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1. Introduction

Impulsive differential equations, which arise in physics, population dynamics, econom-
ics, and so forth, are important mathematical tools for providing a better understanding
of many real-world models, we refer to [1–5] and the references therein. About the appli-
cations of the theory of impulsive differential equations to different areas, for example,
see [6–15]. Boundary value problems (BVPs) for impulsive differential equations and im-
pulsive difference equations [16–20] have received special attention from many authors
in recent years.

Recently, Chen et al. in [21] study the following first-order impulsive nonlinear peri-
odic boundary value problem:

x′(t)= f (t,x), t ∈ [0,N], t �= t1,

x
(
t+
1

)= x
(
t−1
)

+ I1
(
x
(
t1
))

,

x(0)= x(T),

(1.1)

whereN > 0, t1 ∈ (0,N), t1 is fixed, f : [0,N]×Rn→Rn is continuous on (t,u)∈ ([0,N] \
{t1})×Rn, and the impulse at t = t1 is given by a continuous function I1 :Rn→Rn. They
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investigate the existence of solutions to the problem by means of differential inequalities
and Schaefer fixed point theorem. Their results complement and extend those of [22, 23]
in the sense that they allow superlinear growth of the nonlinearity of ‖ f (t, p)‖ in ‖p‖.

Inspired by [21, 24, 25], in this paper, we investigate the following second-order impul-
sive nonlinear differential equations with periodic boundary value conditions problem:

u′′(t)= f
(
t,u(t),u′(t)

)
, t ∈ [0,T], t �= t1,

u
(
t+
1

)= u
(
t−1
)

+ I
(
u
(
t1
))

,

u′
(
t+
1

)= u′
(
t−1
)

+ J
(
u
(
t1
))

,

u(0)= u(T), u′(0)= u′(T),

(1.2)

where T > 0, t1 ∈ (0,T), t1 is fixed, f : [0,T]×Rn ×Rn → Rn is continuous on (t,x, y)
∈ ([0,T] \ {t1})×Rn ×Rn, and the impulse is given at t1 by two continuous functions
I , J : Rn → Rn, the notations u(t−1 ) := limt→t−1 u(t), u(t+

1 ) := limt→t+
1
u(t), u′(t+

1 ) = limt→t+
1

u′(t), and u′(t−1 )= limt→t−1 u(t).
We note that we could consider impulsive BVPs with an arbitrary finite number of

impulses. However, for clarity and brevity, we restrict our attention to BVPs with one im-
pulse. In addition, the difference between the theory of one or an arbitrary finite number
of impulses is quite minimal.

Our results extend those of [25] from the nonimpulsive case to the impulsive case. Our
approach using differential inequalities is based on ideas in [24, 25]. Moreover, our new
results complement and extend those of [26–28] in the sense that we allow superlinear
growth of ‖ f (t, p,q)‖ in ‖p‖ and ‖q‖.

The main purpose is to establish the existence of solutions for the impulsive BVP (1.2)
by employing the well-known Schaefer fixed point theorem.

Lemma 1.1 (see [29] (Schaefer)). Let E be a normed linear space with H : E → E be a
compact operator. If the set

S := {x ∈ E | x = λHx, for some λ∈ (0,1)
}

(1.3)

is bounded, then H has at least one fixed point.

The paper is formulated as follows. In Section 2, some definitions and lemmas are
given. In Section 3, we establish new existence theorems for (1.2). In Section 4, an illus-
trative example is given to demonstrate the effectiveness of the obtained results.

2. Preliminaries

First, we briefly introduce some appropriate concepts connected with impulsive differen-
tial equations. Most of the following notations can be found in [30].

Assume that

f
(
t+
1 ,x, y

)
:= lim

t→t+
1

f (t,x, y), f
(
t−1 ,x, y

)
:= lim

t→t−1
f (t,x, y) (2.1)
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both exist with f (t−1 ,x, y) = f (t1,x, y). We introduce and denote the Banach space
PC([0,T],Rn) by

PC
(
[0,T];Rn

)= {u∈ C
(
[0,T] \ {t1

}
,Rn

)
, u is left continuous at t = t1,

the right-hand limit u(t+
1 ) exists

} (2.2)

with the norm

‖u‖PC = sup
t∈[0,T]

∥
∥u(t)

∥
∥, (2.3)

where ‖ · ‖ is the usual Euclidean norm.
We define and denote the Banach space PC1([0,T];Rn) by

PC1([0,T];Rn
)= {u∈ C1([0,T] \ {t1

}
,Rn

)
, u is left continuous at t = t1,

the right-hand limit u(t+
1 ) exists, and the limits u′(t+

1 ), u′(t−1 ) exist
}

(2.4)

with the norm

‖u‖PC1 =max
{‖u‖PC,‖u′‖PC

}
. (2.5)

A solution to the impulsive BVP (1.2) is a function u ∈ PC1([0,T],Rn)∩C2([0,T] \
{t1},Rn) that satisfies (1.2) for each t ∈ [0,T].

Consider the following impulsive BVP with p ≥ 0, q > 0:

u′′(t)− pu′(t)− qu(t) + σ(t)= 0, t ∈ [0,T], t �= t1,

u
(
t+
1

)= u
(
t−1
)

+ I
(
u
(
t1
))

,

u′
(
t+
1

)= u′
(
t−1
)

+ J
(
u
(
t1
))

,

u(0)= u(T), u′(0)= u′(T),

(2.6)

where σ ∈ PC([0,T],Rn) is given, I , J :Rn→Rn are continuous.
For convenience, we set

r1 :=
p+
√
p2 + 4q

2
> 0, r2 :=

p−
√
p2 + 4q

2
< 0. (2.7)

Lemma 2.1. u∈ PC1([0,T],Rn)∩C2([0,T] \ {t1},Rn) is a solution of (2.6) if and only if
u∈ PC1([0,T],Rn) is a solution of the following linear impulsive integral equation:

u(t)=
∫ T

0
G(t,s)σ(s)ds+G

(
t, t1
)(− J

(
u
(
t1
)))

+W
(
t, t1
)
I
(
u
(
t1
))

, (2.8)
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where

G(t,s)= 1
r1− r2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

er1(t−s)

er1T − 1
+

er2(t−s)

1− er2T
, 0≤ s < t ≤ T ,

er1(T+t−s)

er1T − 1
+
er2(T+t−s)

1− er2T
, 0≤ t ≤ s≤ T ,

(2.9)

W(t,s)= 1
r1− r2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r2er1(t−s)

er1T − 1
+
r1er2(t−s)

1− er2T
, 0≤ s < t ≤ T ,

r2er1(T+t−s)

er1T − 1
+
r1er2(T+t−s)

1− er2T
, 0≤ t ≤ s≤ T.

(2.10)

Proof. If u∈ PC1([0,T];Rn)
⋂
C2([0,T] \ {t1},Rn) is a solution of (2.6), setting

v(t)= u′(t)− r2u(t), (2.11)

then by the first equation of (2.6), we have

v′(t)− r1v(t)=−σ(t), t �= t1. (2.12)

Multiplying (2.12) by e−r1t and integrating on [0, t1) and (t1,T], respectively, we get

e−r1t1v
(
t−1
)− v(0)=−

∫ t1

0
σ(s)e−r1sds, 0≤ t < t1,

e−r1tv(t)− e−r1t1v(t+
1 )=−

∫ T

t1
σ(s)e−r1sds, t1 < t ≤ T ,

(2.13)

then, we have by the second equation and third equation of (2.6) that

v(t)= er1t
[
v(0)−

∫ t

0
e−r1sσ(s)ds+ I∗

]
, t ∈ [0,T], (2.14)

where

v(0)= u′(0)− r2u(0), I∗ = (J(u(t1
))− r2I

(
u
(
t1
)))

e−r1t1 . (2.15)

Integrating (2.11), we have

u(t)= er2t
[
u(0) +

∫ t

0
v(s)e−r2sds+ I

(
u
(
t1
))
e−r2t1

]
, t ∈ [0,T]. (2.16)

By some calculation, we get

∫ t

0
v(s)e−r2sds

= 1
r1−r2

[
v(0)

(
e(r1−r2)t−1

)
,−
∫ t

0

(
e(r1−r2)t − e(r1−r2)s)σ(s)e−r1sds+ I∗

(
e(r1−r2)t − e(r1−r2)t1

)
]
.

(2.17)
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Substituting (2.17) into (2.16), we have

u(t)= 1
r1− r2

[
(
u′(0)− r2u(0)

)
er1t +

(
r1u(0)−u′(0)

)
er2t

+
∫ t

0

(
er2(t−s)− er1(t−s))σ(s)ds

+
(
J
(
u
(
t1
))− r2I

(
u
(
t1
)))

er1(t−t1)

− (J(u(t1
))− r1I

(
u
(
t1
)))

er2(t−t1)
]

, t ∈ [0,T].

(2.18)

By the fourth equation (boundary condition) of (2.6), we have

r1u(0)−u′(0)= 1
1− er2T

[∫ T

0
er2(T−s)σ(s)ds− (J(u(t1

))− r1I
(
u
(
t1
)))

er2(T−t1)
]

,

(2.19)

u′(0)− r2u(0)= 1
er1T − 1

[∫ T

0
er1(T−s)σ(s)ds− (J(u(t1

))− r2I
(
u
(
t1
)))

er1(T−t1)
]

,

(2.20)

substituting (2.19) and (2.20) into (2.18), we get (2.8).
Conversely, if u is a solution to (2.8), then direct differentiation of (2.8) gives

u′′(t) = −σ(t) + pu′(t) + qu(t), t �= t1. Moreover, we have u(t+
1 ) = u(t−1 ) + I(u(t1)),

u′(t+
1 )= u′(t−1 ) + J(u(t1)), u(0)= u(T), and u′(0)= u′(T).

Note that the linear part of the periodic BVP (1.2) is not necessarily invertible, that is,
we may be unable to equivalently rewrite (1.2) in the integral form. However, if we use
Lemma 2.1, then impulsive BVP (1.2) may be equivalently reformulated as the impulsive
integral equation.

We now introduce a mapping A : PC1([0,T];Rn)→ PC([0,T];Rn) defined by

Au(t)=
∫ T

0
G(t,s)

[− f
(
s,u(s),u′(s)

)
+ pu′(s) + qu(s)

]
ds

+G
(
t, t1
)(− J

(
u
(
t1
)))

+W
(
t, t1
)
I
(
u
(
t1
))

, t ∈ [0,T].

(2.21)

In view of Lemma 2.1, we easily know that u is a fixed point of operator A if and only
if u is a solution to the impulsive boundary value problem (1.2).

It is easy to check that

0≤G(t,s)≤G(s,s)= er1T − er2T
(
r1− r2

)(
er1T − 1

)(
1− er2T

) :=G1. (2.22)
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By p ≥ 0 and q > 0, we have r1 ≥−r2 > 0. Thus we obtain that

∣
∣W(t,s)

∣
∣≤ 1

r1− r2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−r2er1(t−s)

er1T − 1
+
r1er2(t−s)

1− er2T
, 0≤ s < t ≤ T ,

−r2er1(T+t−s)

er1T − 1
+
r1er2(T+t−s)

1− er2T
, 0≤ t ≤ s≤ T ,

≤ r1

r1− r2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

er1(t−s)

er1T − 1
+

er2(t−s)

1− er2T
, 0≤ s < t ≤ T ,

er1(T+t−s)

er1T − 1
+
er2(T+t−s)

1− er2T
, 0≤ t ≤ s≤ T ,

= r1G(t,s)≤ r1G1.

(2.23)

Since

Gt(t,s) := ∂

∂t
G(t,s)= 1

r1− r2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r1er1(t−s)

er1T − 1
+
r2er2(t−s)

1− er2T
, 0≤ s < t ≤ T ,

r1er1(T+t−s)

er1T − 1
+
r2er2(T+t−s)

1− er2T
, 0≤ t ≤ s≤ T ,

Wt(t,s) := ∂

∂t
W(t,s)= 1

r1− r2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r1r2er1(t−s)

er1T − 1
+
r2r1er2(t−s)

1− er2T
, 0≤ s < t ≤ T ,

r1r2er1(T+t−s)

er1T − 1
+
r1r2er2(T+t−s)

1− er2T
, 0≤ t ≤ s≤ T ,

(2.24)

we easily get that

∣
∣Gt(t,s)

∣
∣≤ 1

r1− r2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r1er1(t−s)

er1T − 1
+
−r2er2(t−s)

1− er2T
, 0≤ s < t ≤ T ,

r1er1(T+t−s)

er1T − 1
+
−r2er2(T+t−s)

1− er2T
, 0≤ t ≤ s≤ T ,

≤ r1G(t,s)≤ r1G1,

∣
∣Wt(t,s)

∣
∣≤ 1

r1− r2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−r2r1er1(t−s)

er1T − 1
+
−r2r1er2(t−s)

1− er2T
, 0≤ s < t ≤ T ,

−r2r1er1(T+t−s)

er1T − 1
+
−r2r1er2(T+t−s)

1− er2T
, 0≤ t ≤ s≤ T ,

≤ r2
1G(t,s)≤ r2

1G1.

(2.25)

Let

H :=max
{
r1G1, r2

1G1
}
. (2.26)
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So

∣
∣Gt(t,s)

∣
∣≤H ,

∣
∣Wt(t,s)

∣
∣≤H. (2.27)

�

Lemma 2.2. Let f : [0,T]×Rn ×Rn → Rn and I , J : Rn → Rn be continuous. Then A :
PC1([0,T];Rn)→ PC1([0,T];Rn) is a compact map.

Proof. This is similar to that of [31, Lemma 3.2]. Define two operators B, F as follows:

Bu(t)=
∫ T

0
G(t,s)

[− f
(
s,u(s),u′(s)

)
+ pu′(s) + qu(s)

]
ds, t ∈ [0,T],

Fu(t)=G
(
t, t1
)(− J

(
u
(
t1
)))

+W
(
t, t1
)
I
(
u
(
t1
))

, t ∈ [0,T].

(2.28)

From the continuity of f , it is easy to see that B is compact. Since I , J are continuous, we
have that F is compact. Thus A= B+F is a compact map. �

3. Main results

Theorem 3.1. Suppose that f : [0,T]×Rn×Rn → Rn and I , J : Rn → Rn are continuous.
If there exist nonnegative constants α, β, γ, L1, L2, N , and M such that for each λ∈ (0,1),

∥
∥ f (t,x, y)− py− qx

∥
∥≤ 2α

[〈
x+ y, f (t,x, y)

〉
+‖y‖2]+M,

(t,x, y)∈ ([0,T] \ {t1
})×Rn×Rn, where 〈·〉 is the Euclidean inner product,

(3.1)

∥
∥I(x)

∥
∥≤ β‖x‖+L1,

∥
∥J(x)

∥
∥≤ γ‖x‖+L2, ∀x ∈Rn, (3.2)

β+ γ <
1
H

, (3.3)

where H is as in (2.26), then BVP (1.2) has at least one solution.

Proof. From Lemma 2.2, we know that A is a compact map. In order to show that A has
at least one fixed point, we apply Lemma 1.1 (Schaefer’s theorem) by showing that all
potential solutions to

u= λAu, λ∈ (0,1), (3.4)

are bounded a priori, with the bound being independent of λ. Let u be a solution to (3.4),
then

u′′(t)− pu′(t)− qu(t)= λ
[
f
(
t,u(t),u′(t)

)− pu′(t)− qu(t)
]
, t ∈ [0,T],

u
(
t+
1

)= u
(
t−1
)

+ λI
(
u
(
t1
))

,

u′
(
t+
1

)= u′
(
t−1
)

+ λJ
(
u
(
t1
))

,

u(0)= u(T), u′(0)= u′(T).

(3.5)
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By (3.1)–(3.3), (2.22) and (2.23), we obtain
∥
∥u(t)

∥
∥= λ

∥
∥Au(t)

∥
∥

=
∥
∥
∥
∥

∫ T

0
G(t,s)λ

(
f
(
s,u(s),u′(s)

)− pu′(s)− qu(s)
)
ds

+ λG
(
t, t1
)(− J

(
u
(
t1
)))

+ λW
(
t, t1
)
I
(
u
(
t1
))
∥
∥
∥
∥

≤G1

∫ T

0
λ
∥
∥ f
(
s,u(s),u′(s)

)− pu′(s)− qu(s)
∥
∥ds

+ λG1
(∥∥J
(
u
(
t1
))∥∥+

∥
∥I
(
u
(
t1
))∥∥)

≤G1

[∫ T

0

(
2α
(〈
u(s) +u′(s),λ f

(
s,u(s),u′(s)

)〉
+‖u′‖2)+M

)
ds

+β
∥
∥u
(
t1
)∥∥+L1 + γ

∥
∥u
(
t1
)∥∥+L2

]

=G1

[∫ T

0

(
2α
(〈
u(s) +u′(s),λ f

(
s,u(s),u′(s)

)
+ (1− λ)pu′(s)

+ (1− λ)qu(s)
〉

+
∥
∥u′(s)

∥
∥2
)

+M
)
ds

−
∫ T

0
2α
〈
u(s) +u′(s),(1− λ)pu′(s) + (1− λ)qu(s)

〉
ds

+ (β+ γ)
∥
∥u
(
t1
)∥∥+L1 +L2

]
.

(3.6)

Since

−
∫ T

0

〈
u(s) +u′(s),(1− λ)pu′(s) + (1− λ)qu(s)

〉
ds

=−(1− λ)q
∫ T

0

∥
∥u(s)

∥
∥2
ds− (1− λ)p

∥
∥u′(s)

∥
∥2
ds+ (1− λ)(p+ q)

∫ T

0

〈
u(s),u′(s)

〉
ds

≤ (1− λ)(p+ q)
∫ T

0

〈
u(s),u′(s)

〉
ds= 1

2
(1− λ)(p+ q)

∫ T

0

d

ds

(∥
∥u(s)

∥
∥2
)

= 1
2

(1− λ)(p+ q)
(∥
∥u(T)

∥
∥2−∥∥u(0)

∥
∥2
)
= 0,

(3.7)
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we have by (3.6) and (3.7) that

∥
∥u(t)

∥
∥= λ

∥
∥Au(t)

∥
∥

≤G1

[∫ T

0

(
2α
(〈
u(s) +u′(s),λ f

(
s,u(s),u′(s)

)
+ (1− λ)pu′(s) + (1− λ)qu(s)

〉

+
∥
∥u′(s)

∥
∥2
)

+M
)
ds+ (β+ γ)

∥
∥u
(
t1
)∥∥+L1 +L2

]

=G1

[∫ T

0

(
2α
〈
u(s) +u′(s),u′′(s)

〉
+
〈
u(s) +u′(s),u′(s)

〉

− 〈u(s),u′(s)
〉

+M
)
ds+ (β+ γ)

∥
∥u
(
t1
)∥∥+L1 +L2

]

=G1

[∫ T

0

(
2α
〈
u(s) +u′(s),u′′(s) +u′(s)

〉
+M

)
ds+ (β+ γ)

∥
∥u
(
t1
)∥∥+L1 +L2

]

=G1

[∫ T

0

(
α
d

ds

(∥
∥u(s) +u′(s)

∥
∥2
)

+M
)
ds+ (β+ γ)

∥
∥u
(
t1
)∥∥+L1 +L2

]

=G1

[
α
(∥
∥u(T) +u′(T)

∥
∥2−∥∥u(0) +u′(0)

∥
∥2
)

+TM + (β+ γ)
∥
∥u
(
t1
)∥∥+L1 +L2

]

=G1
[
TM + (β+ γ)

∥
∥u
(
t1
)∥∥+L1 +L2

]
.

(3.8)

Thus, taking the supremum and rearranging, we have

sup
t∈[0,T]

∥
∥u(t)

∥
∥≤ G1

(
TM +L1 +L2

)

1−G1(β+ γ)
. (3.9)

A similar calculation yields an estimate on u′: differentiating both sides of the integra-
tion equation (3.4) and taking norms yields, by (2.27), for each t ∈ [0,T] that

sup
t∈[0,T]

∥
∥u′(t)

∥
∥≤ H

(
TM +L1 +L2

)

1−H(β+ γ)
, (3.10)

where H is as in (2.26). By (3.9) and (3.10), we conclude that

‖u‖PC1 =max

{
G1
(
TM +L1 +L2

)

1−G1(β+ γ)
,
H
(
TM +L1 +L2

)

1−H(β+ γ)

}

= H
(
TM +L1 +L2

)

1−H(β+ γ)
. (3.11)

As a result, we obtain the desired bound. We see that the bound on all possible solutions
to (3.4) is independent of λ. Applying Scheafer fixed point theorem, A has at least one
fixed point, which means that (1.2) has at least one solution. We complete the proof. �

Theorem 3.1 may be suitably modified to include an alternate class of f as follows.
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Theorem 3.2. Suppose that f : [0,T]×Rn×Rn → Rn and I , J : Rn → Rn are continuous.
Let the conditions of Theorem 3.1 hold with (3.1) replaced by

∥
∥ f (t,x, y)− py− qx

∥
∥≤ 2α

〈
y, f (t,x, y)

〉
+M, (t,x, y)∈ ([0,T] \ {t1

})×Rn×Rn.
(3.12)

Then the impulsive BVP (1.2) has at least one solution.

The proof of Theorem 3.2 is similar to that of Theorem 3.1. It is enough to notce that
(3.6) in Theorem 3.1 reduces to
∥
∥u(t)

∥
∥= λ

∥
∥Au(t)

∥
∥

≤G1

∫ T

0
λ
∥
∥ f
(
s,u(s),u′(s)

)− pu′(s)− qu(s)
∥
∥ds+ λG1

(∥∥J
(
u
(
t1
))∥∥+

∥
∥I
(
u
(
t1
))∥∥)

≤G1

[∫ T

0

(
2α
〈
u′(s),λ f

(
s,u(s),u′(s)

)〉
+M

)
ds

(
use (3.12)

)

+ (β+ γ)
∥
∥u
(
t1)
∥
∥+L1 +L2

]

≤G1

[∫ T

0

(
2α
〈
u′(s),λ f

(
s,u(s),u′(s)

)
+ (1− λ)pu′(s)

〉
+M

)
ds

+ (β+ γ)
∥
∥u
(
t1
)∥∥+L1 +L2

]

=G1

[∫ T

0

(
2α
〈
u′(s),λ f

(
s,u(s),u′(s)

)
+ (1− λ)pu′(s) + (1− λ)qu(s)

〉
+M

)
ds

− (1− λ)q
∫ T

0
2α
〈
u′(s),u(s)

〉
ds+ (β+ γ)

∥
∥u
(
t1
)∥∥+L1 +L2

]

=G1

[∫ T

0

(
2α
〈
u′(s),u′′(s)

〉
+M

)
ds+ (β+ γ)

∥
∥u
(
t1
)∥∥+L1 +L2

]

=G1

[∫ T

0

(
α
d

ds

(∥
∥u′(s)

∥
∥2
)

+M
)
ds+ (β+ γ)

∥
∥u
(
t1
)∥∥+L1 +L2

]

=G1

[
α
(∥
∥u′(T)

∥
∥2−∥∥u′(0)

∥
∥2
)

+TM + (β+ γ)
∥
∥u
(
t1
)∥∥+L1 +L2

]

=G1
[
TM + (β+ γ)

∥
∥u
(
t1
)∥∥+L1 +L2

]
.

(3.13)

Remark 3.3. If f does not depend on u′, let the conditions of Theorem 3.1 hold with (3.1)
replaced by

∥
∥ f (t,x)− qx

∥
∥≤ 2α

〈
x, f (t,x)

〉
+M, (t,x)∈ ([0,T] \ {t1

})×Rn×Rn. (3.14)

Then the impulsive BVP (1.2) has at least one solution.
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4. An example

In this section, we consider an example to illustrate the effectiveness of our new theorems.
For brevity, we restrict our attention to scalar-valued impulsive BVPs, although we note
that it is not difficult to construct a vector-valued f such that the conditions of Theorems
3.1 and 3.2 are satisfied.

Example 4.1. Consider the scalar impulsive BVP given by

u′′(t)= (u(t) +u′(t)
)3

+u(t) +
(
u′(t)

)2
+u′(t) + t, t ∈ [0,1] \ {t1

}
,

u
(
t+
1

)= u
(
t−1
)

+
u
(
t1
)

5
, u′

(
t+
1

)= u′
(
t−1
)

+
u
(
t1
)

7
,

u(0)= u(1), u′(0)= u′(1),

(4.1)

we claim that the above impulsive BVP has at least one solution.

Proof. Let T = 1, f (t,x, y)= (x+ y)5 + x+ y2 + y + t, and p = q = 1. Then r1 = (
√

5 + 1)/2
and r2 = (1−√5)/2. Obviously, (3.2) holds with β = 1/5, γ = 1/7, and L1 = L2 = 0. We
get 1/H = 0.3534 (H is as in (2.26)). Thus, (3.3) in Theorem 3.1 holds. Moreover, we see
that

∣
∣ f (t,x, y)− x− y

∣
∣≤ |x+ y|5 + y2 + 1, ∀(t,x, y)∈ [0,1]×R2, (4.2)

and for α= 1/2 and M = 2,

2α
[
(x+ y) f (t,x, y) + y2]+M = (x+ y)6 + (x+ y)2 + (x+ y)t+ y2 + 2

≥ (x+ y)6 + (x+ y)2−|x+ y|+ y2 + 2≥ |x+ y|5 + y2 + 1, ∀(t,x, y)∈ [0,1]×R2.
(4.3)

Thus (3.1) holds. Therefore, by Theorem 3.1, BVP (4.1) has at least one solution. �
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