t) for a.e. t ∈

[
1
m

,T
]

, (2.41)

(
φ
(
u′n(t)

))′
u′n(t)≤ λω(S)p

(
un(t)

)
u′n(t) for a.e. t ∈

[
1
m

,T
]
. (2.42)

Let 1/m ≤ t1 < t2 ≤ T , t2 − t1 < ν and n ≥ m. Integrating (2.41) and (2.42) over [t1, t2]
yields

H
(
u′n
(
t2
))−H(u′n

(
t1
))≥−S

∫ t2

t1
ρ(t)dt >−Sε,

H
(
u′n
(
t2
))−H(u′n

(
t1
))≤ λω(S)

∫ un(t2)

un(t1)
p(s)ds

= λω(S)
[
P
(
un
(
t2
))−P(un

(
t1
))]

< λω(S)ε.

(2.43)

Summarizing, we have |H(u′n(t2))−H(u′n(t1))| < Vε for 1/m ≤ t1 < t2 ≤ T , t2 − t1 < ν,
and n≥m, where V =max{S,λω(S)}. Hence {H(u′n)}n≥m is equicontinuous on [1/m,T]
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and since H is continuous and increasing on [0,∞) and {u′n}n≥m is bounded on [1/m,T],
we see that {u′n}n≥m is equicontinuous on [1/m,T]. �

We now state a relation between solutions of problem (1.13), (1.14) with distinct val-
ues of parameter λ in (1.13).

Lemma 2.8. Let (H1)–(H3) hold and let 0 < λ1 < λ2. If un is a solution of problem (1.13),
(1.14) with λ= λ1, then there exists a solution vn of problem (1.13), (1.14) with λ= λ2 such
that

0≤ vn(t)≤ un(t) for t ∈
[

1
n

,T
]
. (2.44)

Proof. Let j = 1,2 and let Sj be a positive constant in Lemma 2.1 which gives a priori
bound for the derivative of solutions to problem (1.13), (1.14) with λ= λj . Put

hj(t,x, y)= χ(y)
[− f ∗(t, y) + λjgn(t,x, y)

]
for t ∈

[
1
n

,T
]

, (x, y)∈R2, j = 1,2,

(2.45)

where the function χ is given in (2.17) with S = max{S1,S2}. Consider the differential
equations

(
φ∗
(
u′(t)

))′ = hj
(
t,u(t),u′(t)

)
, j = 1,2. (2.46)

Let un be a solution of problem (1.13), (1.14) with λ = λ1. Since 0 ≤ u′n(t) < S1 for t ∈
[1/n,T], un is also a solution of problem (2.46), (1.14) with j = 1. The function v = 0 is a
lower function of problem (2.46), (1.14) with j = 2, and the relations

(
φ
(
u′n(t)

))′ = − f (t,u′n(t)
)

+ λ1gn
(
t,un(t),u′n(t)

)

<− f (t,u′n(t)
)

+ λ2gn
(
t,un(t),u′n(t)

)

= h2
(
t,un(t),u′n(t)

)
(2.47)

show that un is an upper function of this problem. Now Proposition 2.2 guarantees that
problem (2.46), (1.14) with j = 2 has a solution vn satisfying (2.44). Arguing as in the
proof of Lemma 2.3, vn is a solution of problem (1.13), (1.14) with λ= λ2. �

3. Main results and an example

Theorem 3.1. Let (H1)–(H3) hold. Then problem (1.1), (1.2) has a sequential solution
for each λ > 0. Moreover, any sequential solution of problem (1.1), (1.2) is either a positive
solution or a pseudo dead core solution or a dead core solution.

Proof. Fix λ > 0. Let un be a solution of problem (1.13), (1.14) where its existence is guar-
anteed by Lemma 2.3. Then the inequalities (2.1) and (2.2) are satisfied for n∈N, where
S is a positive constant and, by Lemma 2.7, {u′n}n≥m is equicontinuous on [1/m,T] for
each m ∈N. Applying the Arzelà-Ascoli theorem and the diagonal method, we obtain a

subsequence {kn} such that {u( j)
kn
} is locally uniformly convergent on (0,T] for j = 0,1
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and let limn→∞ukn(t)= ũ(t) for t ∈ (0,T]. Since ukn > 0 and u′kn ≥ 0 on [1/kn,T], we have
ũ≥ 0 and ũ′ ≥ 0 on (0,T]. Hence there exists limt→0+ ũ(t)= a≥ 0. Put

u(t)=
⎧
⎨

⎩
ũ(t) for t ∈ (0,T],

a for t = 0.
(3.1)

Then u∈ C0[0,T] and, by the definition, u is a sequential solution of problem (1.1), (1.2).
Let u be a sequential solution of problem (1.1), (1.2). Then u∈ C0[0,T] and there ex-

ists a subsequence of {n}, for simplicity denoting again by {n}, such that limn→∞u
( j)
n (t)=

u( j)(t) locally uniformly on (0,T] for j = 0,1. Here un is a solution of problem (1.13),
(1.14). Hence βu′(T) +αu(T)= A, u∈ C0[0,T]∩C1(0,T], and (see (2.2)) 0≤ u′(t)≤ S
for t ∈ (0,T]. We now show that u∈ C1[0,T] and u′(0)= 0. First we prove that

lim
n→∞un

(
1
n

)
= u(0). (3.2)

For this, choose an arbitrary ε ∈ (0,ST) and put δ = ε/S. Then there exists n0 ∈N, n0 >
1/δ, such that |un(δ)−u(δ)| < ε for n≥ n0. Since

0≤ u(δ)−u(0)= u′(ξ)δ ≤ Sδ = ε,

0≤ un(δ)−un
(

1
n

)
= u′n(τn)

(
δ− 1

n

)
< S
(
δ− 1

n

)
< ε

(3.3)

for n≥ n0, where ξ ∈ (0,δ) and τn ∈ (1/n,δ), we have
∣
∣
∣
∣un

(
1
n

)
−u(0)

∣
∣
∣
∣≤

∣
∣
∣
∣un

(
1
n

)
−un(δ)

∣
∣
∣
∣+

∣
∣un(δ)−u(δ)

∣
∣+

∣
∣u(δ)−u(0)

∣
∣ < 3ε (3.4)

for n≥ n0 and therefore (3.2) is true. Passing to the limit as n→∞ in (see (2.12))

∫ φ(u′n(t))

0

φ−1(s)
ω
(
φ−1(s)

)ds≤ λ
∫ un(t)

un(1/n)
p(s)ds, t ∈

[
1
n

,T
]

, (3.5)

we obtain (see (3.2))

∫ φ(u′(t))

0

φ−1(s)
ω
(
φ−1(s)

)ds≤ λ
∫ u(t)

u(0)
p(s)ds, t ∈ (0,T]. (3.6)

Hence limt→0+ φ(u′(t)) = 0, and therefore limt→0+ u′(t) = 0. Since for t ∈ (0,T),
(u(t)−u(0))/t = u′(η), where η ∈ (0,T) by the mean value theorem, letting t→ 0+ gives 0
on the right side and u′(0) on the left side so that u′(0)= 0 as desired. Hence u∈ C1[0,T]
and u′(0)= 0. The next part of the proof is broken into three cases.

Case 1. Let u > 0 on [0,T]. Put ε = u(0) and let t1 ∈ (0,T) be arbitrary but fixed. Then
u ≥ ε on [0,T] and there exists n1 ∈ N such that un(t) ≥ ε/2 for t ∈ [t1,T] and n ≥ n1.
Therefore

lim
n→∞ f

(
t,u′n(t)

)= f
(
t,u′(t)

)
, lim

n→∞gn
(
t,un(t),u′n(t)

)= g(t,u(t),u′(t)
)

(3.7)
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for a.e. t ∈ [t1,T] and (see (H2), (H3), and (1.11))

0≤ gn
(
t,un(t),u′n(t)

)≤ p
(
ε

2

)
ω(S), 0≤ f

(
t,u′n(t)

)≤ ϕ(t) (3.8)

for a.e. t ∈ [t1,T] and n≥ n1, where ϕ∈ L1[t1,T]. Letting n→∞ in

φ
(
u′n(t)

)= φ(u′n(T)
)

+
∫ T

t

[
f
(
s,u′n(s)

)− λgn
(
s,un(s),u′n(s)

)]
ds (3.9)

yields

φ
(
u′(t)

)= φ(u′(T)
)

+
∫ T

t

[
f
(
s,u′(s)

)− λg(s,u(s),u′(s)
)]
ds (3.10)

for t ∈ [t1,T] by the Lebesgue dominated convergence theorem. Since t1 ∈ (0,T) is ar-
bitrary, (3.10) holds for t ∈ (0,T] and, moreover, the functions f (t,u(t)), g(t,u(t),u′(t))
belong to the class L1

loc(0,T]. Hence φ(u′)∈ACloc(0,T] and (1.1) is satisfied a.e. on [0,T].
We have proved that u is a positive solution of problem (1.1), (1.2).

Case 2. Let u(0)= 0 and u > 0 on (0,T]. Choose t1 ∈ (0,T) and put ε = u(t1) > 0. Then
there exists n1 ∈N such that un(t)≥ ε/2 for t ∈ [t1,T] and n≥ n1. By a similar argument
as in Case 1, we can verify that φ(u′) ∈ ACloc(0,T] and (1.1) is satisfied a.e. on [0,T].
Hence u is a pseudo dead core solution of problem (1.1), (1.2).

Case 3. Let u= 0 on [0, t0] for some t0 ∈ (0,T) and u > 0 on (t0,T]. Then there exists ψ ∈
L1[t0,T] such that 0≤ f (t,u′n(t))≤ ψ(t) for a.e. t ∈ [t0,T]. Essentially the same reasoning
as in Cases 1 and 2 (now on the interval [t0,T]) shows that

lim
n→∞

[
λgn
(
t,un(t),u′n(t)

)− f
(
t,u′n(t)

)]= λg(t,u(t),u′(t)
)− f

(
t,u′(t)

)
(3.11)

for a.e. t ∈ [t0,T] and equality (3.10) holds for t ∈ (t0,T]. In addition,

∫ T

t0

[
λgn
(
t,un(t),u′n(t)

)− f
(
t,u′n(t)

)]
dt = φ(u′n(T)

)−φ(u′n
(
t0
))≤ φ(S) (3.12)

and λgn(t,un(t),u′n(t))− f (t,u′n(t)) ≥ −ψ(t) a.e. on [t0,T] and all n ∈ N. Hence, by the
Fatou lemma, the function λg(t,u(t),u′(t))− f (t,u′(t)) is Lebesgue integrable on [t0,T]
and consequently, equality (3.10) holds on [t0,T]. Therefore φ(u′) ∈ AC[t0,T] and u
satisfies (1.1) a.e. on [t0,T]. We have proved that u is a dead core solution of problem
(1.1), (1.2). �

Theorem 3.1 guarantees that problem (1.1), (1.2) has a sequential solution for every
λ > 0 and that any sequential solution is either a positive solution or a pseudo dead core
solution or a dead core solution. The next corollaries show that all sequential solutions of
problem (1.1), (1.2) are positive solutions for sufficiently small values of λ and dead core
solutions for sufficiently large values of λ, and also that for “larger” values of λ problem
(1.1), (1.2) has “smaller” sequential solutions.
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Corollary 3.2. Let (H1)–(H3) hold. Then there exists λ0 > 0 such that for each λ∈ (0,λ0],
all sequential solutions of problem (1.1), (1.2) are positive solutions.

Proof. Let λ0 > 0 and d > 0 be given in Lemma 2.5. Choose an arbitrary λ∈ (0,λ0]. Then
inequalities (2.25) are satisfied where un is a solution of problem (1.13), (1.14). Let u be
a sequential solution of problem (1.1), (1.2). Then u∈ C0[0,T] and u(t)= limn→∞ukn(t)
locally uniformly on (0,T] for a subsequence {kn}. Hence u≥ d on [0,T], which shows
that u is a positive solution. �

Corollary 3.3. Let (H1)–(H4) hold. Then for each c ∈ (0,T), there exists λc > 0 such that
any sequential solution u of problem (1.1), (1.2) with λ > λc satisfies

u(t)= 0 for t ∈ [0,c]. (3.13)

Consequently, all sequential solutions of problem (1.1), (1.2) are dead core solutions for suf-
ficiently large values of λ.

Proof. Fix c ∈ (0,T). Let λc > 0 be given in Lemma 2.6. Choose λ > λc. Then (2.28) holds
where un is a solution of problem (1.13), (1.14). Let u be a sequential solution of problem
(1.1), (1.2). Then u(t) = limukn(t) locally uniformly on (0,T] for a subsequence {kn}.
Since u ≥ 0, (2.28) shows that u(c) = 0, and therefore u = 0 on [0,c] because we know
that u′ ≥ 0 on [0,T]. �

Corollary 3.4. Let (H1)–(H3) hold. Let 0 < λ1 < λ2 and let u be a sequential solution of
problem (1.1), (1.2) with λ= λ1. Then there exists a sequential solution v of problem (1.1),
(1.2) with λ= λ2 such that

0≤ v(t)≤ u(t) for t ∈ [0,T]. (3.14)

Proof. Let u(t)= limn→∞ukn(t) locally uniformly on (0,T], where {kn} is a subsequence
of {n} and ukn is a solution of problem (1.13), (1.14) with kn instead of n and with λ= λ1.
By Lemma 2.8, for each n∈N, there exists a solution vkn of problem (1.13), (1.14) with
λ= λ2 and with kn instead of n such that

0≤ vkn(t)≤ ukn(t) for t ∈
[

1
kn

,T
]

, n∈N. (3.15)

Since, by Lemma 2.1, 0 < vkn(t) ≤ A/α, 0 ≤ v′kn(t) < S1 for t ∈ [1/kn,T] and n ∈ N, and
{v′kn}n≥m is equicontinuous on [1/km,T] by Lemma 2.7, the Arzelà-Ascoli theorem and

the diagonal method guarantee that {v( j)
kn′ } is locally uniformly convergent on (0,T] for

j = 0,1, where {kn′ } is a subsequence of {kn}. Set ṽ(t)= limn′→∞ vkn′ (t) for t ∈ (0,T] and

v(t)=
⎧
⎨

⎩
ṽ(t) for t ∈ (0,T],

limt→0+ ṽ(t) for t = 0.
(3.16)

Then (see the first part of the proof of Theorem 3.1) v ∈ C0[0,T], and therefore v is
a sequential solution of problem (1.1), (1.2) with λ = λ2 in (1.1). From (3.15) we get
v(t) = limn′→∞ vkn′ (t) ≤ limn′→∞ukn′ (t) = u(t) for t ∈ (0,T], which shows that (3.14) is
true since u,v ∈ C0[0,T]. �
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Example 3.5. Let φ satisfy (H1). Consider the differential equation

(
φ(u′)

)′
+
r(u′)
tν

= λ
(
h1(t)
uβ

+h2(t)
(
φ(u′)

)γ
)

, (3.17)

where ν,γ ∈ (0,∞), β ∈ (0,1), r ∈ C0[0,∞) is positive on (0,∞), r(0)=0, h1,h2∈L1[0,T],
0 < ε ≤ h1(t) ≤ H , 0 ≤ h2(t) ≤ H for a.e. t ∈ [0,T] and

∫∞
0 φ−1(s)/(1 + sγ)ds = ∞. The

differential equation (3.17) is the special case of (1.1) with f (t, y) = r(y)/tν satisfying
(H2) and g(t,x, y) = h1(t)/xβ + h2(t)(φ(y))γ. It follows from the inequalities g(t,x, y) ≤
H(1 + 1/xβ)(1 + (φ(y))γ) for a.e. t ∈ [0,T] and all (x, y)∈ (0,∞)× [0,∞) and g(t,x, y)≥
ε(α/A)β for a.e. t ∈ [0,T] and all (x, y) ∈ (0,A/α]× [0,∞) that assumptions (H3) and
(H4) are satisfied with p(x)=H(1 + 1/xβ), ω(y)= 1 + (φ(y))γ, andmB = ε(α/A)β. Hence,
by Theorem 3.1, problem (3.17), (1.2) has a sequential solution for every λ > 0. This se-
quential solution is either a positive solution or a dead core solution or a pseudo dead
core solution. If λ is sufficiently small, all sequential solutions of problem (3.17), (1.2) are
positive solutions by Corollary 3.2. Corollary 3.3 guarantees that all sequential solutions
of problem (3.17), (1.2) are dead core solutions for sufficiently large λ.
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